123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830 |
- import csv
- import json
- import re
- import xml.etree.ElementTree as ET
- from functools import reduce
- from pathlib import Path
- import chevron
- import numpy as np
- import pandas as pd
- # from shutil import copyfile
- from bs4 import BeautifulSoup
- def get_flat(node):
- result = [
- {
- "id": node["id"],
- "text": node["text"],
- "children": [x["id"] for x in node["children"]],
- "children2": [],
- "parents": node["parents"],
- "accounts": node["accounts"],
- "costcenter": "",
- "level": node["level"],
- "drilldown": node["level"] < 2, # (node['level'] != 2 and len(node['accounts']) == 0),
- "form": node["form"],
- "accountlevel": False,
- "absolute": True,
- "seasonal": True,
- "status": "0",
- "values": [],
- "values2": {},
- }
- ]
- for child in node["children"]:
- result += get_flat(child)
- return result
- def get_parents_list(p_list):
- id = ";".join(p_list) + ";" * (10 - len(p_list))
- if len(p_list) > 0:
- return [id] + get_parents_list(p_list[:-1])
- return [";" * 9]
- def structure_from_tree(node):
- result = []
- result.append(node["id"])
- for child in node["children"]:
- result.extend(structure_from_tree(child))
- return result
- def xml_from_tree(xml_node, tree_node):
- for child in tree_node["children"]:
- element = ET.SubElement(xml_node, "Ebene")
- element.set("Name", child["text"])
- xml_from_tree(element, child)
- def split_it(text, index):
- try:
- return re.findall(r"([^;]+) - ([^;]*);;", text)[0][index]
- except Exception:
- return ""
- def last_layer(text):
- try:
- return re.findall(r"([^;]+);;", text)[0]
- except Exception:
- return ""
- def get_default_cols(i):
- return ["Ebene" + str(i) for i in range(i * 10 + 1, (i + 1) * 10 + 1)]
- def get_structure_exports(s):
- result = {
- "files": {},
- "format": {
- "KontoFormat": "{0} - {1}",
- "HerstellerkontoFormat": "{{Herstellerkonto_Nr}}",
- "HerstellerBezeichnungFormat": "{{Herstellerkonto_Bez}}",
- "NeueHerstellerkontenAnlegen": False,
- },
- }
- export_files = [
- "ExportStk",
- "ExportStrukturenStk",
- "ExportAdjazenz",
- "ExportUebersetzung",
- "ExportUebersetzungStk",
- "ExportHerstellerKontenrahmen",
- ]
- export_format = [
- "KontoFormat",
- "HerstellerkontoFormat",
- "HerstellerBezeichnungFormat",
- "NeueHerstellerkontenAnlegen",
- ]
- for e in export_files:
- if s.find(e) is not None and s.find(e).text is not None and s.find(e).text[-4:] == ".csv":
- result["files"][e] = s.find(e).text
- for e in export_format:
- if s.find(e) is not None and s.find(e).text != "":
- result["format"][e] = s.find(e).text
- result["format"]["NeueHerstellerkontenAnlegen"] = result["format"]["NeueHerstellerkontenAnlegen"] == "true"
- return result
- class GCStruct:
- config = {
- "path": "c:/projekte/python/gcstruct",
- "path2": "c:/projekte/python/gcstruct",
- "file": "c:/projekte/python/gcstruct/config/config.xml",
- "output": "gcstruct.json",
- "default": [],
- "special": {},
- "special2": {
- "Planner": ["Kostenstelle", "Ebene1", "Ebene2"],
- "Test": ["Ebene1", "Ebene2"],
- },
- "columns": [
- "Konto_Nr",
- "Konto_Bezeichnung",
- "Konto_Art",
- "Konto_KST",
- "Konto_STK",
