|
@@ -10,7 +10,15 @@ import os
|
|
|
from enum import Enum, auto
|
|
|
|
|
|
|
|
|
-ACCOUNT_INFO = ['Account', 'Make', 'Site', 'Origin', 'SalesChannel', 'CostCarrier', 'CostAccountingString']
|
|
|
+ACCOUNT_INFO = [
|
|
|
+ "Account",
|
|
|
+ "Make",
|
|
|
+ "Site",
|
|
|
+ "Origin",
|
|
|
+ "SalesChannel",
|
|
|
+ "CostCarrier",
|
|
|
+ "CostAccountingString",
|
|
|
+]
|
|
|
|
|
|
|
|
|
class GCHR:
|
|
@@ -18,11 +26,11 @@ class GCHR:
|
|
|
self.base_dir = base_dir
|
|
|
|
|
|
self.account_translation = f"{self.base_dir}/data/Kontenrahmen_uebersetzt.csv"
|
|
|
- self.account_bookings = list(Path(self.base_dir).joinpath('data').glob('GuV_Bilanz_Salden*.csv'))
|
|
|
- self.first_month_of_financial_year = '01'
|
|
|
+ self.account_bookings = list(Path(self.base_dir).joinpath("data").glob("GuV_Bilanz_Salden*.csv"))
|
|
|
+ self.first_month_of_financial_year = "09"
|
|
|
|
|
|
- pd.set_option('display.max_rows', 500)
|
|
|
- pd.set_option('display.float_format', lambda x: '%.2f' % x)
|
|
|
+ pd.set_option("display.max_rows", 500)
|
|
|
+ pd.set_option("display.float_format", lambda x: "%.2f" % x)
|
|
|
|
|
|
def set_bookkeep_period(self, year, month):
|
|
|
self.current_year = year
|
|
@@ -31,10 +39,10 @@ class GCHR:
|
|
|
prot_file = f"{self.export_info_dir}/protokoll_{period}.log"
|
|
|
logging.basicConfig(
|
|
|
filename=prot_file,
|
|
|
- filemode='w',
|
|
|
- encoding='utf-8',
|
|
|
+ filemode="w",
|
|
|
+ encoding="utf-8",
|
|
|
level=logging.DEBUG,
|
|
|
- force=True
|
|
|
+ force=True,
|
|
|
)
|
|
|
self.debug_file = f"{self.export_info_dir}/debug_{period}.csv"
|
|
|
self.account_ignored = f"{self.export_info_dir}/ignoriert_{period}.csv"
|
|
@@ -46,74 +54,108 @@ class GCHR:
|
|
|
|
|
|
def header(self, makes, sites):
|
|
|
return {
|
|
|
- 'Country': 'DE',
|
|
|
- 'MainBmCode': sites[0]['Standort_HBV'],
|
|
|
- 'Month': self.current_month,
|
|
|
- 'Year': self.current_year,
|
|
|
- 'Currency': 'EUR',
|
|
|
- 'NumberOfMakes': len(makes),
|
|
|
- 'NumberOfSites': len(sites),
|
|
|
- 'ExtractionDate': datetime.now().strftime('%d.%m.%Y'),
|
|
|
- 'ExtractionTime': datetime.now().strftime('%H:%M:%S'),
|
|
|
- 'BeginFiscalYear': self.first_month_of_financial_year
|
|
|
+ "Country": "DE",
|
|
|
+ "MainBmCode": sites[0]["Standort_HBV"],
|
|
|
+ "Month": self.current_month,
|
|
|
+ "Year": self.current_year,
|
|
|
+ "Currency": "EUR",
|
|
|
+ "NumberOfMakes": len(makes),
|
|
|
+ "NumberOfSites": len(sites),
|
|
|
+ "ExtractionDate": datetime.now().strftime("%d.%m.%Y"),
|
|
|
+ "ExtractionTime": datetime.now().strftime("%H:%M:%S"),
|
|
|
+ "BeginFiscalYear": self.first_month_of_financial_year,
|
|
|
}
|
|
|
|
|
|
def bookkeep_filter(self):
|
|
|
period = [self.current_year + str(i).zfill(2) for i in range(1, 13)]
|
|
|
- if self.first_month_of_financial_year != '01':
|
|
|
+ if self.first_month_of_financial_year != "01":
|
|
|
if self.first_month_of_financial_year > self.current_month:
|
|
|
period = [self.last_year + str(i).zfill(2) for i in range(1, 13)] + period
|
|
|
else:
|
|
|
period = period + [self.next_year + str(i).zfill(2) for i in range(1, 13)]
|
|
|
fm = int(self.first_month_of_financial_year)
|
|
|
- period = period[fm - 1:fm + 12]
|
|
|
- period = [self.current_year + '00'] + period
|
|
|
- rename_to = ['OpeningBalance'] + ['Period' + str(i).zfill(2) for i in range(1, 13)]
|
|
|
+ period = period[fm - 1 : fm + 12]
|
|
|
+ period = [self.current_year + "00"] + period
|
|
|
+ rename_to = ["OpeningBalance"] + ["Period" + str(i).zfill(2) for i in range(1, 13)]
|
|
|
return dict(zip(period, rename_to))
|
|
|
|
|
|
def extract_acct_info(self, df: pd.DataFrame):
|
|
|
- acct_info = ['Marke', 'Standort', 'Konto_Nr', 'Kostenstelle', 'Absatzkanal', 'Kostenträger']
|
|
|
- df['Konto_Nr_SKR51'] = df.index
|
|
|
- df[acct_info] = df['Konto_Nr_SKR51'].str.split('-', 6, expand=True)
|
|
|
+ acct_info = [
|
|
|
+ "Marke",
|
|
|
+ "Standort",
|
|
|
+ "Konto_Nr",
|
|
|
+ "Kostenstelle",
|
|
|
+ "Absatzkanal",
|
|
|
+ "Kostenträger",
|
|
|
+ ]
|
|
|
