import pandas as pd import numpy as np id_header = ['Ebene' + str(i) for i in range(1, 11)] values2_header = ['VJ', 'AJ', 'FC', 'Plan_ori', 'Plan_Prozent', 'Stk', 'VAK', 'BE_Prozent', 'Plan_VJ', 'Plan_Stk_VJ', 'Plan', 'Jan', 'Feb', 'Mar', 'Apr', 'Mai', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Dez', 'Periode13'] season_header = ['Jan', 'Feb', 'Mar', 'Apr', 'Mai', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Dez'] header = ['text', 'costcenter', 'department'] + id_header + values2_header def expand(df, header, values_label): for i, key in enumerate(header): df[key] = df[values_label].str[i] return df def apply_season(df): df['Saison'] = df['Ebene1'].str.contains('Umsatzerlöse|Materialaufwand|Verkaufsabh. Kosten') for i, key in enumerate(season_header): df[key] = np.where(df['Saison'], df['Plan'] * df[key + '_2'] / 100, df['Plan'] * 8.3333 / 100) return df def data_cleansing(filename): df = pd.read_json(filename) df['values2'] = df['values2'].apply(lambda v: list(v.items())) df = df.explode('values2') df['department'], df['values2'] = zip(*df['values2']) df['id'] = df['id'].str.split(';') df = expand(df, id_header, 'id') df = expand(df, values2_header, 'values2') return df df = data_cleansing('Planung/V1.json') season = df[(df['level'] == 2) & (df['Ebene1'] == 'Umsatzerlöse')] plan = df[df['accounts'].apply(lambda a: len(a) > 0)] plan = pd.merge(plan, season, how='left', on=['Ebene2', 'department'], suffixes=('', '_2')) plan = apply_season(plan) # plan = plan[header] plan.to_csv(open('Planung/V1.csv', 'w', newline=''), sep=';', decimal=',', encoding='ansi', index=False)