- "Konto_1",
- "Konto_2",
- "Konto_3",
- "Konto_4",
- "Konto_5",
- ],
- "struct": {},
- "export": {},
- }
- json_result = {
- "accounts": {},
- "tree": {},
- "flat": {},
- "struct_export": {},
- "skr51_vars": {},
- }
- structure_ids = []
- translate = {
- "Konto_Nr": "SKR51",
- "Kostenstelle": "KST",
- "Absatzkanal": "ABS",
- "Kostenträger": "KTR",
- "Marke": "MAR",
- "Standort": "STA",
- "Marke_HBV": "MAR",
- "Standort_HBV": "BMC",
- }
- def __init__(self, struct_dir, export_dir=None):
- self.config["path"] = struct_dir
- self.config["path2"] = struct_dir + "/export" if export_dir is None else export_dir
- self.config["file"] = f"{self.config['path']}/config/gcstruct.xml"
- if not Path(self.config["file"]).exists():
- self.config["file"] = f"{self.config['path']}/config/config.xml"
- cfg = ET.parse(self.config["file"])
- self.config["default"] = [
- s.find("Name").text for s in cfg.getroot().find("Strukturdefinitionen").findall("Struktur")
- ]
- self.config["export"] = dict(
- [
- (s.find("Name").text, get_structure_exports(s))
- for s in cfg.getroot().find("Strukturdefinitionen").findall("Struktur")
- ]
- )
- struct = dict([(x, get_default_cols(i)) for (i, x) in enumerate(self.config["default"])])
- struct.update(self.config["special"])
- self.config["struct"] = struct
- # print(self.config['struct'])
- def export_header(self, filetype):
- return {
- "ExportStk": [],
- "ExportStrukturenStk": [],
- "ExportAdjazenz": [],
- "ExportUebersetzung": [
- "Konto_Nr_Hersteller",
- "Konto_Nr_Split",
- "Konto_Nr_Haendler",
- "Info",
- ],
- "ExportUebersetzungStk": [
- "Konto_Nr_Hersteller",
- "Konto_Nr_Split",
- "Konto_Nr_Haendler",
- "Info",
- ],
- "ExportHerstellerKontenrahmen": [
- "Konto_Nr",
- "Konto_Bezeichnung",
- "Case",
- "Info",
- ],
- }[filetype]
- def accounts_from_csv(self, struct):
- max_rows = (len(self.config["default"]) + 1) * 10
- with open(
- f"{self.config['path']}/Kontenrahmen/Kontenrahmen.csv",
- "r",
- encoding="latin-1",
- ) as f:
- csv_reader = csv.reader(f, delimiter=";")
- imported_csv = [row[:max_rows] for row in csv_reader]
- df = pd.DataFrame.from_records(np.array(imported_csv[1:], dtype="object"), columns=imported_csv[0]).fillna(
- value=""
- )
- df = df.rename(columns={"Kostenstelle": "Konto_KST", "STK": "Konto_STK"})
- for i, (s, cols) in enumerate(struct.items()):
- df[s] = reduce(lambda x, y: x + ";" + df[y], cols, "")
- df[s] = df[s].apply(lambda x: x[1:])
- df["LetzteEbene" + str(i + 1)] = df[s].apply(lambda x: last_layer(x))
- df["LetzteEbene" + str(i + 1) + "_Nr"] = df[s].apply(lambda x: split_it(x, 0))
- df["LetzteEbene" + str(i + 1) + "_Bez"] = df[s].apply(lambda x: split_it(x, 1))
- df["Herstellerkonto_Nr"] = df["LetzteEbene1_Nr"]
- df["Herstellerkonto_Bez"] = df["LetzteEbene1_Bez"]
- return df
- def tree_from_xml(self, struct, df):
- result = {}
- for s, cols in struct.items():
- try:
- tree = ET.parse(f"{self.config['path']}/Xml/{s}.xml")
- result[s] = self.get_tree_root(tree.getroot(), s)
- except FileNotFoundError:
- print("XML-Datei fehlt")
- used_entries = [x.split(";")[1:] for x in set(df[s].to_numpy())]
- print(used_entries)
- root = ET.Element("Ebene")
- root.set("Name", s)
