gcstruct.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830
  1. import csv
  2. import json
  3. import re
  4. import xml.etree.ElementTree as ET
  5. from functools import reduce
  6. from pathlib import Path
  7. import chevron
  8. import numpy as np
  9. import pandas as pd
  10. # from shutil import copyfile
  11. from bs4 import BeautifulSoup
  12. def get_flat(node):
  13. result = [
  14. {
  15. "id": node["id"],
  16. "text": node["text"],
  17. "children": [x["id"] for x in node["children"]],
  18. "children2": [],
  19. "parents": node["parents"],
  20. "accounts": node["accounts"],
  21. "costcenter": "",
  22. "level": node["level"],
  23. "drilldown": node["level"] < 2, # (node['level'] != 2 and len(node['accounts']) == 0),
  24. "form": node["form"],
  25. "accountlevel": False,
  26. "absolute": True,
  27. "seasonal": True,
  28. "status": "0",
  29. "values": [],
  30. "values2": {},
  31. }
  32. ]
  33. for child in node["children"]:
  34. result += get_flat(child)
  35. return result
  36. def get_parents_list(p_list):
  37. id = ";".join(p_list) + ";" * (10 - len(p_list))
  38. if len(p_list) > 0:
  39. return [id] + get_parents_list(p_list[:-1])
  40. return [";" * 9]
  41. def structure_from_tree(node):
  42. result = []
  43. result.append(node["id"])
  44. for child in node["children"]:
  45. result.extend(structure_from_tree(child))
  46. return result
  47. def xml_from_tree(xml_node, tree_node):
  48. for child in tree_node["children"]:
  49. element = ET.SubElement(xml_node, "Ebene")
  50. element.set("Name", child["text"])
  51. xml_from_tree(element, child)
  52. def split_it(text, index):
  53. try:
  54. return re.findall(r"([^;]+) - ([^;]*);;", text)[0][index]
  55. except Exception:
  56. return ""
  57. def last_layer(text):
  58. try:
  59. return re.findall(r"([^;]+);;", text)[0]
  60. except Exception:
  61. return ""
  62. def get_default_cols(i):
  63. return ["Ebene" + str(i) for i in range(i * 10 + 1, (i + 1) * 10 + 1)]
  64. def get_structure_exports(s):
  65. result = {
  66. "files": {},
  67. "format": {
  68. "KontoFormat": "{0} - {1}",
  69. "HerstellerkontoFormat": "{{Herstellerkonto_Nr}}",
  70. "HerstellerBezeichnungFormat": "{{Herstellerkonto_Bez}}",
  71. "NeueHerstellerkontenAnlegen": False,
  72. },
  73. }
  74. export_files = [
  75. "ExportStk",
  76. "ExportStrukturenStk",
  77. "ExportAdjazenz",
  78. "ExportUebersetzung",
  79. "ExportUebersetzungStk",
  80. "ExportHerstellerKontenrahmen",
  81. ]
  82. export_format = [
  83. "KontoFormat",
  84. "HerstellerkontoFormat",
  85. "HerstellerBezeichnungFormat",
  86. "NeueHerstellerkontenAnlegen",
  87. ]
  88. for e in export_files:
  89. if s.find(e) is not None and s.find(e).text is not None and s.find(e).text[-4:] == ".csv":
  90. result["files"][e] = s.find(e).text
  91. for e in export_format:
  92. if s.find(e) is not None and s.find(e).text != "":
  93. result["format"][e] = s.find(e).text
  94. result["format"]["NeueHerstellerkontenAnlegen"] = result["format"]["NeueHerstellerkontenAnlegen"] == "true"
  95. return result
  96. class GCStruct:
  97. config = {
  98. "path": "c:/projekte/python/gcstruct",
  99. "path2": "c:/projekte/python/gcstruct",
  100. "file": "c:/projekte/python/gcstruct/config/config.xml",
  101. "output": "gcstruct.json",
  102. "default": [],
  103. "special": {},
  104. "special2": {
  105. "Planner": ["Kostenstelle", "Ebene1", "Ebene2"],
  106. "Test": ["Ebene1", "Ebene2"],
  107. },
  108. "columns": [
  109. "Konto_Nr",
  110. "Konto_Bezeichnung",
  111. "Konto_Art",
  112. "Konto_KST",
  113. "Konto_STK",
