|
@@ -1,211 +1,211 @@
|
|
|
-import logging
|
|
|
-import os
|
|
|
-from dataclasses import dataclass
|
|
|
-from datetime import datetime
|
|
|
-from pathlib import Path
|
|
|
-from typing import Callable
|
|
|
-
|
|
|
-import pandas as pd
|
|
|
-
|
|
|
-from gcstruct.gchr_bookings import GchrBookings
|
|
|
-from gcstruct.gchr_export import (
|
|
|
- ACCOUNT_INFO,
|
|
|
- GchrExportConfig,
|
|
|
- GchrExportFormat,
|
|
|
- get_export_fn,
|
|
|
-)
|
|
|
-from gcstruct.gchr_translate import load_translation
|
|
|
-
|
|
|
-
|
|
|
-@dataclass
|
|
|
-class GchrConfig:
|
|
|
- first_month_of_financial_year: str
|
|
|
- data_dir: str
|
|
|
- gcstruct_dir: str
|
|
|
- export_dir: str
|
|
|
- export_fn = Callable[[GchrExportConfig], None]
|
|
|
-
|
|
|
-
|
|
|
-class GCHR:
|
|
|
- booking_date: datetime
|
|
|
- bookings: GchrBookings
|
|
|
- _df_translate: pd.DataFrame = None
|
|
|
- df_translate2: pd.DataFrame = None
|
|
|
- makes: dict[str, str] = None
|
|
|
- sites: dict[str, str] = None
|
|
|
- current_year: str
|
|
|
- current_month: str
|
|
|
- timestamp: str
|
|
|
-
|
|
|
- def __init__(self, base_dir: str) -> None:
|
|
|
- self.base_dir = base_dir
|
|
|
- os.makedirs(self.base_dir + "/data", exist_ok=True)
|
|
|
- os.makedirs(self.base_dir + "/export/temp", exist_ok=True)
|
|
|
- os.makedirs(self.base_dir + "/logs", exist_ok=True)
|
|
|
-
|
|
|
- self.account_translation = f"{self.base_dir}/data/Kontenrahmen_uebersetzt.csv"
|
|
|
-
|
|
|
- self.first_month_of_financial_year = "10"
|
|
|
- self.bookings = GchrBookings(self.base_dir, self.first_month_of_financial_year)
|
|
|
-
|
|
|
- self.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
-
|
|
|
- pd.set_option("display.max_rows", 500)
|
|
|
- pd.set_option("display.float_format", lambda x: "%.2f" % x)
|
|
|
-
|
|
|
- @property
|
|
|
- def debug_file(self) -> str:
|
|
|
- return f"{self.logs_dir}/debug_{self.timestamp}.csv"
|
|
|
-
|
|
|
- @property
|
|
|
- def account_ignored(self) -> str:
|
|
|
- return f"{self.export_info_dir}/ignoriert_{self.period}.csv"
|
|
|
-
|
|
|
- # self.account_invalid = f"{self.export_info_dir}/ungueltig_{self.period}.csv"
|
|
|
-
|
|
|
- def export_all_periods(self, overwrite=False, today=None) -> None:
|
|
|
- periods = GCHR.get_all_periods(today)
|
|
|
-
|
|
|
- for year, month in periods:
|
|
|
- filename = self.export_filename_for_period(year, month)
|
|
|
- if overwrite or not Path(filename).exists():
|
|
|
- os.makedirs(Path(filename).parent.joinpath("info"), exist_ok=True)
|
|
|
- self.export_period(year, month)
|
|
|
-
|
|
|
- @staticmethod
|
|
|
- def get_all_periods(today=None) -> list[tuple[str, str]]:
|
|
|
- dt = datetime.now()
|
|
|
- if today is not None:
|
|
|
- dt = datetime.fromisoformat(today)
|
|
|
- prev = str(dt.year - 1)
|
|
|
- periods = [(prev, str(x).zfill(2)) for x in range(dt.month, 13)] + [
|
|
|
- (str(dt.year), str(x).zfill(2)) for x in range(1, dt.month)
|
|
|
- ]
|
|
|
- return periods
|
|
|
-
|
|
|
- def export_period(self, year: str, month: str) -> str:
|
|
|
- export_fn = get_export_fn(GchrExportFormat.SKR51)
|
|
|
- # Kontensalden laden
|
|
|
- df_bookings = self.bookings.filter_bookings(year, month)
|
|
|
- all_periods = set(df_bookings["Bookkeep Period"].to_list())
|
|
|
- bookkeep_period_date = datetime(int(year), int(month), 28)
|
|
|
-
|
|
|
- if df_bookings.shape[0] == 0 or len(all_periods) <= 1 or self.booking_date < bookkeep_period_date:
|
|
|
- logging.error("ABBRUCH!!! Keine Daten vorhanden!")