+ df["Konto_Nr_SKR51"] = df.index
|
|
|
+ df[acct_info] = df["Konto_Nr_SKR51"].str.split(pat="-", n=6, expand=True)
|
|
|
return df
|
|
|
|
|
|
def export_all_periods(self):
|
|
|
dt = datetime.now()
|
|
|
prev = str(dt.year - 1)
|
|
|
- periods = [(prev, str(x).zfill(2)) for x in range(dt.month, 13)] + \
|
|
|
- [(str(dt.year), str(x).zfill(2)) for x in range(1, dt.month)]
|
|
|
+ periods = [(prev, str(x).zfill(2)) for x in range(dt.month, 13)] + [
|
|
|
+ (str(dt.year), str(x).zfill(2)) for x in range(1, dt.month)
|
|
|
+ ]
|
|
|
for year, month in periods:
|
|
|
filename = self.export_filename_for_period(year, month)
|
|
|
if not Path(filename).exists():
|
|
|
- os.makedirs(Path(filename).parent.joinpath('info'), exist_ok=True)
|
|
|
+ os.makedirs(Path(filename).parent.joinpath("info"), exist_ok=True)
|
|
|
self.export_period(year, month)
|
|
|
|
|
|
def export_period(self, year, month):
|
|
|
self.set_bookkeep_period(year, month)
|
|
|
# Übersetzungstabelle laden
|
|
|
- df_translate = pd.read_csv(self.account_translation, decimal=',', sep=';', encoding='latin-1',
|
|
|
- converters={i: str for i in range(0, 200)})
|
|
|
+ df_translate = pd.read_csv(
|
|
|
+ self.account_translation,
|
|
|
+ decimal=",",
|
|
|
+ sep=";",
|
|
|
+ encoding="latin-1",
|
|
|
+ converters={i: str for i in range(0, 200)},
|
|
|
+ )
|
|
|
logging.info(df_translate.shape)
|
|
|
- df_translate['duplicated'] = df_translate.duplicated()
|
|
|
- logging.info(df_translate[df_translate['duplicated']])
|
|
|
- df_translate = df_translate[['Konto_Nr_Händler', 'Konto_Nr_SKR51', 'Marke',
|
|
|
- 'Marke_HBV', 'Standort', 'Standort_HBV']]
|
|
|
-
|
|
|
- row = df_translate[['Marke', 'Marke_HBV', 'Standort', 'Standort_HBV']] \
|
|
|
- .drop_duplicates().sort_values(by=['Marke', 'Standort']).iloc[:1].to_dict(orient='records')[0]
|
|
|
- row['Konto_Nr_Händler'] = '01-01-0861-00-00-00'
|
|
|
- row['Konto_Nr_SKR51'] = '01-01-0861-00-00-00'
|
|
|
+ df_translate["duplicated"] = df_translate.duplicated()
|
|
|
+ logging.info(df_translate[df_translate["duplicated"]])
|
|
|
+ df_translate = df_translate[
|
|
|
+ [
|
|
|
+ "Konto_Nr_Händler",
|
|
|
+ "Konto_Nr_SKR51",
|
|
|
+ "Marke",
|
|
|
+ "Marke_HBV",
|
|
|
+ "Standort",
|
|
|
+ "Standort_HBV",
|
|
|
+ ]
|
|
|
+ ]
|
|
|
+
|
|
|
+ row = (
|
|
|
+ df_translate[["Marke", "Marke_HBV", "Standort", "Standort_HBV"]]
|
|
|
+ .drop_duplicates()
|
|
|
+ .sort_values(by=["Marke", "Standort"])
|
|
|
+ .iloc[:1]
|
|
|
+ .to_dict(orient="records")[0]
|
|
|
+ )
|
|
|
+ row["Konto_Nr_Händler"] = "01-01-0861-00-00-00"
|
|
|
+ row["Konto_Nr_SKR51"] = "01-01-0861-00-00-00"
|
|
|
|
|
|
df_translate = pd.concat([df_translate, pd.DataFrame.from_records([row])])
|
|
|
# print(df_translate.tail())
|
|
|
# df_translate.drop(columns=['duplicated'], inplace=True)
|
|
|
df_translate.drop_duplicates(inplace=True)
|
|
|
- df_translate.set_index('Konto_Nr_Händler')
|
|
|
+ df_translate.set_index("Konto_Nr_Händler")
|
|
|
|
|
|
# Kontensalden laden
|
|
|
df2 = []
|
|
|
for csv_file in self.account_bookings:
|
|
|
- df2.append(pd.read_csv(csv_file, decimal=',', sep=';', encoding='latin-1', converters={0: str, 1: str}))
|
|
|
+ df2.append(
|
|
|
+ pd.read_csv(
|
|
|
+ csv_file,
|
|
|
+ decimal=",",
|
|
|
+ sep=";",
|
|
|
+ encoding="latin-1",
|
|
|
+ converters={0: str, 1: str},
|
|
|
+ )
|
|
|
+ )
|
|
|
df_bookings = pd.concat(df2)
|
|
|
# Kontensalden auf gegebenen Monat filtern
|
|
|
filter_from = self.current_year + self.first_month_of_financial_year
|
|
@@ -123,194 +165,238 @@ class GCHR:
|
|
|
filter_from = self.last_year + self.first_month_of_financial_year
|
|
|
filter_prev = self.last_year2 + self.first_month_of_financial_year
|
|
|
filter_to = self.current_year + self.current_month
|
|
|
- filter_opening = self.current_year + '00'
|
|
|
- filter_prev_opening = self.last_year + '00'
|
|
|
+ filter_opening = self.current_year + "00"
|
|
|
+ filter_prev_opening = self.last_year + "00"
|
|
|
prev_year_closed = True
|
|
|
|
|
|