  114. "Konto_1",
  115. "Konto_2",
  116. "Konto_3",
  117. "Konto_4",
  118. "Konto_5",
  119. ],
  120. "struct": {},
  121. "export": {},
  122. }
  123. json_result = {
  124. "accounts": {},
  125. "tree": {},
  126. "flat": {},
  127. "struct_export": {},
  128. "skr51_vars": {},
  129. }
  130. structure_ids = []
  131. translate = {
  132. "Konto_Nr": "SKR51",
  133. "Kostenstelle": "KST",
  134. "Absatzkanal": "ABS",
  135. "Kostenträger": "KTR",
  136. "Marke": "MAR",
  137. "Standort": "STA",
  138. "Marke_HBV": "MAR",
  139. "Standort_HBV": "BMC",
  140. }
  141. def __init__(self, struct_dir, export_dir=None):
  142. self.config["path"] = struct_dir
  143. self.config["path2"] = struct_dir + "/export" if export_dir is None else export_dir
  144. self.config["file"] = f"{self.config['path']}/config/gcstruct.xml"
  145. if not Path(self.config["file"]).exists():
  146. self.config["file"] = f"{self.config['path']}/config/config.xml"
  147. cfg = ET.parse(self.config["file"])
  148. self.config["default"] = [
  149. s.find("Name").text for s in cfg.getroot().find("Strukturdefinitionen").findall("Struktur")
  150. ]
  151. self.config["export"] = dict(
  152. [
  153. (s.find("Name").text, get_structure_exports(s))
  154. for s in cfg.getroot().find("Strukturdefinitionen").findall("Struktur")
  155. ]
  156. )
  157. struct = dict([(x, get_default_cols(i)) for (i, x) in enumerate(self.config["default"])])
  158. struct.update(self.config["special"])
  159. self.config["struct"] = struct
  160. # print(self.config['struct'])
  161. def export_header(self, filetype):
  162. return {
  163. "ExportStk": [],
  164. "ExportStrukturenStk": [],
  165. "ExportAdjazenz": [],
  166. "ExportUebersetzung": [
  167. "Konto_Nr_Hersteller",
  168. "Konto_Nr_Split",
  169. "Konto_Nr_Haendler",
  170. "Info",
  171. ],
  172. "ExportUebersetzungStk": [
  173. "Konto_Nr_Hersteller",
  174. "Konto_Nr_Split",
  175. "Konto_Nr_Haendler",
  176. "Info",
  177. ],
  178. "ExportHerstellerKontenrahmen": [
  179. "Konto_Nr",
  180. "Konto_Bezeichnung",
  181. "Case",
  182. "Info",
  183. ],
  184. }[filetype]
  185. def accounts_from_csv(self, struct):
  186. max_rows = (len(self.config["default"]) + 1) * 10
  187. with open(
  188. f"{self.config['path']}/Kontenrahmen/Kontenrahmen.csv",
  189. "r",
  190. encoding="latin-1",
  191. ) as f:
  192. csv_reader = csv.reader(f, delimiter=";")
  193. imported_csv = [row[:max_rows] for row in csv_reader]
  194. df = pd.DataFrame.from_records(np.array(imported_csv[1:], dtype="object"), columns=imported_csv[0]).fillna(
  195. value=""
  196. )
  197. df = df.rename(columns={"Kostenstelle": "Konto_KST", "STK": "Konto_STK"})
  198. for i, (s, cols) in enumerate(struct.items()):
  199. df[s] = reduce(lambda x, y: x + ";" + df[y], cols, "")
  200. df[s] = df[s].apply(lambda x: x[1:])
  201. df["LetzteEbene" + str(i + 1)] = df[s].apply(lambda x: last_layer(x))
  202. df["LetzteEbene" + str(i + 1) + "_Nr"] = df[s].apply(lambda x: split_it(x, 0))
  203. df["LetzteEbene" + str(i + 1) + "_Bez"] = df[s].apply(lambda x: split_it(x, 1))
  204. df["Herstellerkonto_Nr"] = df["LetzteEbene1_Nr"]
  205. df["Herstellerkonto_Bez"] = df["LetzteEbene1_Bez"]
  206. return df
  207. def tree_from_xml(self, struct, df):
  208. result = {}
  209. for s, cols in struct.items():
  210. try:
  211. tree = ET.parse(f"{self.config['path']}/Xml/{s}.xml")
  212. result[s] = self.get_tree_root(tree.getroot(), s)
  213. except FileNotFoundError:
  214. print("XML-Datei fehlt")
  215. used_entries = [x.split(";")[1:] for x in set(df[s].to_numpy())]