|
|
|
- return False
|
|
|
-
|
|
|
- filter_to = year + month
|
|
|
- period_no = list(self.bookings.bookkeep_filter.keys()).index(filter_to) + 1
|
|
|
-
|
|
|
- logging.info("df_bookings: " + str(df_bookings.shape))
|
|
|
- # Join auf Übersetzung
|
|
|
- df_combined = df_bookings.merge(self._df_translate, how="inner", on="Konto_Nr_Händler")
|
|
|
- logging.info(f"df_combined: {df_combined.shape}")
|
|
|
-
|
|
|
- df_pivot = df_combined.pivot_table(
|
|
|
- index=["Konto_Nr_SKR51"],
|
|
|
- columns=["period"],
|
|
|
- values="amount",
|
|
|
- aggfunc="sum",
|
|
|
- margins=True,
|
|
|
- margins_name="CumulatedYear",
|
|
|
- )
|
|
|
- df_pivot.drop(index="CumulatedYear", inplace=True)
|
|
|
-
|
|
|
- logging.info("df_pivot: " + str(df_pivot.shape))
|
|
|
-
|
|
|
- df = df_pivot.merge(self.df_translate2, how="inner", on="Konto_Nr_SKR51")
|
|
|
-
|
|
|
- makes_used = {}
|
|
|
- for m in sorted(list(set(df["Marke"].to_list()))):
|
|
|
- if m not in self.makes:
|
|
|
- continue
|
|
|
- makes_used[m] = self.makes[m]
|
|
|
- sites_used = {}
|
|
|
- for s in sorted(list(set((df["Marke"] + "-" + df["Standort"]).to_list()))):
|
|
|
- if s not in self.sites:
|
|
|
- continue
|
|
|
- sites_used[s] = self.sites[s]
|
|
|
-
|
|
|
- from_label = ["Marke", "Standort", "Konto_Nr", "Kostenstelle", "Absatzkanal", "Kostenträger", "KRM"]
|
|
|
- to_label = ["Make", "Site", "Account", "Origin", "SalesChannel", "CostCarrier", "CostAccountingString"]
|
|
|
- col_dict = dict(zip(from_label, to_label))
|
|
|
- df = df.rename(columns=col_dict)
|
|
|
-
|
|
|
- export_filename = self.export_filename_for_period(year, month)
|
|
|
- export_csv = export_filename[:-4] + ".csv"
|
|
|
- df.to_csv(export_csv, decimal=",", sep=";", encoding="latin-1", index=False)
|
|
|
- df = df[df["IsNumeric"] != False].groupby(ACCOUNT_INFO, as_index=False).aggregate("sum")
|
|
|
-
|
|
|
- # Infos ergänzen
|
|
|
- df["Decimals"] = 2
|
|
|
- # df.sort_values(by=["Konto_Nr_SKR51"], inplace=True)
|
|
|
- logging.info(df.shape)
|
|
|
- main_sites = [self.sites[s] for s in sites_used if s in self.sites and self.sites[s] != "0000"]
|
|
|
-
|
|
|
- for i, main_site in enumerate(main_sites):
|
|
|
- filename = export_filename
|
|
|
- if i > 0:
|
|
|
- filename = f"{filename[:-4]}_{main_site}.xml"
|
|
|
- export_cfg = GchrExportConfig(
|
|
|
- main_site,
|
|
|
- year,
|
|
|
- month,
|
|
|
- makes_used,
|
|
|
- sites_used,
|
|
|
- self.first_month_of_financial_year,
|
|
|
- period_no,
|
|
|
- self.bookings.bookkeep_filter,
|
|
|
- filename,
|
|
|
- df.to_dict(orient="records"),
|
|
|
- )
|
|
|
-
|
|
|
- export_fn(export_cfg)
|
|
|
-
|
|
|
- # Join auf Übersetzung - nicht zugeordnet
|
|
|
- df_ignored = df_bookings.merge(self.df_translate, how="left", on="Konto_Nr_Händler")
|
|
|
- df_ignored = df_ignored[df_ignored["Konto_Nr_SKR51"].isna()]
|
|
|
- if not df_ignored.empty:
|
|
|
- df_ignored = df_ignored.pivot_table(
|
|
|
- index=["Konto_Nr_Händler"],
|
|
|
- columns=["period"],
|
|
|
- values="amount",
|
|
|
- aggfunc="sum",
|
|
|
- margins=True,
|
|
|
