db_create.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. import plac
  2. import pandas as pd
  3. from sqlalchemy import create_engine, inspect
  4. from database import bcp_conn_params, conn_string
  5. import json
  6. from pathlib import Path
  7. from collections import namedtuple
  8. DbCreateConfig = namedtuple('DbCreateConfig', 'name csv_file clients filter source_dsn target_dsn stage_dir batch_dir')
  9. cfg = DbCreateConfig(**{
  10. 'name': 'CARLO',
  11. 'csv_file': 'CARLO.csv',
  12. 'clients': {'1': 'M und S Fahrzeughandel GmbH'},
  13. 'filter': ['01.01.2018', '01.01.2019'],
  14. 'source_dsn': {'user': 'sa', 'pass': 'Mffu3011#', 'server': 'GC-SERVER1\\GLOBALCUBE', 'database': 'DE0017', 'driver': 'mssql', 'schema': 'dbo'},
  15. 'target_dsn': {'user': 'sa', 'pass': 'Mffu3011#', 'server': 'GC-SERVER1\\GLOBALCUBE', 'database': 'CARLO2', 'driver': 'mssql', 'schema': 'import'},
  16. 'stage_dir': '..\\temp',
  17. 'batch_dir': '..\\batch'
  18. })
  19. class database_inspect():
  20. def __init__(self, dsn):
  21. self.dsn = dsn
  22. self.engine = create_engine(conn_string(self.dsn))
  23. self.insp = inspect(self.engine)
  24. def get_tables(self):
  25. self.tables = self.insp.get_table_names(schema=self.dsn['schema']) + self.insp.get_view_names(schema=self.dsn['schema'])
  26. return self.tables
  27. def get_prefix(self):
  28. source_tables_prefix = dict(enumerate(sorted(list(set([t.split('$')[0] for t in self.tables if '$' in t]))), 1))
  29. if len(source_tables_prefix) == 0:
  30. q = self.engine.execute('select name FROM sys.databases')
  31. source_tables_prefix = [x[0] for x in q.fetchall()]
  32. return source_tables_prefix
  33. def get_columns(self, table):
  34. source_insp_cols = self.insp.get_columns(table)
  35. if len(source_insp_cols) == 0:
  36. q = self.engine.execute(f"SELECT COLUMN_NAME as name FROM information_schema.columns WHERE TABLE_NAME = '{self.convert_table(table)}'")
  37. source_insp_cols = q.fetchall()
  38. return set([col['name'] for col in source_insp_cols])
  39. def covert_table(self, table):
  40. if '.' in table:
  41. table = table.split('.')[-1]
  42. if '[' in table:
  43. table = table[1:-1]
  44. return table
  45. @plac.pos('config_file', '', type=str)
  46. def create(config_file='dbtools/OPTIMA.json'):
  47. cfg_import = json.load(open(config_file, 'r', encoding='ansi'))
  48. base_dir = Path(config_file).resolve().parent
  49. cfg_import['name'] = Path(config_file).stem
  50. if cfg_import['stage_dir'][:2] == '..':
  51. cfg_import['stage_dir'] = str(base_dir.joinpath(cfg_import['stage_dir']).resolve())
  52. if cfg_import['batch_dir'][:2] == '..':
  53. cfg_import['batch_dir'] = str(base_dir.joinpath(cfg_import['batch_dir']).resolve())
  54. cfg = DbCreateConfig(**cfg_import)
  55. df = pd.read_csv(f"{base_dir}/{cfg.csv_file}", sep=';', encoding='ansi')
  56. config = df[df['target'].notnull()]
  57. print(config.head())
  58. source_db = database_inspect(cfg.source_dsn)
  59. source_tables = source_db.get_tables()
  60. print(source_db.get_prefix())
  61. target_db = database_inspect(cfg.target_dsn)
  62. target_tables = target_db.get_tables()
  63. for index, current_table in config.iterrows():
  64. with open(f"{cfg.batch_dir}/{current_table['target']}.bat", 'w', encoding='cp850') as f:
  65. f.write('@echo off \n')
  66. f.write('rem ==' + current_table['target'] + '==\n')
  67. if not current_table['target'] in target_tables:
  68. f.write(f"echo Ziel-Tabelle '{current_table['target']}' existiert nicht!\n")
  69. print(f"Ziel-Tabelle '{current_table['target']}' existiert nicht!")
