|
@@ -28,13 +28,17 @@ def main():
|
|
|
# Planwerte importieren
|
|
|
values_converter = {i: str for i in range(0, 200)}
|
|
|
values_converter[4] = lambda x: np.float64(x.replace(',', '.'))
|
|
|
- df_values = pd.read_csv(plan_values, decimal=',', sep=';', encoding='latin-1', converters=values_converter)
|
|
|
+ df_values = pd.read_csv(plan_values, decimal=',', sep=';', converters=values_converter) # encoding='latin-1',
|
|
|
df_values['type'] = '2'
|
|
|
df_values['type'] = np.where(df_values['Vstufe 1'].isin(['Materialaufwand']), '3', df_values['type'])
|
|
|
- df_amount = pd.read_csv(plan_amount, decimal=',', sep=';', encoding='latin-1', converters=values_converter)
|
|
|
+ df_amount = pd.read_csv(plan_amount, decimal=',', sep=';', converters=values_converter) # , encoding='latin-1'
|
|
|
df_amount['type'] = '1'
|
|
|
df: pd.DataFrame = df_values.append(df_amount)
|
|
|
|
|
|
+ # Planwerte alle positiv
|
|
|
+ df['Minus1'] = np.where(df['Vstufe 1'].isin(['Umsatzerlöse', 'Verk. Stückzahlen']) | df['Zeile'].isin(['7410', '7440']), 1, -1)
|
|
|
+ df['Gesamt'] = df['Gesamt'] * df['Minus1']
|
|
|
+
|
|
|
# Planwerte übersetzen
|
|
|
df = df.merge(df_department, how='inner', left_on='Betrieb Nr', right_on='department_id')
|
|
|
df = df.merge(df_translation, how='left', left_on=['Zeile', 'type'], right_on=['from', 'type'])
|