gchr.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. import csv
  2. import logging
  3. import os
  4. import xml.etree.ElementTree as ET
  5. from dataclasses import dataclass
  6. from datetime import datetime
  7. from pathlib import Path
  8. from typing import Callable
  9. from xml.dom import minidom
  10. import numpy as np
  11. import pandas as pd
  12. ACCOUNT_INFO = [
  13. "Account",
  14. "Make",
  15. "Site",
  16. "Origin",
  17. "SalesChannel",
  18. "CostCarrier",
  19. "CostAccountingString",
  20. ]
  21. TRANSLATE = [
  22. "Konto_Nr_Händler",
  23. "Konto_Nr_SKR51",
  24. "Marke",
  25. "Standort",
  26. "Konto_Nr",
  27. "Kostenstelle",
  28. "Absatzkanal",
  29. "Kostenträger",
  30. "Kontoart",
  31. "Konto_1",
  32. "KRM",
  33. "IsNumeric",
  34. ]
  35. @dataclass
  36. class GchrExportConfig:
  37. main_site: str
  38. current_year: str
  39. current_month: str
  40. makes_used: dict[str, str]
  41. sites_used: dict[str, str]
  42. first_month: str
  43. period_no: str
  44. bookkeep_filter: dict[str, str]
  45. extraction_date: datetime
  46. export_file: str
  47. bookkeep_records = dict[str, list[str]]
  48. header: dict[str, str] | None = None
  49. @dataclass
  50. class GchrConfig:
  51. first_month_of_financial_year: str
  52. data_path: str
  53. gcstruct_path: str
  54. export_path: str
  55. export_fn = Callable[[GchrExportConfig], None]
  56. class GCHR:
  57. booking_date: datetime
  58. _df_bookings: pd.DataFrame = None
  59. _df_translate: pd.DataFrame = None
  60. df_translate2: pd.DataFrame = None
  61. makes: dict[str, str] = None
  62. sites: dict[str, str] = None
  63. current_year: str
  64. current_month: str
  65. def __init__(self, base_dir: str) -> None:
  66. self.base_dir = base_dir
  67. self.account_translation = f"{self.base_dir}/data/Kontenrahmen_uebersetzt.csv"
  68. self.account_bookings = list(Path(self.base_dir).joinpath("data").glob("GuV_Bilanz_Salden*.csv"))
  69. self.first_month_of_financial_year = "10"
  70. pd.set_option("display.max_rows", 500)
  71. pd.set_option("display.float_format", lambda x: "%.2f" % x)
  72. def set_bookkeep_period(self, year: str, month: str) -> None:
  73. self.current_year = year
  74. self.current_month = month
  75. self.period = f"{year}-{month}"
  76. prot_file = f"{self.export_info_dir}/protokoll_{self.period}.log"
  77. logging.basicConfig(
  78. filename=prot_file,
  79. filemode="w",
  80. encoding="utf-8",
  81. level=logging.DEBUG,
  82. force=True,
  83. )
  84. @property
  85. def debug_file(self) -> str:
  86. return f"{self.export_info_dir}/debug_{self.period}.csv"
  87. @property
  88. def account_ignored(self) -> str:
  89. return f"{self.export_info_dir}/ignoriert_{self.period}.csv"
  90. # self.account_invalid = f"{self.export_info_dir}/ungueltig_{self.period}.csv"
  91. @property
  92. def last_year(self) -> str:
  93. return str(int(self.current_year) - 1)
  94. @property
  95. def last_year2(self) -> str:
  96. return str(int(self.current_year) - 2)
  97. @property
