import pandas as pd import numpy as np from re import match import json from pathlib import Path def actuals(period): base_dir = Path('.').absolute() df1 = pd.read_csv(base_dir.joinpath('planner/Planung/Belege_Planung_Ist_FC_AHR.csv'), sep=';', decimal=',', dtype={0: str, 1: str, 2: str, 3: float}) df2 = pd.read_csv(base_dir.joinpath('planner/Planung/Belege_Planung_Ist_FC_AHA.csv'), sep=';', decimal=',', dtype={0: str, 1: str, 2: str, 3: float}) df12 = pd.concat([df1, df2]) df3 = pd.read_csv(base_dir.joinpath('planner/Planung/NW_GW_Stk_Planung_AHR.csv'), sep=';', decimal=',', dtype={0: str, 1: str, 2: str, 3: float}) df4 = pd.read_csv(base_dir.joinpath('planner/Planung/NW_GW_Stk_Planung_AHA.csv'), sep=';', decimal=',', dtype={0: str, 1: str, 2: str, 3: float}) df34 = pd.concat([df3, df4]) df = pd.merge(df12, df34, how='left', on=['Bookkeep_Period', 'Betrieb_Nr', 'Konto_Nr']) # df = pd.read_csv('Planung/Belege_Planung_Ist_FC_Dresen.csv', sep=';', decimal=',', # dtype={0: str, 1: str, 2: str, 3: str, 4: str, 5: float, 6: float}) df['Jahr'] = df['Bookkeep_Period'].apply(lambda x: x[:4]) current_year = period[:4] prev_year = str(int(current_year) - 1) next_year = str(int(current_year) + 1) month_no = int(period[4:]) # df = df[df['Bookkeep_Period'] <= period] df['PY'] = np.where(df['Jahr'] == prev_year, df['Betrag'], 0) df['PYQ'] = np.where(df['Jahr'] == prev_year, df['Menge'], 0) df['CY'] = np.where(df['Jahr'] == current_year, df['Betrag'], 0) df['CYQ'] = np.where(df['Jahr'] == current_year, df['Menge'], 0) df['YTD'] = np.where(df['Bookkeep_Period'] <= period, df['CY'], 0) df['YTDQ'] = np.where(df['Bookkeep_Period'] <= period, df['CYQ'], 0) df['FC'] = df['YTD'] * 12 / month_no df['FCQ'] = df['YTDQ'] * 12 / month_no df.drop(columns=['Menge', 'Betrag'], inplace=True) # df2 = pd.pivot_table(df, values='Betrag', index=['Konto Nr', 'Betrieb Nr'], columns=['Jahr'], aggfunc=np.sum, fill_value=0.0) df = df.groupby(['Konto_Nr', 'Betrieb_Nr']).sum() print(df.head()) res = {} for (acct, dept), values in df.to_dict(orient='index').items(): if acct not in res: res[acct] = {} res[acct][dept] = [round(v, 2) for v in values.values()] data = {'values': res} json.dump(data, open(base_dir.joinpath(f'planner/export/accounts_{next_year}.json'), 'w'), indent=2) def planning_prev(): df1 = pd.read_csv('planner/Planung/Global Planner_2018_ohne_Marketing.csv', sep=';', decimal=',', encoding='latin-1', dtype={'Betrieb Nr': str, 'Bereich': str}) df1 = df1[['Jahr', 'Betrieb Nr', 'Vstufe 1', 'Bereich', 'Zeile mit Bez', 'Version', 'Menge', 'Wert']] df2 = pd.read_csv('planner/Planung/AHA_Global Planner_2018_PKW_MOT_ohne_Marketing.csv', sep=';', decimal=',', encoding='latin-1', dtype={'Betrieb Nr': str, 'Bereich': str}) df2 = df2[['Jahr', 'Betrieb Nr', 'Vstufe 1', 'Bereich', 'Zeile mit Bez', 'Version', 'Menge', 'Wert']] df = pd.concat([df1, df2]) df['Bereich'] = df['Bereich'].fillna('NA').replace('VW (inkl. GF)', '?') df['Zeile'] = df['Zeile mit Bez'].apply(lambda x: x[:4]) df['Konto'] = '' df['regex'] = df['Vstufe 1'] + ";" + df['Bereich'] + ";.*" + df['Zeile'] + ' - [^;]*;;' df = df[df['Wert'] != 0] gcstruct = json.load(open('GCStruct_Reisacher_Planung/gcstruct_reisacher.json', 'r')) structure_ids = [s['id'] for s in gcstruct['flat']['Struktur_FB']] df['id'] = df['regex'].apply(lambda x: (list(filter(lambda y: match(x, y), structure_ids)) + [''])[0]) df = df[df['id'] != ''] res = {} for item in df.to_dict(orient='records'): if item['id'] not in res: res[item['id']] = {} res[item['id']][item['Betrieb Nr']] = [item['Wert'], item['Menge']] data = {'values': res} json.dump(data, open('planner/export/planning_2021.json', 'w'), indent=2) def planning_new(filename): with open('planner/export/' + filename, 'r') as frh: structure = json.load(frh) year = str(int(filename[:4]) + 1) result = {} for s in structure: if len(s['accounts']) == 0: continue result[s['id']] = dict([(k, [v[10], v[5]]) for k, v in s['values2'].items()]) with open(f"planner/export/planning_{year}.json", 'w') as fwh: json.dump({'values': result}, fwh, indent=2) if __name__ == '__main__': # planning_prev() # actuals('202209') planning_new('2022_V2_20220407150009.json')