import pandas as pd import numpy as np from re import match import json def actuals(period): # df1 = pd.read_csv('Planung/Belege_Planung_Ist_FC.csv', sep=';', decimal=',', # dtype={0: str, 1: str, 2: str, 3: float}) # df2 = pd.read_csv('Planung/Belege_Planung_Ist_FC_AHA.csv', sep=';', decimal=',', # dtype={0: str, 1: str, 2: str, 3: float}) # df = pd.concat([df1, df2]) df = pd.read_csv('Planung/Belege_Planung_Ist_FC_Dresen.csv', sep=';', decimal=',', dtype={0: str, 1: str, 2: str, 3: str, 4: str, 5: float, 6: float}) df = df[df['Bookkeep_Period'] <= period] df['Jahr'] = df['Bookkeep_Period'].apply(lambda x: x[:4]) df['VJ'] = np.where(df['Jahr'] != period[:4], df['Betrag'], 0) df['AJ'] = np.where(df['Jahr'] == period[:4], df['Betrag'], 0) df['FC'] = df['AJ'] * 12 / int(period[4:]) # df2 = pd.pivot_table(df, values='Betrag', index=['Konto Nr', 'Betrieb Nr'], columns=['Jahr'], aggfunc=np.sum, fill_value=0.0) df = df.groupby(['Konto_Nr', 'Betrieb_Nr']).sum() print(df.head()) res = {} for (pkey, values) in df.to_dict(orient='index').items(): account, department = pkey if account not in res: res[account] = {} res[account][department] = [round(values['VJ'], 2), round(values['AJ'], 2), round(values['FC']), 0.0, 0.0, 0.0] data = {'values': res} json.dump(data, open('Planung/export/accounts.json', 'w'), indent=2) def planning_prev(): df1 = pd.read_csv('Planung/Global Planner_2018_ohne_Marketing.csv', sep=';', decimal=',', encoding='ansi', dtype={'Betrieb Nr': str, 'Bereich': str}) df1 = df1[['Jahr', 'Betrieb Nr', 'Vstufe 1', 'Bereich', 'Zeile mit Bez', 'Version', 'Menge', 'Wert']] df2 = pd.read_csv('Planung/AHA_Global Planner_2018_PKW_MOT_ohne_Marketing.csv', sep=';', decimal=',', encoding='ansi', dtype={'Betrieb Nr': str, 'Bereich': str}) df2 = df2[['Jahr', 'Betrieb Nr', 'Vstufe 1', 'Bereich', 'Zeile mit Bez', 'Version', 'Menge', 'Wert']] df = pd.concat([df1, df2]) df['Bereich'] = df['Bereich'].fillna('NA').replace('VW (inkl. GF)', '?') df['Zeile'] = df['Zeile mit Bez'].apply(lambda x: x[:4]) df['Konto'] = '' df['regex'] = df['Vstufe 1'] + ";" + df['Bereich'] + ";.*" + df['Zeile'] + ' - [^;]*;;' df = df[df['Wert'] != 0] gcstruct = json.load(open('GCStruct_Reisacher_Planung/gcstruct_reisacher.json', 'r')) structure_ids = [s['id'] for s in gcstruct['flat']['Struktur_FB']] df['id'] = df['regex'].apply(lambda x: (list(filter(lambda y: match(x, y), structure_ids)) + [''])[0]) df = df[df['id'] != ''] res = {} for item in df.to_dict(orient='records'): if item['id'] not in res: res[item['id']] = {} res[item['id']][item['Betrieb Nr']] = [item['Wert'], item['Menge']] data = {'values': res} json.dump(data, open('Planung/export/planning.json', 'w'), indent=2) if __name__ == '__main__': # planning_prev() actuals('202009')