- df_opening_balance = df_bookings[(df_bookings['Bookkeep Period'] == filter_opening)]
|
|
|
+ df_opening_balance = df_bookings[(df_bookings["Bookkeep Period"] == filter_opening)]
|
|
|
if df_opening_balance.shape[0] == 0:
|
|
|
- df_opening_balance = df_bookings[(df_bookings['Bookkeep Period'] == filter_prev_opening) |
|
|
|
- ((df_bookings['Bookkeep Period'] >= filter_prev) &
|
|
|
- (df_bookings['Bookkeep Period'] < filter_from))].copy()
|
|
|
- df_opening_balance['Bookkeep Period'] = filter_opening
|
|
|
+ df_opening_balance = df_bookings[
|
|
|
+ (df_bookings["Bookkeep Period"] == filter_prev_opening)
|
|
|
+ | ((df_bookings["Bookkeep Period"] >= filter_prev) & (df_bookings["Bookkeep Period"] < filter_from))
|
|
|
+ ].copy()
|
|
|
+ df_opening_balance["Bookkeep Period"] = filter_opening
|
|
|
prev_year_closed = False
|
|
|
# df_opening_balance = df_opening_balance.merge(df_translate, how='inner', on='Konto_Nr_Händler')
|
|
|
- df_opening_balance = df_opening_balance[(df_opening_balance['Konto_Nr_Händler'].str.contains(r'-[013]\d\d+-'))]
|
|
|
- df_opening_balance['amount'] = (df_opening_balance['Debit Amount'] + df_opening_balance['Credit Amount']).round(2)
|
|
|
+ df_opening_balance = df_opening_balance[(df_opening_balance["Konto_Nr_Händler"].str.contains(r"-[013]\d\d+-"))]
|
|
|
+ df_opening_balance["amount"] = (df_opening_balance["Debit Amount"] + df_opening_balance["Credit Amount"]).round(
|
|
|
+ 2
|
|
|
+ )
|
|
|
# df_opening_balance.drop(columns=['Debit Amount', 'Credit Amount', 'Debit Quantity', 'Credit Quantity'], inplace=True)
|
|
|
# df_opening_balance = df_opening_balance.groupby(['Marke', 'Standort']).sum()
|
|
|
- opening_balance = df_opening_balance['amount'].sum().round(2)
|
|
|
- logging.info('Gewinn/Verlustvortrag')
|
|
|
+ opening_balance = df_opening_balance["amount"].aggregate("sum").round(2)
|
|
|
+ logging.info("Gewinn/Verlustvortrag")
|
|
|
logging.info(opening_balance)
|
|
|
|
|
|
if not prev_year_closed:
|
|
|
row = {
|
|
|
- 'Konto_Nr_Händler': '01-01-0861-00-00-00',
|
|
|
- 'Bookkeep Period': filter_opening,
|
|
|
- 'Debit Amount': opening_balance * -1,
|
|
|
- 'Credit Amount': 0,
|
|
|
- 'Debit Quantity': 0,
|
|
|
- 'Credit Quantity': 0,
|
|
|
- 'amount': opening_balance * -1
|
|
|
+ "Konto_Nr_Händler": "01-01-0861-00-00-00",
|
|
|
+ "Bookkeep Period": filter_opening,
|
|
|
+ "Debit Amount": opening_balance * -1,
|
|
|
+ "Credit Amount": 0,
|
|
|
+ "Debit Quantity": 0,
|
|
|
+ "Credit Quantity": 0,
|
|
|
+ "amount": opening_balance * -1,
|
|
|
}
|
|
|
df_opening_balance = pd.concat([df_opening_balance, pd.DataFrame.from_records([row])])
|
|
|
|
|
|
- df_bookings = df_bookings[(df_bookings['Bookkeep Period'] >= filter_from) & (df_bookings['Bookkeep Period'] <= filter_to)]
|
|
|
- df_bookings['amount'] = (df_bookings['Debit Amount'] + df_bookings['Credit Amount']).round(2)
|
|
|
+ df_bookings = df_bookings[
|
|
|
+ (df_bookings["Bookkeep Period"] >= filter_from) & (df_bookings["Bookkeep Period"] <= filter_to)
|
|
|
+ ]
|
|
|
+ df_bookings["amount"] = (df_bookings["Debit Amount"] + df_bookings["Credit Amount"]).round(2)
|
|
|
df_stats = df_bookings.copy()
|
|
|
# df_stats = df_stats[df_stats['Konto_Nr_Händler'].str.match(r'-[24578]\d\d\d-')]
|
|
|
- df_stats['Konto_Nr_Händler'] = df_stats['Konto_Nr_Händler'].str.replace(r'-(\d\d\d+)-', r'-\1_STK-', regex=True)
|
|
|
- df_stats['amount'] = (df_bookings['Debit Quantity'] + df_bookings['Credit Quantity']).round(2)
|
|
|
+ df_stats["Konto_Nr_Händler"] = df_stats["Konto_Nr_Händler"].str.replace(r"-(\d\d\d+)-", r"-\1_STK-", regex=True)
|
|
|
+ df_stats["amount"] = (df_bookings["Debit Quantity"] + df_bookings["Credit Quantity"]).round(2)
|
|
|
|
|
|
df_bookings = pd.concat([df_opening_balance, df_bookings, df_stats])
|
|
|
- df_bookings = df_bookings[df_bookings['amount'] != 0.00]
|
|
|
+ df_bookings = df_bookings[df_bookings["amount"] != 0.00]
|
|
|
|
|
|
if df_bookings.shape[0] == 0:
|
|
|
- logging.error('ABBRUCH!!! Keine Daten vorhanden!')
|
|
|
+ logging.error("ABBRUCH!!! Keine Daten vorhanden!")