- result[s] = self.get_tree_root(root, s)
- # self.json_result["tree"][s] = get_tree_from_accounts(cols, [])
- return result
- def get_structure_and_tree(self):
- df = self.accounts_from_csv(self.config["struct"])
- self.json_result["accounts"] = df.to_dict("records")
- self.structure_ids = df.melt(
- id_vars=["Konto_Nr"],
- value_vars=self.config["struct"].keys(),
- var_name="Struktur",
- value_name="id",
- ).groupby(by=["Struktur", "id"])
- self.json_result["tree"] = self.tree_from_xml(self.config["struct"], df)
- for s, cols in self.config["struct"].items():
- self.json_result["flat"][s] = get_flat(self.json_result["tree"][s])
- for s, entries in self.json_result["flat"].items():
- cols = self.config["struct"][s]
- df_temp = pd.DataFrame([x["id"].split(";") for x in entries], columns=cols)
- self.json_result["struct_export"][s] = df_temp.to_dict(orient="records")
- # {'accounts': {}, 'tree': {}, 'flat': {}, 'struct_export': {}, 'skr51_vars': {}}
- return self.json_result
- def export_structure_and_tree(self):
- json.dump(
- self.json_result,
- open(f"{self.config['path2']}/{self.config['output']}", "w"),
- indent=2,
- )
- def get_accounts(self, structure, id):
- return [x["Konto_Nr"] for x in self.json_result["accounts"] if x[structure] == id]
- # return []
- # res = self.structure_ids.groups.get((structure, id))
- # if res is None:
- # return []
- # return res.values
- def export(self):
- for s in self.config["export"].keys():
- for filetype, filename in self.config["export"][s]["files"].items():
- with open(self.config["path2"] + "/" + filename, "w") as fwh:
- fwh.write("Konto_Nr_Hersteller;Konto_Nr_Split;Konto_Nr_Haendler;Info\n")
- # 'Hersteller'Konto_Nr;Konto_Bezeichnung;Case;Info'
- for a in self.json_result["accounts"]:
- if a["Herstellerkonto_Nr"] != "":
- account = chevron.render(
- self.config["export"]["SKR51"]["format"]["HerstellerkontoFormat"],
- a,
- )
- fwh.write(
- account + ";" + account + ";" + a["Konto_Nr"] + ";" + "\n"
- ) # a['Herstellerkonto_Bez']
- def get_tree(self, node, parents, structure):
- result = []
- for child in node:
- p = get_parents_list(parents)
- parents.append(child.attrib["Name"])
- id = ";".join(parents) + ";" * (10 - len(parents))
- result.append(
- {
- "id": id,
- "text": child.attrib["Name"],
- "children": self.get_tree(child, parents, structure),
- "parents": p,
- "accounts": self.get_accounts(structure, id),
- "level": len(parents),
- "form": child.attrib.get("Split", ""),
- }
- )
- parents.pop()
- return result
- def get_tree_root(self, node, structure):
- id = ";" * 9
- return {
- "id": id,
- "text": node.attrib["Name"],
- "children": self.get_tree(node, [], structure),
- "parents": [],
- "accounts": [],
- "level": 0,
- "form": "",
- }
- def post_structure_and_tree(self):
- json_post = json.load(open(f"{self.config['path']}/{self.config['output']}", "r"))
- # Kontenrahmen.csv
- ebenen = ["Ebene" + str(i) for i in range(1, len(self.config["default"]) * 10 + 1)]
- header = ";".join(self.config["columns"] + ebenen)
- cols = self.config["columns"] + self.config["default"]
- with open(
- self.config["path"] + "/Kontenrahmen/Kontenrahmen_out.csv",
- "w",