  216. print(used_entries)
  217. root = ET.Element("Ebene")
  218. root.set("Name", s)
  219. result[s] = self.get_tree_root(root, s)
  220. # self.json_result["tree"][s] = get_tree_from_accounts(cols, [])
  221. return result
  222. def get_structure_and_tree(self):
  223. df = self.accounts_from_csv(self.config["struct"])
  224. self.json_result["accounts"] = df.to_dict("records")
  225. self.structure_ids = df.melt(
  226. id_vars=["Konto_Nr"],
  227. value_vars=self.config["struct"].keys(),
  228. var_name="Struktur",
  229. value_name="id",
  230. ).groupby(by=["Struktur", "id"])
  231. self.json_result["tree"] = self.tree_from_xml(self.config["struct"], df)
  232. for s, cols in self.config["struct"].items():
  233. self.json_result["flat"][s] = get_flat(self.json_result["tree"][s])
  234. for s, entries in self.json_result["flat"].items():
  235. cols = self.config["struct"][s]
  236. df_temp = pd.DataFrame([x["id"].split(";") for x in entries], columns=cols)
  237. self.json_result["struct_export"][s] = df_temp.to_dict(orient="records")
  238. # {'accounts': {}, 'tree': {}, 'flat': {}, 'struct_export': {}, 'skr51_vars': {}}
  239. return self.json_result
  240. def export_structure_and_tree(self):
  241. json.dump(
  242. self.json_result,
  243. open(f"{self.config['path2']}/{self.config['output']}", "w"),
  244. indent=2,
  245. )
  246. def get_accounts(self, structure, id):
  247. return [x["Konto_Nr"] for x in self.json_result["accounts"] if x[structure] == id]
  248. # return []
  249. # res = self.structure_ids.groups.get((structure, id))
  250. # if res is None:
  251. # return []
  252. # return res.values
  253. def export(self):
  254. for s in self.config["export"].keys():
  255. for filetype, filename in self.config["export"][s]["files"].items():
  256. with open(self.config["path2"] + "/" + filename, "w") as fwh:
  257. fwh.write("Konto_Nr_Hersteller;Konto_Nr_Split;Konto_Nr_Haendler;Info\n")
  258. # 'Hersteller'Konto_Nr;Konto_Bezeichnung;Case;Info'
  259. for a in self.json_result["accounts"]:
  260. if a["Herstellerkonto_Nr"] != "":
  261. account = chevron.render(
  262. self.config["export"]["SKR51"]["format"]["HerstellerkontoFormat"],
  263. a,
  264. )
  265. fwh.write(
  266. account + ";" + account + ";" + a["Konto_Nr"] + ";" + "\n"
  267. ) # a['Herstellerkonto_Bez']
  268. def get_tree(self, node, parents, structure):
  269. result = []
  270. for child in node:
  271. p = get_parents_list(parents)
  272. parents.append(child.attrib["Name"])
  273. id = ";".join(parents) + ";" * (10 - len(parents))
  274. result.append(
  275. {
  276. "id": id,
  277. "text": child.attrib["Name"],
  278. "children": self.get_tree(child, parents, structure),
  279. "parents": p,
  280. "accounts": self.get_accounts(structure, id),
  281. "level": len(parents),
  282. "form": child.attrib.get("Split", ""),
  283. }
  284. )
  285. parents.pop()
  286. return result
  287. def get_tree_root(self, node, structure):
  288. id = ";" * 9
  289. return {
  290. "id": id,
  291. "text": node.attrib["Name"],
  292. "children": self.get_tree(node, [], structure),
  293. "parents": [],
  294. "accounts": [],
  295. "level": 0,
  296. "form": "",
  297. }
  298. def post_structure_and_tree(self):
  299. json_post = json.load(open(f"{self.config['path']}/{self.config['output']}", "r"))
  300. # Kontenrahmen.csv
  301. ebenen = ["Ebene" + str(i) for i in range(1, len(self.config["default"]) * 10 + 1)]
  302. header = ";".join(self.config["columns"] + ebenen)
  303. cols = self.config["columns"] + self.config["default"]
  304. with open(