- margins_name="CumulatedYear",
|
|
|
- )
|
|
|
- df_ignored.to_csv(self.account_ignored, decimal=",", sep=";", encoding="latin-1")
|
|
|
- return export_filename
|
|
|
-
|
|
|
- @property
|
|
|
- def df_translate(self) -> pd.DataFrame:
|
|
|
- if self._df_translate is None:
|
|
|
- self.makes, self.sites, self._df_translate, self.df_translate2 = load_translation(
|
|
|
- self.account_translation, self.debug_file, self.export_invalid_filename
|
|
|
- )
|
|
|
- return self._df_translate
|
|
|
-
|
|
|
- @property
|
|
|
- def export_info_dir(self) -> str:
|
|
|
- return f"{self.base_dir}/Export/{self.current_year}/info/"
|
|
|
-
|
|
|
- @property
|
|
|
- def logs_dir(self) -> str:
|
|
|
- return f"{self.base_dir}/Logs/"
|
|
|
-
|
|
|
- @property
|
|
|
- def export_invalid_filename(self) -> str:
|
|
|
- return f"{self.base_dir}/Export/ungueltig.csv"
|
|
|
-
|
|
|
- def export_filename_for_period(self, year: str, month: str) -> str:
|
|
|
- return f"{self.base_dir}/Export/{year}/export_{year}-{month}.xml"
|
|
|
-
|
|
|
-
|
|
|
-def gchr_local() -> None:
|
|
|
- base_dir = os.getcwd() + "/../GCHR2_Testdaten/Kunden"
|
|
|
- for path in Path(base_dir).glob("*"):
|
|
|
- if not path.is_dir():
|
|
|
- continue
|
|
|
- print(path.name)
|
|
|
- gchr = GCHR(str(path))
|
|
|
- gchr.export_all_periods()
|
|
|
+import logging
|
|
|
+import os
|
|
|
+from dataclasses import dataclass
|
|
|
+from datetime import datetime
|
|
|
+from pathlib import Path
|
|
|
+from typing import Callable
|
|
|
+
|
|
|
+import pandas as pd
|
|
|
+
|
|
|
+from gcstruct.gchr_bookings import GchrBookings
|
|
|
+from gcstruct.gchr_export import (
|
|
|
+ ACCOUNT_INFO,
|
|
|
+ GchrExportConfig,
|
|
|
+ GchrExportFormat,
|
|
|
+ get_export_fn,
|
|
|
+)
|
|
|
+from gcstruct.gchr_translate import load_translation
|
|
|
+
|
|
|
+
|
|
|
+@dataclass
|
|
|
+class GchrConfig:
|
|
|
+ first_month_of_financial_year: str
|
|
|
+ data_dir: str
|
|
|
+ gcstruct_dir: str
|
|
|
+ export_dir: str
|
|
|
+ export_fn = Callable[[GchrExportConfig], None]
|
|
|
+
|
|
|
+
|
|
|
+class GCHR:
|
|
|
+ booking_date: datetime
|
|
|
+ bookings: GchrBookings
|
|
|
+ _df_translate: pd.DataFrame = None
|
|
|
+ df_translate2: pd.DataFrame = None
|
|
|
+ makes: dict[str, str] = None
|
|
|
+ sites: dict[str, str] = None
|
|
|
+ current_year: str
|
|
|
+ current_month: str
|
|
|
+ timestamp: str
|
|
|
+
|
|
|
+ def __init__(self, base_dir: str) -> None:
|
|
|
+ self.base_dir = base_dir
|
|
|
+ os.makedirs(self.base_dir + "/data", exist_ok=True)
|
|
|
+ os.makedirs(self.base_dir + "/export/temp", exist_ok=True)
|
|
|
+ os.makedirs(self.base_dir + "/logs", exist_ok=True)
|
|
|
+
|
|
|
+ self.account_translation = f"{self.base_dir}/data/Kontenrahmen_uebersetzt.csv"
|
|
|
+
|
|
|
+ self.first_month_of_financial_year = "10"
|
|
|
+ self.bookings = GchrBookings(self.base_dir, self.first_month_of_financial_year)
|
|
|
+
|
|
|
+ self.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
+
|
|
|
+ pd.set_option("display.max_rows", 500)
|
|
|
+ pd.set_option("display.float_format", lambda x: "%.2f" % x)