- encoding="latin-1",
- ) as f:
- f.write(header + "\n")
- for row in json_post["Kontenrahmen"]:
- f.write(";".join([row[e] for e in cols]) + "\n")
- # print(header)
- # xml und evtl. Struktur.csv
- for i, s in enumerate(self.config["default"]):
- with open(
- f"{self.config['path']}/Strukturen/Kontenrahmen.csv/{s}_out.csv",
- "w",
- encoding="latin-1",
- ) as f:
- f.write(";".join(["Ebene" + str(i * 10 + j) for j in range(1, 11)]) + "\n")
- rows = structure_from_tree({"id": ";" * 9, "children": json_post[s]})
- f.write("\n".join(rows))
- # with open(self.config['path'] + "/Strukturen/Kontenrahmen.csv/" + structure + "_2.csv", "w", encoding="latin-1") as f:
- root = ET.Element("Ebene")
- root.set("Name", s)
- xml_from_tree(root, {"id": ";" * 9, "children": json_post[s]})
- with open(f"{self.config['path']}/Xml/{s}_out.xml", "w", encoding="utf-8") as f:
- f.write(BeautifulSoup(ET.tostring(root), "xml").prettify())
- def skr51_translate(self, accounts_combined_files):
- df = self.accounts_from_csv(self.config["struct"])
- df_translate = {}
- for i, (t_from, t_to) in enumerate(self.translate.items()):
- last = "LetzteEbene" + str(i + 1)
- from_label = [
- "Konto_Nr",
- "Konto_Bezeichnung",
- last,
- last + "_Nr",
- last + "_Bez",
- "Ebene" + str(i * 10 + 1),
- "Ebene" + str(i * 10 + 2),
- ]
- to_label = [
- t_to,
- t_to + "_Bez_ori",
- t_to + "_Ebene",
- t_to + "_Nr",
- t_to + "_Bez",
- "Ebene1",
- "Ebene2",
- ]
- df_translate[t_from] = df[df[last + "_Nr"] != ""][from_label].rename(
- columns=dict(zip(from_label, to_label))
- )
- df_t4 = df_translate["Konto_Nr"].copy()
- df_t4 = df_t4[df_t4["SKR51_Nr"].str.match(r"^[01]")]
- df_t5 = df_t4.copy()
- df_t4["SKR51_Nr"] = df_t4["SKR51_Nr"] + "_A"
- df_t4["SKR51"] = df_t4["SKR51"] + "_A"
- df_t5["SKR51_Nr"] = df_t5["SKR51_Nr"] + "_P"
- df_t5["SKR51"] = df_t5["SKR51"] + "_P"
- df_translate["Konto_Nr"] = pd.concat([df_translate["Konto_Nr"], df_t4, df_t5])
- # print(df_translate[t_to].head())
- df2 = []
- for ac_file in accounts_combined_files:
- df2.append(
- pd.read_csv(
- ac_file,
- decimal=",",
- sep=";",
- encoding="latin-1",
- converters={i: str for i in range(0, 200)},
- )
- )
- df_source = pd.concat(df2)
- df3 = df_source.copy()
- df3["Konto_Nr"] = df3["Konto_Nr"] + "_STK"
- df4 = df_source.copy()
- df4 = df4[df4["Konto_Nr"].str.match(r"^[01]")]
- df5 = df4.copy()
- df4["Konto_Nr"] = df4["Konto_Nr"] + "_A"
- df5["Konto_Nr"] = df5["Konto_Nr"] + "_P"
- df_source = pd.concat([df_source, df3, df4, df5])
- for t_from, t_to in self.translate.items():
- if t_to == "SKR51":
- df_source["SKR51"] = df_source["Konto_Nr"]
- elif t_from in ["Marke_HBV"]:
- df_source["Marke_HBV"] = df_source["Marke"]
- elif t_from in ["Standort_HBV"]:
- df_source["Standort_HBV"] = df_source["Standort"] + "_" + df_source["Marke"]
- df_source["BMC"] = "BMC_" + df_source["Standort_HBV"]
- elif t_to == "KTR":
- df_source["KTR"] = np.where(
- df_source["Kostenträger_Quelle"] == "TZ",
- "KTR_TZ_" + df_source["Kostenträger"],
- "KTR_00",
- )
- df_source["KTR"] = np.where(
- df_source["Kostenträger_Quelle"].isin(["NW", "SC"]),
- "KTR_"
- + df_source["Kostenträger_Quelle"]
- + "_"
- + df_source["Marke"]
- + "_"
