file_export.py 3.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. import pandas as pd
  2. import numpy as np
  3. base_dir = '/home/robert/projekte/python/planner/export/'
  4. id_header = ['Ebene' + str(i) for i in range(1, 11)]
  5. values2_header = ['VJ', 'AJ', 'FC', 'Plan_ori', 'Plan_Prozent', 'Stk', 'VAK', 'BE_Prozent', 'Plan_VJ', 'Plan_Stk_VJ', 'Plan',
  6. 'Jan', 'Feb', 'Mar', 'Apr', 'Mai', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Dez', 'Periode13']
  7. season_header = ['Jan', 'Feb', 'Mar', 'Apr', 'Mai', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Dez']
  8. header = ['text', 'costcenter', 'department'] + id_header + values2_header
  9. source_header = ['department', 'text', 'costcenter', 'Ebene1', 'Plan']
  10. export_header = ['Betrieb Nr', 'Zeile mit Bez', 'Bereich', 'Vstufe 1', 'Gesamt'] # 'Version', 'Konto', 'Jahr']
  11. def expand(df, header, values_label):
  12. for i, key in enumerate(header):
  13. df[key] = df[values_label].str[i]
  14. return df
  15. def apply_season(df):
  16. df['Saison'] = df['Ebene1'].str.contains('Umsatzerlöse|Materialaufwand|Verkaufsabh. Kosten')
  17. for i, key in enumerate(season_header):
  18. df[key] = np.where((df['Saison']) & (df[key + '_2'] != 8.3333), df['Plan'] * df[key + '_2'] / 100, df['Plan'] / 12)
  19. df['Dez'] = df['Plan'] - df[season_header].sum(axis=1) + df['Dez']
  20. return df
  21. def data_cleansing(filename):
  22. df = pd.read_json(filename)
  23. df['values2'] = df['values2'].apply(lambda v: list(v.items()))
  24. df = df.explode('values2')
  25. df['department'], df['values2'] = zip(*df['values2'])
  26. df['id'] = df['id'].str.split(';')
  27. df = expand(df, id_header, 'id')
  28. df = expand(df, values2_header, 'values2')
  29. return df
  30. def export_plan(version, target_year, amount_value):
  31. df = data_cleansing(f'{base_dir}/{version}.json')
  32. season = df[(df['level'] == 2) & (df['Ebene1'] == 'Umsatzerlöse')]
  33. df['Minus1'] = np.where(df['Ebene1'] != 'Umsatzerlöse', -1, 1)
  34. df['Plan'] = df[amount_value] * df['Minus1']
  35. plan = df[df['accounts'].apply(lambda a: len(a) > 0)]
  36. plan = pd.merge(plan, season, how='left', on=['Ebene2', 'department'], suffixes=('', '_2'))
  37. plan = apply_season(plan)
  38. plan = plan[source_header + season_header].rename(columns=dict(zip(source_header, export_header)))
  39. # Reisacher Spezialbedingungen
  40. plan['Zeile mit Bez'] = np.where(plan['Zeile mit Bez'].isin(['BMW aus Leasingrücklauf BFS', 'BMW aus Leasingrücklauf Alphabet']),
  41. '3040 - BMW aus Leasingrücklauf', plan['Zeile mit Bez'])
  42. plan['Zeile mit Bez'] = np.where(plan['Zeile mit Bez'].isin(['BMW an Wiederverkäufer BFS', 'BMW an Wiederverkäufer Alphabet']),
  43. '3120 - BMW an Wiederverkäufer', plan['Zeile mit Bez'])
  44. if amount_value == 'Stk':
  45. plan = plan[plan['Vstufe 1'] == 'Umsatzerlöse']
  46. plan['Vstufe 1'] = 'Verk. Stückzahlen'
  47. plan['Zeile'] = plan['Zeile mit Bez'].str.slice(stop=4)
  48. plan['Version'] = version
  49. plan['Konto'] = ''
  50. plan['Jahr'] = target_year
  51. plan.to_csv(open(f'{base_dir}/Planner_{target_year}_{version}_{amount_value}.csv', 'w', newline=''),
  52. sep=';', decimal=',', encoding='latin-1', index=False)
  53. if __name__ == '__main__':
  54. export_plan('V3', '2021', 'Plan')
  55. export_plan('V3', '2021', 'Stk')