  98. def next_year(self) -> str:
  99. return str(int(self.current_year) + 1)
  100. @staticmethod
  101. def header(export_cfg: GchrExportConfig) -> dict[str, str]:
  102. return {
  103. "Country": "DE",
  104. "MainBmCode": export_cfg.main_site,
  105. "Month": export_cfg.current_month,
  106. "Year": export_cfg.current_year,
  107. "Currency": "EUR",
  108. "NumberOfMakes": len(export_cfg.makes_used),
  109. "NumberOfSites": len(export_cfg.sites_used),
  110. "ExtractionDate": export_cfg.extraction_date.strftime("%d.%m.%Y"),
  111. "ExtractionTime": export_cfg.extraction_date.strftime("%H:%M:%S"),
  112. "BeginFiscalYear": export_cfg.first_month,
  113. }
  114. @property
  115. def bookkeep_filter(self) -> dict[str, str]:
  116. period = [self.current_year + str(i).zfill(2) for i in range(1, 13)]
  117. if self.first_month_of_financial_year != "01":
  118. if self.first_month_of_financial_year > self.current_month:
  119. period = [self.last_year + str(i).zfill(2) for i in range(1, 13)] + period
  120. else:
  121. period = period + [self.next_year + str(i).zfill(2) for i in range(1, 13)]
  122. fm = int(self.first_month_of_financial_year)
  123. period = period[fm - 1 : fm + 12]
  124. period = [self.current_year + "00"] + period
  125. rename_to = ["OpeningBalance"] + ["Period" + str(i).zfill(2) for i in range(1, 13)]
  126. return dict(zip(period, rename_to))
  127. @staticmethod
  128. def extract_acct_info(df: pd.DataFrame) -> pd.DataFrame:
  129. acct_info = [
  130. "Marke",
  131. "Standort",
  132. "Konto_Nr",
  133. "Kostenstelle",
  134. "Absatzkanal",
  135. "Kostenträger",
  136. ]
  137. df["HasFiveDashes"] = df["Konto_Nr_SKR51"].str.count("-") == 5
  138. df["Invalid"] = "XX-XX-XXXX-XX-XX-XX"
  139. df["Konto_Nr_SKR51"] = np.where(
  140. df["HasFiveDashes"],
  141. df["Konto_Nr_SKR51"],
  142. df["Invalid"],
  143. )
  144. df[acct_info] = df["Konto_Nr_SKR51"].str.split(pat="-", n=6, expand=True)
  145. return df
  146. def export_all_periods(self, overwrite=False, today=None) -> None:
  147. dt = datetime.now()
  148. if today is not None:
  149. dt = datetime.fromisoformat(today)
  150. prev = str(dt.year - 1)
  151. periods = [(prev, str(x).zfill(2)) for x in range(dt.month, 13)] + [
  152. (str(dt.year), str(x).zfill(2)) for x in range(1, dt.month)
  153. ]
  154. for year, month in periods:
  155. filename = self.export_filename_for_period(year, month)
  156. if overwrite or not Path(filename).exists():
  157. os.makedirs(Path(filename).parent.joinpath("info"), exist_ok=True)
  158. self.export_period(year, month)
  159. def export_period(self, year: str, month: str) -> str:
  160. self.set_bookkeep_period(year, month)
  161. # Kontensalden laden
  162. df_bookings = self.filter_bookings()
  163. all_periods = set(df_bookings["Bookkeep Period"].to_list())
  164. bookkeep_period_date = datetime(int(year), int(month), 28)
  165. if df_bookings.shape[0] == 0 or len(all_periods) <= 1 or self.booking_date < bookkeep_period_date:
  166. logging.error("ABBRUCH!!! Keine Daten vorhanden!")