|
|
|
return False
|
|
|
|
|
|
bk_filter = self.bookkeep_filter()
|
|
|
period_no = list(bk_filter.keys()).index(filter_to) + 1
|
|
|
|
|
|
# Spalten konvertieren
|
|
|
- df_bookings['period'] = df_bookings['Bookkeep Period'].apply(lambda x: bk_filter[x])
|
|
|
+ df_bookings["period"] = df_bookings["Bookkeep Period"].apply(lambda x: bk_filter[x])
|
|
|
|
|
|
- logging.info('df_bookings: ' + str(df_bookings.shape))
|
|
|
+ logging.info("df_bookings: " + str(df_bookings.shape))
|
|
|
# Join auf Übersetzung
|
|
|
- df_combined = df_bookings.merge(df_translate, how='inner', on='Konto_Nr_Händler')
|
|
|
- logging.info('df_combined: ' + str(df_combined.shape))
|
|
|
+ df_combined = df_bookings.merge(df_translate, how="inner", on="Konto_Nr_Händler")
|
|
|
+ logging.info(f"df_combined: {df_combined.shape}")
|
|
|
|
|
|
# Hack für fehlende Markenzuordnung
|
|
|
- df_combined['Fremdmarke'] = (df_combined['Marke_HBV'].str.match(r'^0000'))
|
|
|
- df_combined['Marke'] = np.where(df_combined['Fremdmarke'], '99', df_combined['Marke'])
|
|
|
-
|
|
|
- df_combined['Standort_egal'] = (df_combined['Standort_HBV'].str.match(r'^\d\d_'))
|
|
|
- df_combined['Standort_HBV'] = np.where(df_combined['Fremdmarke'] | df_combined['Standort_egal'],
|
|
|
- '0000', df_combined['Standort_HBV'])
|
|
|
+ df_combined["Fremdmarke"] = df_combined["Marke_HBV"].str.match(r"^0000")
|
|
|
+ df_combined["Marke"] = np.where(df_combined["Fremdmarke"], "99", df_combined["Marke"])
|
|
|
+
|
|
|
+ df_combined["Standort_egal"] = df_combined["Standort_HBV"].str.match(r"^\d\d_")
|
|
|
+ df_combined["Standort_HBV"] = np.where(
|
|
|
+ df_combined["Fremdmarke"] | df_combined["Standort_egal"],
|
|
|
+ "0000",
|
|
|
+ df_combined["Standort_HBV"],
|
|
|
+ )
|
|
|
|
|
|
- makes = df_combined[['Marke', 'Marke_HBV']].drop_duplicates().sort_values(by=['Marke'])
|
|
|
- sites = df_combined[['Marke', 'Standort', 'Standort_HBV']].drop_duplicates().sort_values(by=['Marke', 'Standort'])
|
|
|
+ makes = df_combined[["Marke", "Marke_HBV"]].drop_duplicates().sort_values(by=["Marke"])
|
|
|
+ sites = (
|
|
|
+ df_combined[["Marke", "Standort", "Standort_HBV"]].drop_duplicates().sort_values(by=["Marke", "Standort"])
|
|
|
+ )
|
|
|
|
|
|
# df_combined.to_csv(account_invalid, decimal=',', sep=';', encoding='latin-1', index=False)
|
|
|
# Gruppieren
|
|
|
# df_grouped = df_combined.groupby(['Konto_Nr_SKR51', 'period']).sum()
|
|
|
- df = df_combined.pivot_table(index=['Konto_Nr_SKR51'], columns=['period'], values='amount',
|
|
|
- aggfunc=np.sum, margins=True, margins_name='CumulatedYear')
|
|
|
+ df = df_combined.pivot_table(
|
|
|
+ index=["Konto_Nr_SKR51"],
|
|
|
+ columns=["period"],
|
|
|
+ values="amount",
|
|
|
+ aggfunc=np.sum,
|
|
|
+ margins=True,
|
|
|
+ margins_name="CumulatedYear",
|
|
|
+ )
|
|
|
|
|
|
- logging.info('df_pivot: ' + str(df.shape))
|
|
|
+ logging.info("df_pivot: " + str(df.shape))
|
|
|
df = self.extract_acct_info(df)
|
|
|
# df = df_translate.reset_index(drop=True).drop(columns=['Kostenträger_Ebene']).drop_duplicates()
|
|
|
logging.info(df.shape)
|
|
|
logging.info(df.columns)
|
|
|
logging.info(df.head())
|
|
|
# df = df.merge(df_translate, how='inner', on='Konto_Nr_SKR51')
|
|
|
- logging.info('df: ' + str(df.shape))
|
|
|
- df['Bilanz'] = (df['Konto_Nr'].str.match(r'^[013]'))
|
|
|
- df['Kontoart'] = np.where(df['Bilanz'], '1', '2')
|
|
|
- df['Kontoart'] = np.where(df['Konto_Nr'].str.contains('_STK'), '3', df['Kontoart'])
|
|
|
- df['Kontoart'] = np.where(df['Konto_Nr'].str.match(r'^[9]'), '3', df['Kontoart'])
|
|
|
- df['Konto_1'] = (df['Konto_Nr'].str.slice(0, 1))
|
|
|
+ logging.info("df: " + str(df.shape))
|
|
|
+ df["Bilanz"] = df["Konto_Nr"].str.match(r"^[013]")
|
|
|
+ df["Kontoart"] = np.where(df["Bilanz"], "1", "2")
|
|
|
+ df["Kontoart"] = np.where(df["Konto_Nr"].str.contains("_STK"), "3", df["Kontoart"])
|
|
|
+ df["Kontoart"] = np.where(df["Konto_Nr"].str.match(r"^[9]"), "3", df["Kontoart"])
|
|
|
+ df["Konto_1"] = df["Konto_Nr"].str.slice(0, 1)
|
|
|
|
|
|
# Hack für fehlende Markenzuordnung
|
|
|
- df = df.merge(makes, how='left', on='Marke')
|
|
|
- df['Marke'] = np.where(df['Marke_HBV'].isna(), '99', df['Marke'])
|
|
|
-
|
|
|
- df_debug = df.drop(columns=['Bilanz'])
|
|
|
- logging.info(df_debug.groupby(['Kontoart']).sum())