|
|
|
+
|
|
|
+ @property
|
|
|
+ def debug_file(self) -> str:
|
|
|
+ return f"{self.logs_dir}/debug_{self.timestamp}.csv"
|
|
|
+
|
|
|
+ @property
|
|
|
+ def account_ignored(self) -> str:
|
|
|
+ return f"{self.export_info_dir}/ignoriert_{self.period}.csv"
|
|
|
+
|
|
|
+ # self.account_invalid = f"{self.export_info_dir}/ungueltig_{self.period}.csv"
|
|
|
+
|
|
|
+ def export_all_periods(self, overwrite=False, today=None) -> None:
|
|
|
+ periods = GCHR.get_all_periods(today)
|
|
|
+
|
|
|
+ for year, month in periods:
|
|
|
+ filename = self.export_filename_for_period(year, month)
|
|
|
+ if overwrite or not Path(filename).exists():
|
|
|
+ os.makedirs(Path(filename).parent.joinpath("info"), exist_ok=True)
|
|
|
+ self.export_period(year, month)
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def get_all_periods(today=None) -> list[tuple[str, str]]:
|
|
|
+ dt = datetime.now()
|
|
|
+ if today is not None:
|
|
|
+ dt = datetime.fromisoformat(today)
|
|
|
+ prev = str(dt.year - 1)
|
|
|
+ periods = [(prev, str(x).zfill(2)) for x in range(dt.month, 13)] + [
|
|
|
+ (str(dt.year), str(x).zfill(2)) for x in range(1, dt.month)
|
|
|
+ ]
|
|
|
+ return periods
|
|
|
+
|
|
|
+ def export_period(self, year: str, month: str) -> str:
|
|
|
+ export_fn = get_export_fn(GchrExportFormat.SKR51)
|
|
|
+ # Kontensalden laden
|
|
|
+ df_bookings = self.bookings.filter_bookings(year, month)
|
|
|
+ all_periods = set(df_bookings["Bookkeep Period"].to_list())
|
|
|
+ bookkeep_period_date = datetime(int(year), int(month), 28)
|
|
|
+
|
|
|
+ if df_bookings.shape[0] == 0 or len(all_periods) <= 1 or self.booking_date < bookkeep_period_date:
|
|
|
+ logging.error("ABBRUCH!!! Keine Daten vorhanden!")
|
|
|
+ return False
|
|
|
+
|
|
|
+ filter_to = year + month
|
|
|
+ period_no = list(self.bookings.bookkeep_filter.keys()).index(filter_to) + 1
|
|
|
+
|
|
|
+ logging.info("df_bookings: " + str(df_bookings.shape))
|
|
|
+ # Join auf Übersetzung
|
|
|
+ df_combined = df_bookings.merge(self._df_translate, how="inner", on="Konto_Nr_Händler")
|
|
|
+ logging.info(f"df_combined: {df_combined.shape}")
|
|
|
+
|
|
|
+ df_pivot = df_combined.pivot_table(
|
|
|
+ index=["Konto_Nr_SKR51"],
|
|
|
+ columns=["period"],
|
|
|
+ values="amount",
|
|
|
+ aggfunc="sum",
|
|
|
+ margins=True,
|
|
|
+ margins_name="CumulatedYear",
|
|
|
+ )
|
|
|
+ df_pivot.drop(index="CumulatedYear", inplace=True)
|
|
|
+
|
|
|
+ logging.info("df_pivot: " + str(df_pivot.shape))
|
|
|
+
|
|
|
+ df = df_pivot.merge(self.df_translate2, how="inner", on="Konto_Nr_SKR51")
|
|
|
+
|
|
|
+ makes_used = {}
|
|
|
+ for m in sorted(list(set(df["Marke"].to_list()))):
|
|
|
+ if m not in self.makes:
|
|
|
+ continue
|
|
|
+ makes_used[m] = self.makes[m]
|
|
|
+ sites_used = {}
|
|
|
+ for s in sorted(list(set((df["Marke"] + "-" + df["Standort"]).to_list()))):
|
|
|
+ if s not in self.sites:
|
|
|
+ continue
|
|
|
+ sites_used[s] = self.sites[s]
|
|
|
+
|
|
|
+ from_label = ["Marke", "Standort", "Konto_Nr", "Kostenstelle", "Absatzkanal", "Kostenträger", "KRM"]