  305. self.config["path"] + "/Kontenrahmen/Kontenrahmen_out.csv",
  306. "w",
  307. encoding="latin-1",
  308. ) as f:
  309. f.write(header + "\n")
  310. for row in json_post["Kontenrahmen"]:
  311. f.write(";".join([row[e] for e in cols]) + "\n")
  312. # print(header)
  313. # xml und evtl. Struktur.csv
  314. for i, s in enumerate(self.config["default"]):
  315. with open(
  316. f"{self.config['path']}/Strukturen/Kontenrahmen.csv/{s}_out.csv",
  317. "w",
  318. encoding="latin-1",
  319. ) as f:
  320. f.write(";".join(["Ebene" + str(i * 10 + j) for j in range(1, 11)]) + "\n")
  321. rows = structure_from_tree({"id": ";" * 9, "children": json_post[s]})
  322. f.write("\n".join(rows))
  323. # with open(self.config['path'] + "/Strukturen/Kontenrahmen.csv/" + structure + "_2.csv", "w", encoding="latin-1") as f:
  324. root = ET.Element("Ebene")
  325. root.set("Name", s)
  326. xml_from_tree(root, {"id": ";" * 9, "children": json_post[s]})
  327. with open(f"{self.config['path']}/Xml/{s}_out.xml", "w", encoding="utf-8") as f:
  328. f.write(BeautifulSoup(ET.tostring(root), "xml").prettify())
  329. def skr51_translate(self, accounts_combined_files):
  330. df = self.accounts_from_csv(self.config["struct"])
  331. df_translate = {}
  332. for i, (t_from, t_to) in enumerate(self.translate.items()):
  333. last = "LetzteEbene" + str(i + 1)
  334. from_label = [
  335. "Konto_Nr",
  336. "Konto_Bezeichnung",
  337. last,
  338. last + "_Nr",
  339. last + "_Bez",
  340. "Ebene" + str(i * 10 + 1),
  341. "Ebene" + str(i * 10 + 2),
  342. ]
  343. to_label = [
  344. t_to,
  345. t_to + "_Bez_ori",
  346. t_to + "_Ebene",
  347. t_to + "_Nr",
  348. t_to + "_Bez",
  349. "Ebene1",
  350. "Ebene2",
  351. ]
  352. df_translate[t_from] = df[df[last + "_Nr"] != ""][from_label].rename(
  353. columns=dict(zip(from_label, to_label))
  354. )
  355. df_t4 = df_translate["Konto_Nr"].copy()
  356. df_t4 = df_t4[df_t4["SKR51_Nr"].str.match(r"^[01]")]
  357. df_t5 = df_t4.copy()
  358. df_t4["SKR51_Nr"] = df_t4["SKR51_Nr"] + "_A"
  359. df_t4["SKR51"] = df_t4["SKR51"] + "_A"
  360. df_t5["SKR51_Nr"] = df_t5["SKR51_Nr"] + "_P"
  361. df_t5["SKR51"] = df_t5["SKR51"] + "_P"
  362. df_translate["Konto_Nr"] = pd.concat([df_translate["Konto_Nr"], df_t4, df_t5])
  363. # print(df_translate[t_to].head())
  364. df2 = []
  365. for ac_file in accounts_combined_files:
  366. df2.append(
  367. pd.read_csv(
  368. ac_file,
  369. decimal=",",
  370. sep=";",
  371. encoding="latin-1",
  372. converters={i: str for i in range(0, 200)},
  373. )
  374. )
  375. df_source = pd.concat(df2)
  376. df3 = df_source.copy()
  377. df3["Konto_Nr"] = df3["Konto_Nr"] + "_STK"
  378. df4 = df_source.copy()
  379. df4 = df4[df4["Konto_Nr"].str.match(r"^[01]")]
  380. df5 = df4.copy()
  381. df4["Konto_Nr"] = df4["Konto_Nr"] + "_A"
  382. df5["Konto_Nr"] = df5["Konto_Nr"] + "_P"
  383. df_source = pd.concat([df_source, df3, df4, df5])
  384. for t_from, t_to in self.translate.items():
  385. if t_to == "SKR51":
  386. df_source["SKR51"] = df_source["Konto_Nr"]
  387. elif t_from in ["Marke_HBV"]:
  388. df_source["Marke_HBV"] = df_source["Marke"]
  389. elif t_from in ["Standort_HBV"]:
  390. df_source["Standort_HBV"] = df_source["Standort"] + "_" + df_source["Marke"]
  391. df_source["BMC"] = "BMC_" + df_source["Standort_HBV"]
  392. elif t_to == "KTR":
  393. df_source["KTR"] = np.where(
  394. df_source["Kostenträger_Quelle"] == "TZ",
  395. "KTR_TZ_" + df_source["Kostenträger"],
  396. "KTR_00",
  397. )
  398. df_source["KTR"] = np.where(
  399. df_source["Kostenträger_Quelle"].isin(["NW", "SC"]),
  400. "KTR_"