- + df_source["Kostenträger"],
- df_source["KTR"],
- )
- else:
- df_source[t_to] = t_to + "_" + df_source[t_from]
- df_source = df_source.merge(df_translate[t_from], how="left", on=[t_to], suffixes=(None, "_" + t_to))
- df_source[t_to + "_Nr"] = np.where(
- df_source[t_to + "_Nr"].isna(),
- df_source[t_from],
- df_source[t_to + "_Nr"],
- )
- df_source["Konto_Nr_SKR51"] = (
- df_source["MAR_Nr"]
- + "-"
- + df_source["STA_Nr"]
- + "-"
- + df_source["SKR51_Nr"]
- + "-"
- + df_source["KST_Nr"]
- + "-"
- + df_source["ABS_Nr"]
- + "-"
- + df_source["KTR_Nr"]
- )
- df_source["Konto_Nr_Händler"] = (
- df_source["Marke"]
- + "-"
- + df_source["Standort"]
- + "-"
- + df_source["Konto_Nr"]
- + "-"
- + df_source["Kostenstelle"]
- + "-"
- + df_source["Absatzkanal"]
- + "-"
- + df_source["Kostenträger"]
- )
- df_source["Konto_Nr_Händler_mit_KST"] = df_source["Konto_Nr"] + "_" + df_source["Kostenstelle"]
- # df_source.to_csv(f"{self.config['path2']}/SKR51_Uebersetzung.csv", sep=';', encoding='latin-1', index=False)
- df_source["MAR_Nr_MAR"] = np.where(df_source["MAR_Nr_MAR"].isna(), "0000", df_source["MAR_Nr_MAR"])
- from_label = [
- "MAR_Nr",
- "STA_Nr",
- "SKR51_Nr",
- "KST_Nr",
- "ABS_Nr",
- "KTR_Nr",
- "KTR_Ebene",
- "Konto_Nr_Händler",
- "Konto_Nr_SKR51",
- "MAR_Nr_MAR",
- "BMC_Nr",
- "Konto_Nr",
- "Konto_Nr_Händler_mit_KST",
- "SKR51_Bez_ori",
- ]
- to_label = [
- "Marke",
- "Standort",
- "Konto_Nr",
- "Kostenstelle",
- "Absatzkanal",
- "Kostenträger",
- "Kostenträger_Ebene",
- "Konto_Nr_Händler",
- "Konto_Nr_SKR51",
- "Marke_HBV",
- "Standort_HBV",
- "Konto_Nr_Händler_kurz",
- "Konto_Nr_Händler_mit_KST",
- "Konto_Bezeichnung_Händler",
- ]
- df_combined = df_source[from_label].rename(columns=dict(zip(from_label, to_label)))
- df_combined.to_csv(
- f"{self.config['path2']}/Kontenrahmen_uebersetzt.csv",
- sep=";",
- encoding="latin-1",
- index=False,
- )
- def skr51_translate2(self, accounts_combined_file):
- df = self.accounts_from_csv(self.config["struct"])
- df_list = []
- for i, s in enumerate(self.config["struct"].keys()):
- from_label = [
- "Konto_Nr",
- "Ebene" + str(i * 10 + 1),
- "Ebene" + str(i * 10 + 2),
- "Ebene" + str(i * 10 + 3),
- ]
- to_label = ["Konto_Nr", "key", "value", "value2"]
- df_temp = df[from_label].rename(columns=dict(zip(from_label, to_label)))
- df_temp["key"] = "{" + s + "/" + df_temp["key"] + "}"
- df_list.append(df_temp[df_temp["value"] != ""])
- df_translate = pd.concat(df_list)
- # df_translate.to_csv(f"{self.config['path2']}/SKR51_Variablen.csv", sep=';', encoding='latin-1', index=False)
- df_source = pd.read_csv(
- accounts_combined_file,
- decimal=",",
- sep=";",
- encoding="latin-1",
- converters={i: str for i in range(0, 200)},
- )
- df_source = df_source[df_source["Konto_Nr"].str.contains("_STK") == False]
- df_source["Konto_Nr_Gesamt"] = df_source["Konto_Nr"]
- df_source["Konto_Nr"] = np.where(
- df_source["Konto_Nr"].str.contains(r"^[4578]"),
- df_source["Konto_Nr"] + "_" + df_source["Kostenstelle"].str.slice(stop=1),
- df_source["Konto_Nr"],
- )
- df_source["Konto_Nr"] = np.where(
- df_source["Konto_Nr"].str.contains(r"^5\d+_4"),
- df_source["Konto_Nr"] + df_source["Kostenstelle"].str.slice(start=1, stop=2),