|
|
|
+ to_label = ["Make", "Site", "Account", "Origin", "SalesChannel", "CostCarrier", "CostAccountingString"]
|
|
|
+ col_dict = dict(zip(from_label, to_label))
|
|
|
+ df = df.rename(columns=col_dict)
|
|
|
+
|
|
|
+ export_filename = self.export_filename_for_period(year, month)
|
|
|
+ export_csv = export_filename[:-4] + ".csv"
|
|
|
+ df.to_csv(export_csv, decimal=",", sep=";", encoding="latin-1", index=False)
|
|
|
+ df = df[df["IsNumeric"] != False].groupby(ACCOUNT_INFO, as_index=False).aggregate("sum")
|
|
|
+
|
|
|
+ # Infos ergänzen
|
|
|
+ df["Decimals"] = 2
|
|
|
+ # df.sort_values(by=["Konto_Nr_SKR51"], inplace=True)
|
|
|
+ logging.info(df.shape)
|
|
|
+ main_sites = [self.sites[s] for s in sites_used if s in self.sites and self.sites[s] != "0000"]
|
|
|
+
|
|
|
+ for i, main_site in enumerate(main_sites):
|
|
|
+ filename = export_filename
|
|
|
+ if i > 0:
|
|
|
+ filename = f"{filename[:-4]}_{main_site}.xml"
|
|
|
+ export_cfg = GchrExportConfig(
|
|
|
+ main_site,
|
|
|
+ year,
|
|
|
+ month,
|
|
|
+ makes_used,
|
|
|
+ sites_used,
|
|
|
+ self.first_month_of_financial_year,
|
|
|
+ period_no,
|
|
|
+ self.bookings.bookkeep_filter,
|
|
|
+ filename,
|
|
|
+ df.to_dict(orient="records"),
|
|
|
+ )
|
|
|
+
|
|
|
+ export_fn(export_cfg)
|
|
|
+
|
|
|
+ # Join auf Übersetzung - nicht zugeordnet
|
|
|
+ df_ignored = df_bookings.merge(self.df_translate, how="left", on="Konto_Nr_Händler")
|
|
|
+ df_ignored = df_ignored[df_ignored["Konto_Nr_SKR51"].isna()]
|
|
|
+ if not df_ignored.empty:
|
|
|
+ df_ignored = df_ignored.pivot_table(
|
|
|
+ index=["Konto_Nr_Händler"],
|
|
|
+ columns=["period"],
|
|
|
+ values="amount",
|
|
|
+ aggfunc="sum",
|
|
|
+ margins=True,
|
|
|
+ margins_name="CumulatedYear",
|
|
|
+ )
|
|
|
+ df_ignored.to_csv(self.account_ignored, decimal=",", sep=";", encoding="latin-1")
|
|
|
+ return export_filename
|
|
|
+
|
|
|
+ @property
|
|
|
+ def df_translate(self) -> pd.DataFrame:
|
|
|
+ if self._df_translate is None:
|
|
|
+ self.makes, self.sites, self._df_translate, self.df_translate2 = load_translation(
|
|
|
+ self.account_translation, self.debug_file, self.export_invalid_filename
|
|
|
+ )
|
|
|
+ return self._df_translate
|
|
|
+
|
|
|
+ @property
|
|
|
+ def export_info_dir(self) -> str:
|
|
|
+ return f"{self.base_dir}/Export/{self.current_year}/info/"
|
|
|
+
|
|
|
+ @property
|
|
|
+ def logs_dir(self) -> str:
|
|
|
+ return f"{self.base_dir}/Logs/"
|
|
|
+
|
|
|
+ @property
|
|
|
+ def export_invalid_filename(self) -> str:
|
|
|
+ return f"{self.base_dir}/Export/ungueltig.csv"
|
|
|
+
|
|
|
+ def export_filename_for_period(self, year: str, month: str) -> str:
|
|
|
+ return f"{self.base_dir}/Export/{year}/export_{year}-{month}.xml"
|
|
|
+
|
|
|
+
|
|
|
+def gchr_local() -> None:
|
|
|
+ base_dir = os.getcwd() + "/../GCHR2_Testdaten/Kunden"
|
|
|
+ for path in Path(base_dir).glob("*"):
|
|
|
+ if not path.is_dir():
|
|
|
+ continue
|
|
|
+ print(path.name)
|
|
|
+ gchr = GCHR(str(path))
|
|
|
+ gchr.export_all_periods()
|