1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- import pandas as pd
- import numpy as np
- from re import match
- import json
- def actuals(period):
- df = pd.read_csv('Planung/Belege_Planung_Ist_FC.csv', sep=';', decimal=',',
- dtype={0: str, 1: str, 2: str, 3: float})
- df = df[df['Bookkeep_Period'] <= period]
- df['Jahr'] = df['Bookkeep_Period'].apply(lambda x: 'AJ' if x[:4] == '2020' else 'VJ')
- df['primary_key'] = df['Betrieb Nr'] + '_' + df['Konto Nr']
- df = pd.pivot_table(df, values='Betrag', index=['primary_key'], columns=['Jahr'], aggfunc=np.sum, fill_value=0.0)
- df['FC'] = df['AJ'] * 12 / int(period[4:])
- res = {}
- for (pkey, values) in df.to_dict(orient='index').items():
- split = pkey.split('_')
- if not split[1] in res:
- res[split[1]] = {}
- res[split[1]][split[0]] = [values['VJ'], values['AJ'], values['FC'], 0.0, 0.0, 0.0]
- data = {'values': res}
- json.dump(data, open('Planung/export/accounts.json', 'w'), indent=2)
- def planning_prev():
- df1 = pd.read_csv('Planung/Global Planner_2018_ohne_Marketing.csv',
- sep=';', decimal=',', encoding='ansi', dtype={'Betrieb Nr': str, 'Bereich': str})
- df1 = df1[['Jahr', 'Betrieb Nr', 'Vstufe 1', 'Bereich', 'Zeile mit Bez', 'Version', 'Menge', 'Wert']]
- df2 = pd.read_csv('Planung/AHA_Global Planner_2018_PKW_MOT_ohne_Marketing.csv',
- sep=';', decimal=',', encoding='ansi', dtype={'Betrieb Nr': str, 'Bereich': str})
- df2 = df2[['Jahr', 'Betrieb Nr', 'Vstufe 1', 'Bereich', 'Zeile mit Bez', 'Version', 'Menge', 'Wert']]
- df = pd.concat([df1, df2])
- df['Bereich'] = df['Bereich'].fillna('NA').replace('VW (inkl. GF)', '?')
- df['Zeile'] = df['Zeile mit Bez'].apply(lambda x: x[:4])
- df['Konto'] = ''
- df['regex'] = df['Vstufe 1'] + ";" + df['Bereich'] + ";.*" + df['Zeile'] + ' - [^;]*;;'
- df = df[df['Wert'] != 0]
- gcstruct = json.load(open('GCStruct_Reisacher_Planung/gcstruct_reisacher.json', 'r'))
- structure_ids = [s['id'] for s in gcstruct['flat']['Struktur_FB']]
- # print(structure_ids)
- df['id'] = df['regex'].apply(lambda x: (list(filter(lambda y: match(x, y), structure_ids)) + [''])[0])
- df = df[df['id'] != '']
- # df['pkey'] = df['id'] + "_" + df['Betrieb Nr']
- # df = df.set_index('pkey')
- res = {}
- for item in df.to_dict(orient='records'):
- if not item['id'] in res:
- res[item['id']] = {}
- res[item['id']][item['Betrieb Nr']] = [item['Wert'], item['Menge']]
- data = {'values': res}
- json.dump(data, open('Planung/export/planning.json', 'w'), indent=2)
- if __name__ == '__main__':
- planning_prev()
- actuals('202010')
|