- df_source["Konto_Nr"],
- )
- df_source = df_source.merge(df, how="left", on=["Konto_Nr"])
- # rows = df_source.shape[0]
- df_source["value"] = ""
- cols = get_default_cols(0)
- for t_from, t_to in self.translate.items():
- if t_from in ["Marke_HBV", "Standort_HBV"]:
- continue
- if t_from == "Konto_Nr":
- df_source[t_to] = df_source[t_from]
- else:
- df_source[t_to] = t_to + "_" + df_source[t_from]
- for e in cols:
- df_source = df_source.merge(
- df_translate,
- how="left",
- left_on=[t_to, e],
- right_on=["Konto_Nr", "key"],
- suffixes=(None, "_" + t_to + "_" + e),
- )
- df_source[e] = np.where(
- df_source["value_" + t_to + "_" + e].notna(),
- df_source["value_" + t_to + "_" + e],
- df_source[e],
- )
- # if df_source.shape[0] > rows:
- # print(t_to + '_' + e + ': ' + str(df_source.shape[0]))
- # df_source.to_csv(f"{self.config['path2']}/SKR51_Variablen2.csv", sep=';', encoding='latin-1', index=False)
- # df_source[t_to + '_Nr'] = np.where(df_source[t_to + '_Nr'].isna(), df_source[t_from], df_source[t_to + '_Nr'])
- for e in cols:
- df_source[e] = np.where(
- df_source[e].str.startswith("{"),
- df_source[e].str.extract(r"\/(.*)}", expand=False) + " falsch",
- df_source[e],
- ) # df_source[e].str.extract(r'/(.*)}') +
- df_source[e] = np.where(df_source[e] == "[KTR]", df_source["Kostenträger_Ebene"], df_source[e])
- # df_all[df_all['Ebene1'] == ]
- # print(df_source.head())
- df_source["Konto_neu"] = (
- df_source["Marke"]
- + "-"
- + df_source["Standort"]
- + "-"
- + df_source["Konto_Nr"]
- + "-"
- + df_source["Kostenstelle"]
- + "-"
- + df_source["Absatzkanal"]
- + "-"
- + df_source["Kostenträger"]
- + " - "
- + df_source["Konto_Bezeichnung"]
- )
- df_source["Ebene1_empty"] = df_source["Ebene1"].isna() # , df_source['Ebene1'].map(lambda x: x == ''))
- df_source["Konto_neu"] = np.where(df_source["Ebene1_empty"], "keine Zuordnung", df_source["Konto_neu"])
- df_source["Ebene1"] = np.where(df_source["Ebene1_empty"], "keine Zuordnung", df_source["Ebene1"])
- df_source["Konto_Gruppe"] = df_source["Konto_Nr"] + " - " + df_source["Konto_Bezeichnung"]
- df_source["Konto_Gruppe"] = np.where(df_source["Ebene1_empty"], "keine Zuordnung", df_source["Konto_Gruppe"])
- df_source["Konto_Gesamt"] = df_source["Konto_Nr_Gesamt"] + " - " + df_source["Konto_Bezeichnung"]
- df_source["Konto_Händler"] = df_source["Konto_Nr_Händler_kurz"] + " - " + df_source["Konto_Bezeichnung_Händler"]
- df_source["Konto_mit_KST_Händler"] = (
- df_source["Konto_Nr_Händler_mit_KST"] + " - " + df_source["Konto_Bezeichnung_Händler"]
- )
- kto_amount = df_source["Ebene63"] == "mit STK"
- if kto_amount.sum() > 0:
- df_amount = df_source[kto_amount].reset_index()
- else:
- df_amount = df_source[df_source["Ebene1"] == "Umsatzerlöse"].reset_index()
- df_amount["Ebene1"] = "verkaufte Stückzahlen"
- df_amount["Ebene72"] = "verkaufte Stückzahlen"
- df_amount["Konto_neu"] = "STK " + df_amount["Konto_neu"]
- df_amount["Konto_Nr_Händler"] = df_amount["Konto_Nr_Händler"] + "_STK"
- df_amount["Konto_Gruppe"] = "STK " + df_amount["Konto_Gruppe"]
- df_amount["Konto_Gesamt"] = "STK " + df_amount["Konto_Gesamt"]