|
|
|
- logging.info(df_debug.groupby(['Kontoart', 'Konto_1']).sum())
|
|
|
- logging.info(df_debug.groupby(['Konto_Nr']).sum())
|
|
|
- df_debug.groupby(['Konto_Nr']).sum().to_csv(self.debug_file, decimal=',', sep=';', encoding='latin-1')
|
|
|
+ df = df.merge(makes, how="left", on="Marke")
|
|
|
+ df["Marke"] = np.where(df["Marke_HBV"].isna(), "99", df["Marke"])
|
|
|
+
|
|
|
+ df_debug = df.drop(columns=["Bilanz"])
|
|
|
+ logging.info(df_debug.groupby(["Kontoart"]).aggregate("sum"))
|
|
|
+ logging.info(df_debug.groupby(["Kontoart", "Konto_1"]).aggregate("sum"))
|
|
|
+ logging.info(df_debug.groupby(["Konto_Nr"]).aggregate("sum"))
|
|
|
+ df_debug.groupby(["Konto_Nr"]).aggregate("sum").to_csv(
|
|
|
+ self.debug_file, decimal=",", sep=";", encoding="latin-1"
|
|
|
+ )
|
|
|
|
|
|
# Bereinigung GW-Kostenträger
|
|
|
- df['NW_Verkauf_1'] = (df['Konto_Nr'].str.match(r'^[78]0')) & (df['Kostenstelle'].str.match(r'^[^1]\d'))
|
|
|
- df['Kostenstelle'] = np.where(df['NW_Verkauf_1'] == True, '11', df['Kostenstelle'])
|
|
|
+ df["NW_Verkauf_1"] = (df["Konto_Nr"].str.match(r"^[78]0")) & (df["Kostenstelle"].str.match(r"^[^1]\d"))
|
|
|
+ df["Kostenstelle"] = np.where(df["NW_Verkauf_1"] == True, "11", df["Kostenstelle"])
|
|
|
|
|
|
- df['Konto_7010'] = (df['Konto_Nr'].str.match(r'^[78]01[01]'))
|
|
|
- df['Kostenstelle'] = np.where(df['Konto_7010'] == True, '14', df['Kostenstelle'])
|
|
|
+ df["Konto_7010"] = df["Konto_Nr"].str.match(r"^[78]01[01]")
|
|
|
+ df["Kostenstelle"] = np.where(df["Konto_7010"] == True, "14", df["Kostenstelle"])
|
|
|
|
|
|
- df['GW_Verkauf_2'] = (df['Konto_Nr'].str.match(r'^[78]1')) & (df['Kostenstelle'].str.match(r'^[^2]\d'))
|
|
|
- df['Kostenstelle'] = np.where(df['GW_Verkauf_2'] == True, '21', df['Kostenstelle'])
|
|
|
+ df["GW_Verkauf_2"] = (df["Konto_Nr"].str.match(r"^[78]1")) & (df["Kostenstelle"].str.match(r"^[^2]\d"))
|
|
|
+ df["Kostenstelle"] = np.where(df["GW_Verkauf_2"] == True, "21", df["Kostenstelle"])
|
|
|
|
|
|
- df['GW_Verkauf_3'] = (df['Konto_Nr'].str.match(r'^[78]3')) & (df['Kostenstelle'].str.match(r'^[^3]\d'))
|
|
|
- df['Kostenstelle'] = np.where(df['GW_Verkauf_3'] == True, '31', df['Kostenstelle'])
|
|
|
+ df["GW_Verkauf_3"] = (df["Konto_Nr"].str.match(r"^[78]3")) & (df["Kostenstelle"].str.match(r"^[^3]\d"))
|
|
|
+ df["Kostenstelle"] = np.where(df["GW_Verkauf_3"] == True, "31", df["Kostenstelle"])
|
|
|
|
|
|
- df['GW_Verkauf_4'] = (df['Konto_Nr'].str.match(r'^[78]4')) & (df['Kostenstelle'].str.match(r'^[^4]\d'))
|
|
|
- df['Kostenstelle'] = np.where(df['GW_Verkauf_4'] == True, '41', df['Kostenstelle'])
|
|
|
+ df["GW_Verkauf_4"] = (df["Konto_Nr"].str.match(r"^[78]4")) & (df["Kostenstelle"].str.match(r"^[^4]\d"))
|
|
|
+ df["Kostenstelle"] = np.where(df["GW_Verkauf_4"] == True, "41", df["Kostenstelle"])
|
|
|
|
|
|
- df['GW_Verkauf_x420'] = (df['Konto_Nr'].str.match(r'^[78]420'))
|
|
|
- df['Kostenstelle'] = np.where(df['GW_Verkauf_x420'] == True, '42', df['Kostenstelle'])
|
|
|
+ df["GW_Verkauf_x420"] = df["Konto_Nr"].str.match(r"^[78]420")
|
|
|
+ df["Kostenstelle"] = np.where(df["GW_Verkauf_x420"] == True, "42", df["Kostenstelle"])
|
|
|
|
|
|
- df['GW_Verkauf_5'] = (df['Konto_Nr'].str.match(r'^[78]5')) & (df['Kostenstelle'].str.match(r'^[^5]\d'))
|
|
|
- df['Kostenstelle'] = np.where(df['GW_Verkauf_5'] == True, '51', df['Kostenstelle'])
|
|
|
+ df["GW_Verkauf_5"] = (df["Konto_Nr"].str.match(r"^[78]5")) & (df["Kostenstelle"].str.match(r"^[^5]\d"))
|
|
|
+ df["Kostenstelle"] = np.where(df["GW_Verkauf_5"] == True, "51", df["Kostenstelle"])
|
|
|
|
|
|
- df['GW_Verkauf_50'] = (df['Konto_Nr'].str.match(r'^[78]')) & (df['Kostenstelle'].str.match(r'^2'))
|
|
|
- df['Kostenträger'] = np.where(df['GW_Verkauf_50'] == True, '52', df['Kostenträger'])
|
|
|
- df['Kostenträger'] = np.where((df['GW_Verkauf_50'] == True) & (df['Marke'] == '01'), '50', df['Kostenträger'])
|
|
|
-
|
|
|
- df['NW_Verkauf_00'] = (df['Konto_Nr'].str.match(r'^[78]2')) & \
|
|
|
- (df['Kostenstelle'].str.match(r'^1')) & \
|
|
|
- (df['Kostenträger'].str.match(r'^[^01234]'))
|
|
|
- df['Kostenträger'] = np.where(df['NW_Verkauf_00'] == True, '00', df['Kostenträger'])
|
|
|
+ df["GW_Verkauf_50"] = (df["Konto_Nr"].str.match(r"^[78]")) & (df["Kostenstelle"].str.match(r"^2"))