  167. return False
  168. filter_to = self.current_year + self.current_month
  169. period_no = list(self.bookkeep_filter.keys()).index(filter_to) + 1
  170. logging.info("df_bookings: " + str(df_bookings.shape))
  171. # Join auf Übersetzung
  172. df_combined = df_bookings.merge(self._df_translate, how="inner", on="Konto_Nr_Händler")
  173. logging.info(f"df_combined: {df_combined.shape}")
  174. df_pivot = df_combined.pivot_table(
  175. index=["Konto_Nr_SKR51"],
  176. columns=["period"],
  177. values="amount",
  178. aggfunc="sum",
  179. margins=True,
  180. margins_name="CumulatedYear",
  181. )
  182. df_pivot.drop(index="CumulatedYear", inplace=True)
  183. logging.info("df_pivot: " + str(df_pivot.shape))
  184. df = df_pivot.merge(self.df_translate2, how="inner", on="Konto_Nr_SKR51")
  185. makes_used = {}
  186. for m in sorted(list(set(df["Marke"].to_list()))):
  187. if m not in self.makes:
  188. continue
  189. makes_used[m] = self.makes[m]
  190. sites_used = {}
  191. for s in sorted(list(set((df["Marke"] + "-" + df["Standort"]).to_list()))):
  192. if s not in self.sites:
  193. continue
  194. sites_used[s] = self.sites[s]
  195. from_label = ["Marke", "Standort", "Konto_Nr", "Kostenstelle", "Absatzkanal", "Kostenträger", "KRM"]
  196. to_label = ["Make", "Site", "Account", "Origin", "SalesChannel", "CostCarrier", "CostAccountingString"]
  197. col_dict = dict(zip(from_label, to_label))
  198. df = df.rename(columns=col_dict)
  199. export_csv = self.export_filename[:-4] + ".csv"
  200. df.to_csv(export_csv, decimal=",", sep=";", encoding="latin-1", index=False)
  201. df = df[df["IsNumeric"] != False].groupby(ACCOUNT_INFO, as_index=False).aggregate("sum")
  202. # Infos ergänzen
  203. df["Decimals"] = 2
  204. # df.sort_values(by=["Konto_Nr_SKR51"], inplace=True)
  205. logging.info(df.shape)
  206. main_sites = [self.sites[s] for s in sites_used if s in self.sites and self.sites[s] != "0000"]
  207. for i, main_site in enumerate(main_sites):
  208. filename = self.export_filename
  209. if i > 0:
  210. filename = f"{filename[:-4]}_{main_site}.xml"
  211. export_cfg = GchrExportConfig(
  212. main_site,
  213. year,
  214. month,
  215. makes_used,
  216. sites_used,
  217. self.first_month_of_financial_year,
  218. period_no,
  219. self.bookkeep_filter,
  220. filename,
  221. df.to_dict(orient="records"),
  222. )
  223. export_cfg.header = self.header(export_cfg)
  224. GCHR.export_skr51_xml(export_cfg)
  225. # Join auf Übersetzung - nicht zugeordnet
  226. df_ignored = df_bookings.merge(self.df_translate, how="left", on="Konto_Nr_Händler")
  227. df_ignored = df_ignored[df_ignored["Konto_Nr_SKR51"].isna()]
  228. if not df_ignored.empty:
  229. df_ignored = df_ignored.pivot_table(
  230. index=["Konto_Nr_Händler"],
  231. columns=["period"],
  232. values="amount",
  233. aggfunc="sum",
  234. margins=True,
  235. margins_name="CumulatedYear",
  236. )
  237. df_ignored.to_csv(self.account_ignored, decimal=",", sep=";", encoding="latin-1")
  238. return self.export_filename
  239. @property
  240. def df_translate(self) -> pd.DataFrame:
  241. if self._df_translate is None:
  242. df_translate_import = pd.read_csv(
  243. self.account_translation,
  244. decimal=",",
  245. sep=";",
  246. encoding="latin-1",
  247. converters={i: str for i in range(0, 200)},
  248. ).reset_index()
  249. self.makes = GCHR.get_makes_from_translation(df_translate_import)
  250. self.sites = GCHR.get_sites_from_translation(df_translate_import)