  401. + df_source["Kostenträger_Quelle"]
  402. + "_"
  403. + df_source["Marke"]
  404. + "_"
  405. + df_source["Kostenträger"],
  406. df_source["KTR"],
  407. )
  408. else:
  409. df_source[t_to] = t_to + "_" + df_source[t_from]
  410. df_source = df_source.merge(df_translate[t_from], how="left", on=[t_to], suffixes=(None, "_" + t_to))
  411. df_source[t_to + "_Nr"] = np.where(
  412. df_source[t_to + "_Nr"].isna(),
  413. df_source[t_from],
  414. df_source[t_to + "_Nr"],
  415. )
  416. df_source["Konto_Nr_SKR51"] = (
  417. df_source["MAR_Nr"]
  418. + "-"
  419. + df_source["STA_Nr"]
  420. + "-"
  421. + df_source["SKR51_Nr"]
  422. + "-"
  423. + df_source["KST_Nr"]
  424. + "-"
  425. + df_source["ABS_Nr"]
  426. + "-"
  427. + df_source["KTR_Nr"]
  428. )
  429. df_source["Konto_Nr_Händler"] = (
  430. df_source["Marke"]
  431. + "-"
  432. + df_source["Standort"]
  433. + "-"
  434. + df_source["Konto_Nr"]
  435. + "-"
  436. + df_source["Kostenstelle"]
  437. + "-"
  438. + df_source["Absatzkanal"]
  439. + "-"
  440. + df_source["Kostenträger"]
  441. )
  442. df_source["Konto_Nr_Händler_mit_KST"] = df_source["Konto_Nr"] + "_" + df_source["Kostenstelle"]
  443. # df_source.to_csv(f"{self.config['path2']}/SKR51_Uebersetzung.csv", sep=';', encoding='latin-1', index=False)
  444. df_source["MAR_Nr_MAR"] = np.where(df_source["MAR_Nr_MAR"].isna(), "0000", df_source["MAR_Nr_MAR"])
  445. from_label = [
  446. "MAR_Nr",
  447. "STA_Nr",
  448. "SKR51_Nr",
  449. "KST_Nr",
  450. "ABS_Nr",
  451. "KTR_Nr",
  452. "KTR_Ebene",
  453. "Konto_Nr_Händler",
  454. "Konto_Nr_SKR51",
  455. "MAR_Nr_MAR",
  456. "BMC_Nr",
  457. "Konto_Nr",
  458. "Konto_Nr_Händler_mit_KST",
  459. "SKR51_Bez_ori",
  460. ]
  461. to_label = [
  462. "Marke",
  463. "Standort",
  464. "Konto_Nr",
  465. "Kostenstelle",
  466. "Absatzkanal",
  467. "Kostenträger",
  468. "Kostenträger_Ebene",
  469. "Konto_Nr_Händler",
  470. "Konto_Nr_SKR51",
  471. "Marke_HBV",
  472. "Standort_HBV",
  473. "Konto_Nr_Händler_kurz",
  474. "Konto_Nr_Händler_mit_KST",
  475. "Konto_Bezeichnung_Händler",
  476. ]
  477. df_combined = df_source[from_label].rename(columns=dict(zip(from_label, to_label)))
  478. df_combined.to_csv(
  479. f"{self.config['path2']}/Kontenrahmen_uebersetzt.csv",
  480. sep=";",
  481. encoding="latin-1",
  482. index=False,
  483. )
  484. def skr51_translate2(self, accounts_combined_file):
  485. df = self.accounts_from_csv(self.config["struct"])
  486. df_list = []
  487. for i, s in enumerate(self.config["struct"].keys()):
  488. from_label = [
  489. "Konto_Nr",
  490. "Ebene" + str(i * 10 + 1),
  491. "Ebene" + str(i * 10 + 2),
  492. "Ebene" + str(i * 10 + 3),
  493. ]
  494. to_label = ["Konto_Nr", "key", "value", "value2"]
  495. df_temp = df[from_label].rename(columns=dict(zip(from_label, to_label)))
  496. df_temp["key"] = "{" + s + "/" + df_temp["key"] + "}"
  497. df_list.append(df_temp[df_temp["value"] != ""])
  498. df_translate = pd.concat(df_list)
  499. # df_translate.to_csv(f"{self.config['path2']}/SKR51_Variablen.csv", sep=';', encoding='latin-1', index=False)
  500. df_source = pd.read_csv(
  501. accounts_combined_file,
  502. decimal=",",
  503. sep=";",
  504. encoding="latin-1",
  505. converters={i: str for i in range(0, 200)},
  506. )
  507. df_source = df_source[df_source["Konto_Nr"].str.contains("_STK") == False]
  508. df_source["Konto_Nr_Gesamt"] = df_source["Konto_Nr"]
  509. df_source["Konto_Nr"] = np.where(
  510. df_source["Konto_Nr"].str.contains(r"^[4578]"),
  511. df_source["Konto_Nr"] + "_" + df_source["Kostenstelle"].str.slice(stop=1),