|
|
|
+ df["Kostenträger"] = np.where(df["GW_Verkauf_50"] == True, "52", df["Kostenträger"])
|
|
|
+ df["Kostenträger"] = np.where(
|
|
|
+ (df["GW_Verkauf_50"] == True) & (df["Marke"] == "01"),
|
|
|
+ "50",
|
|
|
+ df["Kostenträger"],
|
|
|
+ )
|
|
|
|
|
|
- df['GW_Stk_50'] = (df['Konto_Nr'].str.match(r'^9130')) & (df['Kostenstelle'].str.match(r'^2'))
|
|
|
- df['Kostenträger'] = np.where(df['GW_Stk_50'] == True, '52', df['Kostenträger'])
|
|
|
- df['Kostenträger'] = np.where((df['GW_Stk_50'] == True) & (df['Marke'] == '01'), '50', df['Kostenträger'])
|
|
|
+ df["NW_Verkauf_00"] = (
|
|
|
+ (df["Konto_Nr"].str.match(r"^[78]2"))
|
|
|
+ & (df["Kostenstelle"].str.match(r"^1"))
|
|
|
+ & (df["Kostenträger"].str.match(r"^[^01234]"))
|
|
|
+ )
|
|
|
+ df["Kostenträger"] = np.where(df["NW_Verkauf_00"] == True, "00", df["Kostenträger"])
|
|
|
|
|
|
- df['Kostenträger'] = np.where(df['Bilanz'] == True, '00', df['Kostenträger'])
|
|
|
+ df["GW_Stk_50"] = (df["Konto_Nr"].str.match(r"^9130")) & (df["Kostenstelle"].str.match(r"^2"))
|
|
|
+ df["Kostenträger"] = np.where(df["GW_Stk_50"] == True, "52", df["Kostenträger"])
|
|
|
+ df["Kostenträger"] = np.where((df["GW_Stk_50"] == True) & (df["Marke"] == "01"), "50", df["Kostenträger"])
|
|
|
|
|
|
- df['Konto_5er'] = (df['Konto_Nr'].str.match('^5')) | (df['Konto_Nr'].str.match('^9143'))
|
|
|
- df['Absatzkanal'] = np.where(df['Konto_5er'] == True, '99', df['Absatzkanal'])
|
|
|
+ df["Kostenträger"] = np.where(df["Bilanz"] == True, "00", df["Kostenträger"])
|
|
|
|
|
|
- df['Konto_5005'] = (df['Konto_Nr'].str.match('^5005')) & (df['Kostenstelle'].str.match(r'^[^12]'))
|
|
|
- df['Kostenstelle'] = np.where(df['Konto_5005'] == True, '20', df['Kostenstelle'])
|
|
|
- df['Kostenträger'] = np.where(df['Konto_5005'] == True, '50', df['Kostenträger'])
|
|
|
+ df["Konto_5er"] = (df["Konto_Nr"].str.match("^5")) | (df["Konto_Nr"].str.match("^9143"))
|
|
|
+ df["Absatzkanal"] = np.where(df["Konto_5er"] == True, "99", df["Absatzkanal"])
|
|
|
|
|
|
- df['Konto_5007'] = (df['Konto_Nr'].str.match('^5007')) & (df['Kostenstelle'].str.match(r'^([^4]|42)'))
|
|
|
- df['Kostenstelle'] = np.where(df['Konto_5007'] == True, '41', df['Kostenstelle'])
|
|
|
- df['Kostenträger'] = np.where(df['Konto_5007'] == True, '70', df['Kostenträger'])
|
|
|
+ df["Konto_5005"] = (df["Konto_Nr"].str.match("^5005")) & (df["Kostenstelle"].str.match(r"^[^12]"))
|
|
|
+ df["Kostenstelle"] = np.where(df["Konto_5005"] == True, "20", df["Kostenstelle"])
|
|
|
+ df["Kostenträger"] = np.where(df["Konto_5005"] == True, "50", df["Kostenträger"])
|
|
|
|
|
|
- df['Konto_914er'] = (df['Konto_Nr'].str.match('^914[34]')) & (df['Kostenträger'].str.match(r'^[^7]'))
|
|
|
- df['Kostenträger'] = np.where(df['Konto_914er'] == True, '70', df['Kostenträger'])
|
|
|
+ df["Konto_5007"] = (df["Konto_Nr"].str.match("^5007")) & (df["Kostenstelle"].str.match(r"^([^4]|42)"))
|
|
|
+ df["Kostenstelle"] = np.where(df["Konto_5007"] == True, "41", df["Kostenstelle"])
|
|
|
+ df["Kostenträger"] = np.where(df["Konto_5007"] == True, "70", df["Kostenträger"])
|
|
|
|
|
|
- df['Teile_30_60'] = (df['Konto_Nr'].str.match(r'^[578]')) & \
|
|
|
- (df['Kostenstelle'].str.match(r'^[3]')) & \
|
|
|
- (df['Kostenträger'].str.match(r'^[^6]'))
|
|
|
- df['Kostenträger'] = np.where(df['Teile_30_60'] == True, '60', df['Kostenträger'])
|
|
|
+ df["Konto_914er"] = (df["Konto_Nr"].str.match("^914[34]")) & (df["Kostenträger"].str.match(r"^[^7]"))
|
|
|
+ df["Kostenträger"] = np.where(df["Konto_914er"] == True, "70", df["Kostenträger"])
|
|
|
|
|
|
- df['Service_40_70'] = (df['Konto_Nr'].str.match(r'^[578]')) & \
|
|
|
- (df['Kostenstelle'].str.match(r'^[4]')) & \
|
|
|
- (df['Kostenträger'].str.match(r'^[^7]'))
|
|
|
- df['Kostenträger'] = np.where(df['Service_40_70'] == True, '70', df['Kostenträger'])
|
|
|
+ df["Teile_30_60"] = (
|
|
|
+ (df["Konto_Nr"].str.match(r"^[578]"))
|
|
|
+ & (df["Kostenstelle"].str.match(r"^[3]"))
|
|
|
+ & (df["Kostenträger"].str.match(r"^[^6]"))
|
|
|
+ )
|
|
|
+ df["Kostenträger"] = np.where(df["Teile_30_60"] == True, "60", df["Kostenträger"])
|
|
|
|
|
|
- from_label = ['Marke', 'Standort', 'Konto_Nr', 'Kostenstelle', 'Absatzkanal', 'Kostenträger']
|
|
|
- to_label = ['Make', 'Site', 'Account', 'Origin', 'SalesChannel', 'CostCarrier']