  251. df_prepared = GCHR.prepare_translation(df_translate_import)
  252. self._df_translate = self.special_translation(df_prepared)
  253. self.df_translate2 = (
  254. self._df_translate.copy()
  255. .drop(columns=["Konto_Nr_Händler"])
  256. .drop_duplicates()
  257. .set_index("Konto_Nr_SKR51")
  258. )
  259. return self._df_translate
  260. @staticmethod
  261. def get_makes_from_translation(df_translate_import: pd.DataFrame) -> dict[str, str]:
  262. df_makes = df_translate_import[["Marke", "Marke_HBV"]].copy().drop_duplicates()
  263. df_makes = df_makes[df_makes["Marke_HBV"] != "0000"]
  264. makes = dict([(e["Marke"], e["Marke_HBV"]) for e in df_makes.to_dict(orient="records")])
  265. makes["99"] = "0000"
  266. return makes
  267. @staticmethod
  268. def get_sites_from_translation(df_translate_import: pd.DataFrame) -> dict[str, str]:
  269. df_sites = df_translate_import[["Marke", "Standort", "Standort_HBV"]].copy().drop_duplicates()
  270. df_sites["Standort_HBV"] = np.where(df_sites["Standort_HBV"].str.len() != 6, "0000", df_sites["Standort_HBV"])
  271. sites = dict(
  272. [(e["Marke"] + "-" + e["Standort"], e["Standort_HBV"]) for e in df_sites.to_dict(orient="records")]
  273. )
  274. return sites
  275. @staticmethod
  276. def prepare_translation(df_translate_import: pd.DataFrame) -> pd.DataFrame:
  277. df = df_translate_import[
  278. [
  279. "Konto_Nr_Händler",
  280. "Konto_Nr_SKR51",
  281. ]
  282. ].drop_duplicates()
  283. logging.info(df.shape)
  284. row = {
  285. "Konto_Nr_Händler": "01-01-0861-00-00-00",
  286. "Konto_Nr_SKR51": "01-01-0861-00-00-00",
  287. }
  288. df = pd.concat([df, pd.DataFrame.from_records([row])])
  289. df.set_index("Konto_Nr_Händler")
  290. return df
  291. def special_translation(self, df: pd.DataFrame) -> pd.DataFrame:
  292. df["Konto_Nr_Händler"] = df["Konto_Nr_Händler"].str.upper()
  293. df["Konto_Nr_SKR51"] = df["Konto_Nr_SKR51"].str.upper()
  294. df = GCHR.extract_acct_info(df)
  295. df["Konto_Nr"] = df["Konto_Nr"].str.upper()
  296. logging.info(df.shape)
  297. logging.info(df.columns)
  298. logging.info(df.head())
  299. logging.info("df: " + str(df.shape))
  300. df["Bilanz"] = df["Konto_Nr"].str.match(r"^[013]")
  301. df["Kontoart"] = np.where(df["Bilanz"], "1", "2")
  302. df["Kontoart"] = np.where(df["Konto_Nr"].str.contains("_STK"), "3", df["Kontoart"])
  303. df["Kontoart"] = np.where(df["Konto_Nr"].str.match(r"^[9]"), "3", df["Kontoart"])
  304. df["Konto_1"] = df["Konto_Nr"].str.slice(0, 1)
  305. # fehlende Marken- und Standortzuordnung
  306. df["Marke"] = np.where(df["Marke"].isin(self.makes.keys()), df["Marke"], "99")
  307. df["Marke_Standort"] = df["Marke"] + "-" + df["Standort"]
  308. df["Standort"] = np.where(df["Marke_Standort"].isin(self.sites.keys()), df["Standort"], "01")
  309. df_debug = df.drop(columns=["Bilanz"])
  310. logging.info(df_debug.groupby(["Kontoart"]).aggregate("sum"))
  311. logging.info(df_debug.groupby(["Kontoart", "Konto_1"]).aggregate("sum"))
  312. logging.info(df_debug.groupby(["Konto_Nr"]).aggregate("sum"))
  313. df_debug.groupby(["Konto_Nr"]).aggregate("sum").to_csv(
  314. self.debug_file, decimal=",", sep=";", encoding="latin-1"
  315. )
  316. # Bereinigung GW-Kostenträger
  317. df["NW_Verkauf_1"] = (df["Konto_Nr"].str.match(r"^[78]0")) & (df["Kostenstelle"].str.match(r"^[^1]\d"))
  318. df["Kostenstelle"] = np.where(df["NW_Verkauf_1"] == True, "11", df["Kostenstelle"])
  319. df["Konto_7010"] = df["Konto_Nr"].str.match(r"^[78]01[01]")