  512. df_source["Konto_Nr"],
  513. )
  514. df_source["Konto_Nr"] = np.where(
  515. df_source["Konto_Nr"].str.contains(r"^5\d+_4"),
  516. df_source["Konto_Nr"] + df_source["Kostenstelle"].str.slice(start=1, stop=2),
  517. df_source["Konto_Nr"],
  518. )
  519. df_source = df_source.merge(df, how="left", on=["Konto_Nr"])
  520. # rows = df_source.shape[0]
  521. df_source["value"] = ""
  522. cols = get_default_cols(0)
  523. for t_from, t_to in self.translate.items():
  524. if t_from in ["Marke_HBV", "Standort_HBV"]:
  525. continue
  526. if t_from == "Konto_Nr":
  527. df_source[t_to] = df_source[t_from]
  528. else:
  529. df_source[t_to] = t_to + "_" + df_source[t_from]
  530. for e in cols:
  531. df_source = df_source.merge(
  532. df_translate,
  533. how="left",
  534. left_on=[t_to, e],
  535. right_on=["Konto_Nr", "key"],
  536. suffixes=(None, "_" + t_to + "_" + e),
  537. )
  538. df_source[e] = np.where(
  539. df_source["value_" + t_to + "_" + e].notna(),
  540. df_source["value_" + t_to + "_" + e],
  541. df_source[e],
  542. )
  543. # if df_source.shape[0] > rows:
  544. # print(t_to + '_' + e + ': ' + str(df_source.shape[0]))
  545. # df_source.to_csv(f"{self.config['path2']}/SKR51_Variablen2.csv", sep=';', encoding='latin-1', index=False)
  546. # df_source[t_to + '_Nr'] = np.where(df_source[t_to + '_Nr'].isna(), df_source[t_from], df_source[t_to + '_Nr'])
  547. for e in cols:
  548. df_source[e] = np.where(
  549. df_source[e].str.startswith("{"),
  550. df_source[e].str.extract(r"\/(.*)}", expand=False) + " falsch",
  551. df_source[e],
  552. ) # df_source[e].str.extract(r'/(.*)}') +
  553. df_source[e] = np.where(df_source[e] == "[KTR]", df_source["Kostenträger_Ebene"], df_source[e])
  554. # df_all[df_all['Ebene1'] == ]
  555. # print(df_source.head())
  556. df_source["Konto_neu"] = (
  557. df_source["Marke"]
  558. + "-"
  559. + df_source["Standort"]
  560. + "-"
  561. + df_source["Konto_Nr"]
  562. + "-"
  563. + df_source["Kostenstelle"]
  564. + "-"
  565. + df_source["Absatzkanal"]
  566. + "-"
  567. + df_source["Kostenträger"]
  568. + " - "
  569. + df_source["Konto_Bezeichnung"]
  570. )
  571. df_source["Ebene1_empty"] = df_source["Ebene1"].isna() # , df_source['Ebene1'].map(lambda x: x == ''))
  572. df_source["Konto_neu"] = np.where(df_source["Ebene1_empty"], "keine Zuordnung", df_source["Konto_neu"])
  573. df_source["Ebene1"] = np.where(df_source["Ebene1_empty"], "keine Zuordnung", df_source["Ebene1"])
  574. df_source["Konto_Gruppe"] = df_source["Konto_Nr"] + " - " + df_source["Konto_Bezeichnung"]
  575. df_source["Konto_Gruppe"] = np.where(df_source["Ebene1_empty"], "keine Zuordnung", df_source["Konto_Gruppe"])
  576. df_source["Konto_Gesamt"] = df_source["Konto_Nr_Gesamt"] + " - " + df_source["Konto_Bezeichnung"]
  577. df_source["Konto_Händler"] = df_source["Konto_Nr_Händler_kurz"] + " - " + df_source["Konto_Bezeichnung_Händler"]
  578. df_source["Konto_mit_KST_Händler"] = (
  579. df_source["Konto_Nr_Händler_mit_KST"] + " - " + df_source["Konto_Bezeichnung_Händler"]
  580. )
  581. kto_amount = df_source["Ebene63"] == "mit STK"
  582. if kto_amount.sum() > 0:
  583. df_amount = df_source[kto_amount].reset_index()
  584. else:
  585. df_amount = df_source[df_source["Ebene1"] == "Umsatzerlöse"].reset_index()
  586. df_amount["Ebene1"] = "verkaufte Stückzahlen"
  587. df_amount["Ebene72"] = "verkaufte Stückzahlen"
  588. df_amount["Konto_neu"] = "STK " + df_amount["Konto_neu"]
  589. df_amount["Konto_Nr_Händler"] = df_amount["Konto_Nr_Händler"] + "_STK"
  590. df_amount["Konto_Gruppe"] = "STK " + df_amount["Konto_Gruppe"]