- df_amount["Konto_Händler"] = "STK " + df_amount["Konto_Händler"]
- df_amount["Konto_mit_KST_Händler"] = "STK " + df_amount["Konto_mit_KST_Händler"]
- df_source = pd.concat([df_source, df_amount])
- if "Ebene81" in df_source.columns:
- df_source["Ebene91"] = df_source["Ebene81"]
- df_source["Ebene92"] = df_source["Ebene82"]
- df_source["Ebene93"] = df_source["Ebene83"]
- df_source["Ebene94"] = df_source["Ebene84"]
- df_source["Ebene95"] = df_source["Ebene85"]
- df_source["Ebene96"] = df_source["Ebene86"]
- df_source["Ebene97"] = df_source["Ebene87"]
- df_source["Ebene98"] = df_source["Ebene88"]
- df_source["Ebene99"] = df_source["Ebene89"]
- df_source["Ebene100"] = df_source["Ebene90"]
- else:
- df_source["Ebene91"] = ""
- df_source["Ebene92"] = ""
- df_source["Ebene93"] = ""
- df_source["Ebene94"] = ""
- df_source["Ebene95"] = ""
- df_source["Ebene96"] = ""
- df_source["Ebene97"] = ""
- df_source["Ebene98"] = ""
- df_source["Ebene99"] = ""
- df_source["Ebene100"] = ""
- df_source["GuV"] = df_source["Ebene71"] == "GuV"
- df_source["Ebene81"] = np.where(df_source["GuV"], df_source["Ebene72"], "Bilanz")
- df_source["Ebene82"] = np.where(df_source["GuV"], df_source["Ebene73"], "")
- df_source["Ebene83"] = np.where(df_source["GuV"], df_source["Ebene74"], "")
- df_source["Ebene84"] = np.where(df_source["GuV"], df_source["Ebene75"], "")
- df_source["Ebene85"] = np.where(df_source["GuV"], df_source["Ebene76"], "")
- df_source["Ebene86"] = np.where(df_source["GuV"], df_source["Ebene77"], "")
- df_source["Ebene87"] = np.where(df_source["GuV"], df_source["Ebene78"], "")
- df_source["Ebene88"] = np.where(df_source["GuV"], df_source["Ebene79"], "")
- df_source["Ebene89"] = np.where(df_source["GuV"], df_source["Ebene80"], "")
- df_source["Ebene90"] = ""
- df_source["Ebene71"] = np.where(df_source["GuV"], "GuV", df_source["Ebene72"])
- df_source["Ebene72"] = np.where(df_source["GuV"], "", df_source["Ebene73"])
- df_source["Ebene73"] = np.where(df_source["GuV"], "", df_source["Ebene74"])
- df_source["Ebene74"] = np.where(df_source["GuV"], "", df_source["Ebene75"])
- df_source["Ebene75"] = np.where(df_source["GuV"], "", df_source["Ebene76"])
- df_source["Ebene76"] = np.where(df_source["GuV"], "", df_source["Ebene77"])
- df_source["Ebene77"] = np.where(df_source["GuV"], "", df_source["Ebene78"])
- df_source["Ebene78"] = np.where(df_source["GuV"], "", df_source["Ebene79"])
- df_source["Ebene79"] = np.where(df_source["GuV"], "", df_source["Ebene80"])
- df_source["Ebene80"] = ""
- df_source["Susa"] = df_source["Konto_Gruppe"].str.slice(stop=1)
- df_source["Konto_KST"] = ""
- df_source["GuV_Bilanz"] = df_source["Konto_Art"]
- from_label = ["Konto_neu", "Konto_Nr_Händler", "Konto_Nr_Händler_kurz"]
- to_label = ["Konto", "Acct_Nr", "Konto_Nr_Händler"]
- df_source = df_source.rename(columns=dict(zip(from_label, to_label)))
- df_source = df_source[
- [
- "Konto",
- "Acct_Nr",
- "Konto_Bezeichnung",
- "GuV_Bilanz",
- "Konto_KST",
- "Konto_STK",
- "Konto_1",
- "Konto_2",
- "Konto_3",
- "Konto_4",
- "Konto_5",
- ]
- + get_default_cols(0)
- + get_default_cols(7)
- + get_default_cols(8)
- + get_default_cols(9)
- + [
- "Konto_Gruppe",
- "Konto_Nr_Gesamt",