  320. df["Kostenstelle"] = np.where(df["Konto_7010"] == True, "14", df["Kostenstelle"])
  321. df["GW_Verkauf_2"] = (df["Konto_Nr"].str.match(r"^[78]1")) & (df["Kostenstelle"].str.match(r"^[^2]\d"))
  322. df["Kostenstelle"] = np.where(df["GW_Verkauf_2"] == True, "21", df["Kostenstelle"])
  323. df["GW_Verkauf_3"] = (df["Konto_Nr"].str.match(r"^[78]3")) & (df["Kostenstelle"].str.match(r"^[^3]\d"))
  324. df["Kostenstelle"] = np.where(df["GW_Verkauf_3"] == True, "31", df["Kostenstelle"])
  325. df["GW_Verkauf_4"] = (df["Konto_Nr"].str.match(r"^[78]4")) & (df["Kostenstelle"].str.match(r"^[^4]\d"))
  326. df["Kostenstelle"] = np.where(df["GW_Verkauf_4"] == True, "41", df["Kostenstelle"])
  327. df["GW_Verkauf_x420"] = df["Konto_Nr"].str.match(r"^[78]420")
  328. df["Kostenstelle"] = np.where(df["GW_Verkauf_x420"] == True, "42", df["Kostenstelle"])
  329. df["GW_Verkauf_5"] = (df["Konto_Nr"].str.match(r"^[78]5")) & (df["Kostenstelle"].str.match(r"^[^5]\d"))
  330. df["Kostenstelle"] = np.where(df["GW_Verkauf_5"] == True, "51", df["Kostenstelle"])
  331. df["GW_Verkauf_50"] = (df["Konto_Nr"].str.match(r"^[78]")) & (df["Kostenstelle"].str.match(r"^2"))
  332. df["Kostenträger"] = np.where(df["GW_Verkauf_50"] == True, "52", df["Kostenträger"])
  333. df["Kostenträger"] = np.where(
  334. (df["GW_Verkauf_50"] == True) & (df["Marke"] == "01"),
  335. "50",
  336. df["Kostenträger"],
  337. )
  338. df["NW_Verkauf_00"] = (
  339. (df["Konto_Nr"].str.match(r"^[78]2"))
  340. & (df["Kostenstelle"].str.match(r"^1"))
  341. & (df["Kostenträger"].str.match(r"^[^01234]"))
  342. )
  343. df["Kostenträger"] = np.where(df["NW_Verkauf_00"] == True, "00", df["Kostenträger"])
  344. df["GW_Stk_50"] = (df["Konto_Nr"].str.match(r"^9130")) & (df["Kostenstelle"].str.match(r"^2"))
  345. df["Kostenträger"] = np.where(df["GW_Stk_50"] == True, "52", df["Kostenträger"])
  346. df["Kostenträger"] = np.where((df["GW_Stk_50"] == True) & (df["Marke"] == "01"), "50", df["Kostenträger"])
  347. df["Kostenträger"] = np.where(df["Bilanz"] == True, "00", df["Kostenträger"])
  348. df["Konto_5er"] = (df["Konto_Nr"].str.match("^5")) | (df["Konto_Nr"].str.match("^9143"))
  349. df["Absatzkanal"] = np.where(df["Konto_5er"] == True, "99", df["Absatzkanal"])
  350. df["Konto_5005"] = (df["Konto_Nr"].str.match("^5005")) & (df["Kostenstelle"].str.match(r"^[^12]"))
  351. df["Kostenstelle"] = np.where(df["Konto_5005"] == True, "20", df["Kostenstelle"])
  352. df["Kostenträger"] = np.where(df["Konto_5005"] == True, "50", df["Kostenträger"])
  353. df["Konto_5007"] = (df["Konto_Nr"].str.match("^5007")) & (df["Kostenstelle"].str.match(r"^([^4]|42)"))
  354. df["Kostenstelle"] = np.where(df["Konto_5007"] == True, "41", df["Kostenstelle"])
  355. df["Kostenträger"] = np.where(df["Konto_5007"] == True, "70", df["Kostenträger"])
  356. df["Konto_914er"] = (df["Konto_Nr"].str.match("^914[34]")) & (df["Kostenträger"].str.match(r"^[^7]"))
  357. df["Kostenträger"] = np.where(df["Konto_914er"] == True, "70", df["Kostenträger"])
  358. df["Teile_30_60"] = (
  359. (df["Konto_Nr"].str.match(r"^[578]"))
  360. & (df["Kostenstelle"].str.match(r"^[3]"))
  361. & (df["Kostenträger"].str.match(r"^[^6]"))
  362. )
  363. df["Kostenträger"] = np.where(df["Teile_30_60"] == True, "60", df["Kostenträger"])
  364. df["Service_40_70"] = (
  365. (df["Konto_Nr"].str.match(r"^[578]"))
  366. & (df["Kostenstelle"].str.match(r"^[4]"))
  367. & (df["Kostenträger"].str.match(r"^[^7]"))
  368. )
  369. df["Kostenträger"] = np.where(df["Service_40_70"] == True, "70", df["Kostenträger"])