  70. continue
  71. f.write(f"del {cfg.stage_dir}\\{current_table['target']}*.* /Q /F >nul 2>nul \n")
  72. f.write(f"sqlcmd.exe {bcp_conn_params(cfg.target_dsn)} -p -Q \"TRUNCATE TABLE [{cfg.target_dsn['schema']}].[{current_table['target']}]\" \n")
  73. target_columns_list = target_db.get_columns(current_table['target'])
  74. if 'CLIENT_DB' in target_columns_list:
  75. target_columns_list.remove('CLIENT_DB')
  76. target_columns_list.append('Client_DB')
  77. target_columns = set(target_columns_list)
  78. for client_db, prefix in cfg.clients.items():
  79. source_table = current_table['source'].format(prefix)
  80. if source_table not in source_tables:
  81. source_table2 = source_db.convert_table(source_table)
  82. if source_table2 not in source_tables:
  83. f.write(f"echo Quell-Tabelle '{source_table}' existiert nicht!\n")
  84. print(f"Quell-Tabelle '{source_table}' existiert nicht!")
  85. continue
  86. source_columns = source_db.get_columns(source_table)
  87. if not pd.isnull(current_table['query']):
  88. select_query = current_table['query'].format(prefix, cfg.filter[0], cfg.filter[1])
  89. elif '.' in source_table:
  90. select_query = f"SELECT T1.* FROM {source_table} T1 "
  91. else:
  92. select_query = f"SELECT T1.* FROM [{cfg.source_dsn['schema']}].[{source_table}] T1 "
  93. if not pd.isnull(current_table['filter']):
  94. select_query += " WHERE " + current_table['filter'].format("", cfg.filter[0], cfg.filter[1])
  95. intersect = source_columns.intersection(target_columns)
  96. # print("Auf beiden Seiten: " + ";".join(intersect))
  97. diff1 = source_columns.difference(target_columns)
  98. if len(diff1) > 0:
  99. f.write("rem Nur in Quelle: " + ";".join(diff1) + "\n")
  100. diff2 = target_columns.difference(source_columns)
  101. if 'Client_DB' not in diff2:
  102. f.write("echo Spalte 'Client_DB' fehlt!\n")
  103. print(f"Ziel-Tabelle '{current_table['target']}' Spalte 'Client_DB' fehlt!")
  104. continue
  105. diff2.remove('Client_DB')
  106. if len(diff2) > 0:
  107. f.write("rem Nur in Ziel: " + ";".join(diff2) + "\n")
  108. # select_columns = "T1.[" + "], T1.[".join(intersect) + "],"
  109. select_columns = ''
  110. for col in target_columns_list:
  111. if col in intersect:
  112. select_columns += f"T1.[{col}], "
  113. elif col == 'Client_DB':
  114. select_columns += "'" + client_db + "' as \\\"Client_DB\\\", "
  115. else:
  116. select_columns += "'' as \\\"" + col + "\\\", "
  117. select_query = select_query.replace("T1.*", select_columns[:-2])
  118. select_query = select_query.replace("%", "%%") # batch-Problem
  119. stage_csv = f"{cfg.stage_dir}\\{current_table['target']}_{client_db}.csv"
  120. # insert_query = f"LOAD DATA INFILE '{stage_csv}' INTO TABLE {current_table['target']} FIELDS TERMINATED BY ',' ENCLOSED BY '\"' LINES TERMINATED BY '\n';"
  121. # print(select_query)
  122. f.write(f"bcp \"{select_query}\" queryout \"{stage_csv}\" {bcp_conn_params(cfg.source_dsn)} -c -C 65001 -e \"{stage_csv[:-4]}.queryout.log\" > \"{stage_csv[:-4]}.bcp1.log\" \n")
  123. f.write(f"type \"{stage_csv[:-4]}.bcp1.log\" | findstr -v \"1000\" \n")
  124. f.write(f"bcp [{cfg.target_dsn['schema']}].[{current_table['target']}] in \"{stage_csv}\" {bcp_conn_params(cfg.target_dsn)} -c -C 65001 -e \"{stage_csv[:-4]}.in.log\" > \"{stage_csv[:-4]}.bcp2.log\" \n")
  125. f.write(f"type \"{stage_csv[:-4]}.bcp2.log\" | findstr -v \"1000\" \n")
  126. with open(f"{cfg.batch_dir}/_{cfg.name}.bat", 'w', encoding='cp850') as f:
  127. f.write("@echo off & cd /d %~dp0 \n")
  128. f.write(f"del {cfg.stage_dir}\\*.* /Q /F >nul 2>nul \n\n")
  129. for index, current_table in config.iterrows():
  130. f.write(f"echo =={current_table['target']}==\n")
  131. f.write(f"echo {current_table['target']} >CON \n")
  132. f.write(f"call {current_table['target']}.bat\n\n")
  133. if __name__ == '__main__':
  134. plac.call(create)