Browse Source

gchr

- Genauere Bestimmung des BM-Codes und Gewinnvortrag
Global Cube 2 years ago
parent
commit
6deaf586aa
2 changed files with 12 additions and 10 deletions
  1. BIN
      gcstruct/dist/gchr2.exe
  2. 12 10
      gcstruct/gchr.py

BIN
gcstruct/dist/gchr2.exe


+ 12 - 10
gcstruct/gchr.py

@@ -98,15 +98,14 @@ class GCHR:
         logging.info(df_translate[df_translate['duplicated']])
         df_translate = df_translate[['Konto_Nr_Händler', 'Konto_Nr_SKR51', 'Marke',
                                      'Marke_HBV', 'Standort', 'Standort_HBV']]
-        row = {
-            'Konto_Nr_Händler': '01-01-0861-00-00-00',
-            'Konto_Nr_SKR51': '01-01-0861-00-00-00',
-            'Marke': '01',
-            'Marke_HBV': '',
-            'Standort': '01',
-            'Standort_HBV': ''
-        }
+
+        row = df_translate[['Marke', 'Marke_HBV', 'Standort', 'Standort_HBV']] \
+            .drop_duplicates().sort_values(by=['Marke', 'Standort']).iloc[:1].to_dict(orient='records')[0]
+        row['Konto_Nr_Händler'] = '01-01-0861-00-00-00'
+        row['Konto_Nr_SKR51'] = '01-01-0861-00-00-00'
+
         df_translate = pd.concat([df_translate, pd.DataFrame.from_records([row])])
+        # print(df_translate.tail())
         # df_translate.drop(columns=['duplicated'], inplace=True)
         df_translate.drop_duplicates(inplace=True)
         df_translate.set_index('Konto_Nr_Händler')
@@ -148,11 +147,11 @@ class GCHR:
             row = {
                 'Konto_Nr_Händler': '01-01-0861-00-00-00',
                 'Bookkeep Period': filter_opening,
-                'Debit Amount': opening_balance,
+                'Debit Amount': opening_balance * -1,
                 'Credit Amount': 0,
                 'Debit Quantity': 0,
                 'Credit Quantity': 0,
-                'amount': opening_balance
+                'amount': opening_balance * -1
             }
             df_opening_balance = pd.concat([df_opening_balance, pd.DataFrame.from_records([row])])
 
@@ -235,6 +234,9 @@ class GCHR:
         df['GW_Verkauf_4'] = (df['Konto_Nr'].str.match(r'^[78]4')) & (df['Kostenstelle'].str.match(r'^[^4]\d'))
         df['Kostenstelle'] = np.where(df['GW_Verkauf_4'] == True, '41', df['Kostenstelle'])
 
+        df['GW_Verkauf_x420'] = (df['Konto_Nr'].str.match(r'^[78]420'))
+        df['Kostenstelle'] = np.where(df['GW_Verkauf_x420'] == True, '42', df['Kostenstelle'])
+
         df['GW_Verkauf_5'] = (df['Konto_Nr'].str.match(r'^[78]5')) & (df['Kostenstelle'].str.match(r'^[^5]\d'))
         df['Kostenstelle'] = np.where(df['GW_Verkauf_5'] == True, '51', df['Kostenstelle'])