- "Konto_Gesamt",
- "Susa",
- "Konto_Nr_Händler",
- "Konto_Händler",
- "Konto_mit_KST_Händler",
- ]
- ]
- df_source.to_csv(
- f"{self.config['path2']}/SKR51_Uebersetzung.csv",
- sep=";",
- encoding="latin-1",
- index=False,
- )
- is_quantity = df_source["Konto"].str.startswith("STK")
- df_source["Konto"] = np.where(
- is_quantity,
- df_source["Konto"].str.slice_replace(7, 9, "00"),
- df_source["Konto"].str.slice_replace(3, 5, "00"),
- )
- df_source["Acct_Nr"] = df_source["Acct_Nr"].str.slice_replace(3, 5, "00")
- df_department = df_source.drop_duplicates()
- df_department.to_csv(
- f"{self.config['path2']}/SKR51_Uebersetzung_ohne_Standort.csv",
- sep=";",
- encoding="latin-1",
- index=False,
- )
- def skr51_vars(self):
- self.get_structure_and_tree()
- cols = get_default_cols(0)
- df_temp = pd.read_csv(
- f"{self.config['path']}/Export/Kostentraeger.csv",
- decimal=",",
- sep=";",
- encoding="latin-1",
- converters={i: str for i in range(0, 200)},
- )
- df_temp["value"] = df_temp["Ebene33"]
- df_temp["key"] = "[KTR]"
- df_temp = df_temp[df_temp["value"].str.contains(" - ")]
- df_list = [df_temp[["key", "value"]]]
- for s, entries in self.json_result["flat"].items():
- df = pd.DataFrame([x["id"].split(";") for x in entries], columns=cols)
- df["key"] = df[cols[0]].apply(lambda x: "{" + s + "/" + x + "}")
- df["value"] = df[cols[1]]
- df_list.append(df[["key", "value"]])
- df = pd.concat(df_list)
- df_vars = df[df["value"] != ""]
- # df_vars.to_csv(f"{self.config['path2']}/SKR51_Variablen2.csv", sep=';', encoding='latin-1', index=False)
- df_main = pd.DataFrame(
- [x["id"].split(";") for x in self.json_result["flat"]["SKR51"]],
- columns=cols,
- )
- df_main["value"] = ""
- for c in cols:
- df_main = df_main.merge(df_vars, how="left", left_on=c, right_on="key", suffixes=(None, "_" + c))
- df_main[c] = np.where(df_main["value_" + c].isna(), df_main[c], df_main["value_" + c])
- df_amount = df_main[df_main["Ebene1"] == "Umsatzerlöse"].reset_index()
- df_amount["Ebene1"] = "verkaufte Stückzahlen"
- df_main = pd.concat([df_main, df_amount])
- # from_label = cols
- to_label = cols # get_default_cols(9)
- # df_main = df_main.rename(columns=dict(zip(from_label, to_label)))
- df_main[to_label].to_csv(
- f"{self.config['path2']}/SKR51_Struktur.csv",
- sep=";",
- encoding="latin-1",
- index_label="Sortierung",
- )
- def dresen():
- struct = GCStruct("c:/projekte/GCHRStruct_Hyundai_Export")
- struct.get_structure_and_tree()
- struct.export_structure_and_tree()
- struct.export()
- def reisacher():
- base_dir = "X:/Robert/Planung Reisacher/GCStruct_neue_Struktur_Planung"
- if not Path(base_dir).exists():
- base_dir = "/media/fileserver1/austausch/Robert/Planung Reisacher/GCStruct_neue_Struktur_Planung"
- struct = GCStruct(base_dir)
- struct.get_structure_and_tree()
- struct.export_structure_and_tree()
- # json.dump(res['flat'], open(f"{self.config['path2']}/{self.config['output']}", 'w'), indent=2)
- if __name__ == "__main__":
- # struct = GCStruct('c:/projekte/gcstruct_dresen')
- # struct = GCStruct('c:/projekte/python/gcstruct')
- # struct = GCStruct('c:/projekte/python/gcstruct_reisacher_planung')
- reisacher()
- # dresen()
|