  591. df_amount["Konto_Gesamt"] = "STK " + df_amount["Konto_Gesamt"]
  592. df_amount["Konto_Händler"] = "STK " + df_amount["Konto_Händler"]
  593. df_amount["Konto_mit_KST_Händler"] = "STK " + df_amount["Konto_mit_KST_Händler"]
  594. df_source = pd.concat([df_source, df_amount])
  595. if "Ebene81" in df_source.columns:
  596. df_source["Ebene91"] = df_source["Ebene81"]
  597. df_source["Ebene92"] = df_source["Ebene82"]
  598. df_source["Ebene93"] = df_source["Ebene83"]
  599. df_source["Ebene94"] = df_source["Ebene84"]
  600. df_source["Ebene95"] = df_source["Ebene85"]
  601. df_source["Ebene96"] = df_source["Ebene86"]
  602. df_source["Ebene97"] = df_source["Ebene87"]
  603. df_source["Ebene98"] = df_source["Ebene88"]
  604. df_source["Ebene99"] = df_source["Ebene89"]
  605. df_source["Ebene100"] = df_source["Ebene90"]
  606. else:
  607. df_source["Ebene91"] = ""
  608. df_source["Ebene92"] = ""
  609. df_source["Ebene93"] = ""
  610. df_source["Ebene94"] = ""
  611. df_source["Ebene95"] = ""
  612. df_source["Ebene96"] = ""
  613. df_source["Ebene97"] = ""
  614. df_source["Ebene98"] = ""
  615. df_source["Ebene99"] = ""
  616. df_source["Ebene100"] = ""
  617. df_source["GuV"] = df_source["Ebene71"] == "GuV"
  618. df_source["Ebene81"] = np.where(df_source["GuV"], df_source["Ebene72"], "Bilanz")
  619. df_source["Ebene82"] = np.where(df_source["GuV"], df_source["Ebene73"], "")
  620. df_source["Ebene83"] = np.where(df_source["GuV"], df_source["Ebene74"], "")
  621. df_source["Ebene84"] = np.where(df_source["GuV"], df_source["Ebene75"], "")
  622. df_source["Ebene85"] = np.where(df_source["GuV"], df_source["Ebene76"], "")
  623. df_source["Ebene86"] = np.where(df_source["GuV"], df_source["Ebene77"], "")
  624. df_source["Ebene87"] = np.where(df_source["GuV"], df_source["Ebene78"], "")
  625. df_source["Ebene88"] = np.where(df_source["GuV"], df_source["Ebene79"], "")
  626. df_source["Ebene89"] = np.where(df_source["GuV"], df_source["Ebene80"], "")
  627. df_source["Ebene90"] = ""
  628. df_source["Ebene71"] = np.where(df_source["GuV"], "GuV", df_source["Ebene72"])
  629. df_source["Ebene72"] = np.where(df_source["GuV"], "", df_source["Ebene73"])
  630. df_source["Ebene73"] = np.where(df_source["GuV"], "", df_source["Ebene74"])
  631. df_source["Ebene74"] = np.where(df_source["GuV"], "", df_source["Ebene75"])
  632. df_source["Ebene75"] = np.where(df_source["GuV"], "", df_source["Ebene76"])
  633. df_source["Ebene76"] = np.where(df_source["GuV"], "", df_source["Ebene77"])
  634. df_source["Ebene77"] = np.where(df_source["GuV"], "", df_source["Ebene78"])
  635. df_source["Ebene78"] = np.where(df_source["GuV"], "", df_source["Ebene79"])
  636. df_source["Ebene79"] = np.where(df_source["GuV"], "", df_source["Ebene80"])
  637. df_source["Ebene80"] = ""
  638. df_source["Susa"] = df_source["Konto_Gruppe"].str.slice(stop=1)
  639. df_source["Konto_KST"] = ""
  640. df_source["GuV_Bilanz"] = df_source["Konto_Art"]
  641. from_label = ["Konto_neu", "Konto_Nr_Händler", "Konto_Nr_Händler_kurz"]
  642. to_label = ["Konto", "Acct_Nr", "Konto_Nr_Händler"]
  643. df_source = df_source.rename(columns=dict(zip(from_label, to_label)))
  644. df_source = df_source[
  645. [
  646. "Konto",
  647. "Acct_Nr",
  648. "Konto_Bezeichnung",
  649. "GuV_Bilanz",
  650. "Konto_KST",
  651. "Konto_STK",
  652. "Konto_1",
  653. "Konto_2",
  654. "Konto_3",
  655. "Konto_4",
  656. "Konto_5",
  657. ]
  658. + get_default_cols(0)
  659. + get_default_cols(7)
  660. + get_default_cols(8)
  661. + get_default_cols(9)
  662. + [
  663. "Konto_Gruppe",