|
|
|
+ df["Service_40_70"] = (
|
|
|
+ (df["Konto_Nr"].str.match(r"^[578]"))
|
|
|
+ & (df["Kostenstelle"].str.match(r"^[4]"))
|
|
|
+ & (df["Kostenträger"].str.match(r"^[^7]"))
|
|
|
+ )
|
|
|
+ df["Kostenträger"] = np.where(df["Service_40_70"] == True, "70", df["Kostenträger"])
|
|
|
+
|
|
|
+ from_label = [
|
|
|
+ "Marke",
|
|
|
+ "Standort",
|
|
|
+ "Konto_Nr",
|
|
|
+ "Kostenstelle",
|
|
|
+ "Absatzkanal",
|
|
|
+ "Kostenträger",
|
|
|
+ ]
|
|
|
+ to_label = ["Make", "Site", "Account", "Origin", "SalesChannel", "CostCarrier"]
|
|
|
df = df.rename(columns=dict(zip(from_label, to_label)))
|
|
|
- makes = makes.rename(columns=dict(zip(from_label, to_label))).to_dict(orient='records')
|
|
|
- sites = sites.rename(columns=dict(zip(from_label, to_label))).to_dict(orient='records')
|
|
|
+ makes = makes.rename(columns=dict(zip(from_label, to_label))).to_dict(orient="records")
|
|
|
+ sites = sites.rename(columns=dict(zip(from_label, to_label))).to_dict(orient="records")
|
|
|
|
|
|
- df['CostAccountingString'] = df['Make'] + df['Site'] + df['Origin'] + \
|
|
|
- df['SalesChannel'] + df['CostCarrier']
|
|
|
- df['IsNumeric'] = (df['CostAccountingString'].str.isdigit()) & (df['Account'].str.isdigit()) & (df['Account'].str.len() == 4)
|
|
|
+ df["CostAccountingString"] = df["Make"] + df["Site"] + df["Origin"] + df["SalesChannel"] + df["CostCarrier"]
|
|
|
+ df["IsNumeric"] = (
|
|
|
+ (df["CostAccountingString"].str.isdigit()) & (df["Account"].str.isdigit()) & (df["Account"].str.len() == 4)
|
|
|
+ )
|
|
|
|
|
|
- df_invalid = df[df['IsNumeric'] == False]
|
|
|
- df_invalid.to_csv(self.account_invalid, decimal=',', sep=';', encoding='latin-1', index=False)
|
|
|
- export_csv = self.export_filename[:-4] + '.csv'
|
|
|
+ df_invalid = df[df["IsNumeric"] == False]
|
|
|
+ df_invalid.to_csv(self.account_invalid, decimal=",", sep=";", encoding="latin-1", index=False)
|
|
|
+ export_csv = self.export_filename[:-4] + ".csv"
|
|
|
|
|
|
- df.to_csv(export_csv, decimal=',', sep=';', encoding='latin-1', index=False)
|
|
|
- df = df[df['IsNumeric'] != False].groupby(ACCOUNT_INFO, as_index=False).sum()
|
|
|
+ df.to_csv(export_csv, decimal=",", sep=";", encoding="latin-1", index=False)
|
|
|
+ df = df[df["IsNumeric"] != False].groupby(ACCOUNT_INFO, as_index=False).aggregate("sum")
|
|
|
# Infos ergänzen
|
|
|
- df['Decimals'] = 2
|
|
|
+ df["Decimals"] = 2
|
|
|
# df['OpeningBalance'] = 0.0
|
|
|
logging.info(df.shape)
|
|
|
- self.export_xml(df.to_dict(orient='records'), bk_filter, period_no, makes, sites)
|
|
|
+ self.export_xml(df.to_dict(orient="records"), bk_filter, period_no, makes, sites)
|
|
|
|
|
|
# Join auf Übersetzung - nicht zugeordnet
|
|
|
- df_ignored = df_bookings.merge(df_translate, how='left', on='Konto_Nr_Händler')
|
|
|
- df_ignored = df_ignored[df_ignored['Konto_Nr_SKR51'].isna()] # [['Konto_Nr_Händler', 'Bookkeep Period', 'amount', 'quantity']]
|
|
|
+ df_ignored = df_bookings.merge(df_translate, how="left", on="Konto_Nr_Händler")
|
|
|
+ df_ignored = df_ignored[
|
|
|
+ df_ignored["Konto_Nr_SKR51"].isna()
|
|
|
+ ] # [['Konto_Nr_Händler', 'Bookkeep Period', 'amount', 'quantity']]
|
|
|
if not df_ignored.empty:
|
|
|
- df_ignored = df_ignored.pivot_table(index=['Konto_Nr_Händler'], columns=['period'], values='amount',
|
|
|
- aggfunc=np.sum, margins=True, margins_name='CumulatedYear')
|
|
|
- df_ignored.to_csv(self.account_ignored, decimal=',', sep=';', encoding='latin-1')
|
|
|
+ df_ignored = df_ignored.pivot_table(
|
|
|
+ index=["Konto_Nr_Händler"],
|
|
|
+ columns=["period"],
|
|
|
+ values="amount",
|
|
|
+ aggfunc=np.sum,
|
|
|
+ margins=True,
|
|
|
+ margins_name="CumulatedYear",
|
|
|
+ )
|
|
|
+ df_ignored.to_csv(self.account_ignored, decimal=",", sep=";", encoding="latin-1")
|
|
|
return self.export_filename
|
|
|
|
|
|
@property
|
|
@@ -325,59 +411,58 @@ class GCHR:
|
|
|
return f"{self.base_dir}/Export/{year}/export_{year}-{month}.xml"
|
|
|
|
|
|
def export_xml(self, records, bk_filter, period_no, makes, sites):
|
|
|
- record_elements = ACCOUNT_INFO + ['Decimals'] + \
|
|
|
- list(bk_filter.values())[:period_no] + ['CumulatedYear']
|
|
|
- root = ET.Element('HbvData')
|
|
|
- h = ET.SubElement(root, 'Header')
|
|
|