  664. "Konto_Nr_Gesamt",
  665. "Konto_Gesamt",
  666. "Susa",
  667. "Konto_Nr_Händler",
  668. "Konto_Händler",
  669. "Konto_mit_KST_Händler",
  670. ]
  671. ]
  672. df_source.to_csv(
  673. f"{self.config['path2']}/SKR51_Uebersetzung.csv",
  674. sep=";",
  675. encoding="latin-1",
  676. index=False,
  677. )
  678. is_quantity = df_source["Konto"].str.startswith("STK")
  679. df_source["Konto"] = np.where(
  680. is_quantity,
  681. df_source["Konto"].str.slice_replace(7, 9, "00"),
  682. df_source["Konto"].str.slice_replace(3, 5, "00"),
  683. )
  684. df_source["Acct_Nr"] = df_source["Acct_Nr"].str.slice_replace(3, 5, "00")
  685. df_department = df_source.drop_duplicates()
  686. df_department.to_csv(
  687. f"{self.config['path2']}/SKR51_Uebersetzung_ohne_Standort.csv",
  688. sep=";",
  689. encoding="latin-1",
  690. index=False,
  691. )
  692. def skr51_vars(self):
  693. self.get_structure_and_tree()
  694. cols = get_default_cols(0)
  695. df_temp = pd.read_csv(
  696. f"{self.config['path']}/Export/Kostentraeger.csv",
  697. decimal=",",
  698. sep=";",
  699. encoding="latin-1",
  700. converters={i: str for i in range(0, 200)},
  701. )
  702. df_temp["value"] = df_temp["Ebene33"]
  703. df_temp["key"] = "[KTR]"
  704. df_temp = df_temp[df_temp["value"].str.contains(" - ")]
  705. df_list = [df_temp[["key", "value"]]]
  706. for s, entries in self.json_result["flat"].items():
  707. df = pd.DataFrame([x["id"].split(";") for x in entries], columns=cols)
  708. df["key"] = df[cols[0]].apply(lambda x: "{" + s + "/" + x + "}")
  709. df["value"] = df[cols[1]]
  710. df_list.append(df[["key", "value"]])
  711. df = pd.concat(df_list)
  712. df_vars = df[df["value"] != ""]
  713. # df_vars.to_csv(f"{self.config['path2']}/SKR51_Variablen2.csv", sep=';', encoding='latin-1', index=False)
  714. df_main = pd.DataFrame(
  715. [x["id"].split(";") for x in self.json_result["flat"]["SKR51"]],
  716. columns=cols,
  717. )
  718. df_main["value"] = ""
  719. for c in cols:
  720. df_main = df_main.merge(df_vars, how="left", left_on=c, right_on="key", suffixes=(None, "_" + c))
  721. df_main[c] = np.where(df_main["value_" + c].isna(), df_main[c], df_main["value_" + c])
  722. df_amount = df_main[df_main["Ebene1"] == "Umsatzerlöse"].reset_index()
  723. df_amount["Ebene1"] = "verkaufte Stückzahlen"
  724. df_main = pd.concat([df_main, df_amount])
  725. # from_label = cols
  726. to_label = cols # get_default_cols(9)
  727. # df_main = df_main.rename(columns=dict(zip(from_label, to_label)))
  728. df_main[to_label].to_csv(
  729. f"{self.config['path2']}/SKR51_Struktur.csv",
  730. sep=";",
  731. encoding="latin-1",
  732. index_label="Sortierung",
  733. )
  734. def dresen():
  735. struct = GCStruct("c:/projekte/GCHRStruct_Hyundai_Export")
  736. struct.get_structure_and_tree()
  737. struct.export_structure_and_tree()
  738. struct.export()
  739. def reisacher():
  740. base_dir = "X:/Robert/Planung Reisacher/GCStruct_neue_Struktur_Planung"
  741. if not Path(base_dir).exists():
  742. base_dir = "/media/fileserver1/austausch/Robert/Planung Reisacher/GCStruct_neue_Struktur_Planung"
  743. struct = GCStruct(base_dir)
  744. struct.get_structure_and_tree()
  745. struct.export_structure_and_tree()
  746. # json.dump(res['flat'], open(f"{self.config['path2']}/{self.config['output']}", 'w'), indent=2)
  747. if __name__ == "__main__":
  748. # struct = GCStruct('c:/projekte/gcstruct_dresen')
  749. # struct = GCStruct('c:/projekte/python/gcstruct')
  750. # struct = GCStruct('c:/projekte/python/gcstruct_reisacher_planung')
  751. reisacher()
  752. # dresen()