+ record_elements = ACCOUNT_INFO + ["Decimals"] + list(bk_filter.values())[:period_no] + ["CumulatedYear"]
|
|
|
+ root = ET.Element("HbvData")
|
|
|
+ h = ET.SubElement(root, "Header")
|
|
|
for k, v in self.header(makes, sites).items():
|
|
|
ET.SubElement(h, k).text = str(v)
|
|
|
|
|
|
- make_list = ET.SubElement(root, 'MakeList')
|
|
|
+ make_list = ET.SubElement(root, "MakeList")
|
|
|
for m in makes:
|
|
|
- e = ET.SubElement(make_list, 'MakeListEntry')
|
|
|
- ET.SubElement(e, 'Make').text = m['Make']
|
|
|
- ET.SubElement(e, 'MakeCode').text = m['Marke_HBV']
|
|
|
+ e = ET.SubElement(make_list, "MakeListEntry")
|
|
|
+ ET.SubElement(e, "Make").text = m["Make"]
|
|
|
+ ET.SubElement(e, "MakeCode").text = m["Marke_HBV"]
|
|
|
|
|
|
- bm_code_list = ET.SubElement(root, 'BmCodeList')
|
|
|
+ bm_code_list = ET.SubElement(root, "BmCodeList")
|
|
|
for s in sites:
|
|
|
- e = ET.SubElement(bm_code_list, 'BmCodeEntry')
|
|
|
- ET.SubElement(e, 'Make').text = s['Make']
|
|
|
- ET.SubElement(e, 'Site').text = s['Site']
|
|
|
- ET.SubElement(e, 'BmCode').text = s['Standort_HBV']
|
|
|
+ e = ET.SubElement(bm_code_list, "BmCodeEntry")
|
|
|
+ ET.SubElement(e, "Make").text = s["Make"]
|
|
|
+ ET.SubElement(e, "Site").text = s["Site"]
|
|
|
+ ET.SubElement(e, "BmCode").text = s["Standort_HBV"]
|
|
|
|
|
|
- record_list = ET.SubElement(root, 'RecordList')
|
|
|
+ record_list = ET.SubElement(root, "RecordList")
|
|
|
for row in records:
|
|
|
- record = ET.SubElement(record_list, 'Record')
|
|
|
+ record = ET.SubElement(record_list, "Record")
|
|
|
for e in record_elements:
|
|
|
child = ET.SubElement(record, e)
|
|
|
field = row.get(e, 0.0)
|
|
|
- if str(field) == 'nan':
|
|
|
- field = '0'
|
|
|
+ if str(field) == "nan":
|
|
|
+ field = "0"
|
|
|
elif type(field) is float:
|
|
|
- field = '{:.0f}'.format(field * 100)
|
|
|
+ field = "{:.0f}".format(field * 100)
|
|
|
child.text = str(field)
|
|
|
|
|
|
- with open(self.export_filename, 'w', encoding='utf-8') as fwh:
|
|
|
- fwh.write(minidom.parseString(ET.tostring(root)).toprettyxml(indent=' '))
|
|
|
+ with open(self.export_filename, "w", encoding="utf-8") as fwh:
|
|
|
+ fwh.write(minidom.parseString(ET.tostring(root)).toprettyxml(indent=" "))
|
|
|
|
|
|
def convert_to_row(self, node):
|
|
|
return [child.text for child in node]
|
|
|
|
|
|
def convert_xml_to_csv(self, xmlfile, csvfile):
|
|
|
- record_list = ET.parse(xmlfile).getroot().find('RecordList')
|
|
|
- header = [child.tag for child in record_list.find('Record')]
|
|
|
- bookings = [self.convert_to_row(node) for node in record_list.findall('Record')]
|
|
|
- with open(csvfile, 'w') as fwh:
|
|
|
- cwh = csv.writer(fwh, delimiter=';')
|
|
|
+ record_list = ET.parse(xmlfile).getroot().find("RecordList")
|
|
|
+ header = [child.tag for child in record_list.find("Record")]
|
|
|
+ bookings = [self.convert_to_row(node) for node in record_list.findall("Record")]
|
|
|
+ with open(csvfile, "w") as fwh:
|
|
|
+ cwh = csv.writer(fwh, delimiter=";")
|
|
|
cwh.writerow(header)
|
|
|
cwh.writerows(bookings)
|
|
|
return True
|
|
|
|
|
|
def convert_csv_to_xml(self, csvfile, xmlfile):
|
|
|
- makes = [{'Make': '01', 'Marke_HBV': '1844'}]
|
|
|
- sites = [{'Make': '01', 'Site': '01', 'Marke_HBV': '1844'}]
|
|
|
- with open(csvfile, 'r', encoding='latin-1') as frh:
|
|
|
- csv_reader = csv.DictReader(frh, delimiter=';')
|
|
|
+ makes = [{"Make": "01", "Marke_HBV": "1844"}]
|
|
|
+ sites = [{"Make": "01", "Site": "01", "Marke_HBV": "1844"}]
|
|
|
+ with open(csvfile, "r", encoding="latin-1") as frh:
|
|
|
+ csv_reader = csv.DictReader(frh, delimiter=";")
|
|
|
self.export_xml(csv_reader, self.bookkeep_filter(), 1, makes, sites, xmlfile)
|
|
|
|
|
|
|
|
@@ -393,7 +478,7 @@ class Kunden(Enum):
|
|
|
|
|
|
|
|
|
def gchr_local(base_dir):
|
|
|
- for path in Path(base_dir).glob('*'):
|
|
|
+ for path in Path(base_dir).glob("*"):
|
|
|
if path.is_dir():
|
|
|
print(path.name)
|
|
|
gchr_export(str(path))
|
|
@@ -404,8 +489,8 @@ def gchr_export(base_dir):
|
|
|
gchr.export_all_periods()
|
|
|
|
|
|
|
|
|
-if __name__ == '__main__':
|
|
|
- base_dir = os.getcwd() + '/gcstruct/Kunden'
|
|
|
+if __name__ == "__main__":
|
|
|
+ base_dir = os.getcwd() + "/gcstruct/Kunden"
|
|
|
|
|
|
if Path(base_dir).exists():
|
|
|
gchr_local(base_dir)
|