  370. df["KRM"] = df["Marke"] + df["Standort"] + df["Kostenstelle"] + df["Absatzkanal"] + df["Kostenträger"]
  371. df["Konto_Nr_SKR51"] = (
  372. (df["Marke"] + "-" + df["Standort"] + "-" + df["Konto_Nr"])
  373. + "-"
  374. + (df["Kostenstelle"] + "-" + df["Absatzkanal"] + "-" + df["Kostenträger"])
  375. )
  376. df["IsNumeric"] = (
  377. (df["KRM"].str.isdigit())
  378. & (df["Konto_Nr"].str.isdigit())
  379. & (df["Konto_Nr"].str.len() == 4)
  380. # & (df["Konto_Nr_SKR51"].str.len() == 19)
  381. )
  382. df_invalid = df[df["IsNumeric"] == False]
  383. df_invalid.to_csv(self.export_invalid_filename, decimal=",", sep=";", encoding="latin-1", index=False)
  384. return df[df["IsNumeric"] == True][TRANSLATE]
  385. def load_bookings_from_file(self) -> None:
  386. df_list: list[pd.DataFrame] = []
  387. timestamps: list[float] = []
  388. for csv_file in self.account_bookings:
  389. df_list.append(
  390. pd.read_csv(
  391. csv_file,
  392. decimal=",",
  393. sep=";",
  394. encoding="latin-1",
  395. converters={0: str, 1: str},
  396. )
  397. )
  398. timestamps.append(Path(csv_file).stat().st_mtime)
  399. self.booking_date = datetime.fromtimestamp(max(timestamps))
  400. df = pd.concat(df_list)
  401. df["amount"] = (df["Debit Amount"] + df["Credit Amount"]).round(2)
  402. return df
  403. @property
  404. def df_bookings(self) -> pd.DataFrame:
  405. if self._df_bookings is None:
  406. self._df_bookings = self.load_bookings_from_file()
  407. return self._df_bookings
  408. def filter_bookings(self) -> pd.DataFrame:
  409. # Kontensalden auf gegebenen Monat filtern
  410. filter_from = self.current_year + self.first_month_of_financial_year
  411. filter_prev = self.last_year + self.first_month_of_financial_year
  412. if self.first_month_of_financial_year > self.current_month:
  413. filter_from = self.last_year + self.first_month_of_financial_year
  414. filter_prev = self.last_year2 + self.first_month_of_financial_year
  415. filter_to = self.current_year + self.current_month
  416. filter_opening = self.current_year + "00"
  417. filter_prev_opening = self.last_year + "00"
  418. prev_year_closed = True
  419. df_opening_balance = self.df_bookings[(self.df_bookings["Bookkeep Period"] == filter_opening)]
  420. if df_opening_balance.shape[0] == 0:
  421. df_opening_balance = self.df_bookings[
  422. (self.df_bookings["Bookkeep Period"] == filter_prev_opening)
  423. | (
  424. (self.df_bookings["Bookkeep Period"] >= filter_prev)
  425. & (self.df_bookings["Bookkeep Period"] < filter_from)
  426. )
  427. ].copy()
  428. df_opening_balance["Bookkeep Period"] = filter_opening
  429. prev_year_closed = False
  430. df_opening_balance = df_opening_balance[(df_opening_balance["Konto_Nr_Händler"].str.contains(r"-[013]\d\d+-"))]
  431. opening_balance = df_opening_balance["amount"].aggregate("sum").round(2)
  432. logging.info("Gewinn/Verlustvortrag")
  433. logging.info(opening_balance)
  434. if not prev_year_closed:
  435. row = {
  436. "Konto_Nr_Händler": "01-01-0861-00-00-00",
  437. "Bookkeep Period": filter_opening,
  438. "Debit Amount": opening_balance * -1,
  439. "Credit Amount": 0,
  440. "Debit Quantity": 0,
  441. "Credit Quantity": 0,
  442. "amount": opening_balance * -1,
  443. }
  444. df_opening_balance = pd.concat([df_opening_balance, pd.DataFrame.from_records([row])])
  445. df_filtered = self.df_bookings[
  446. (self.df_bookings["Bookkeep Period"] >= filter_from) & (self.df_bookings["Bookkeep Period"] <= filter_to)
  447. ]
  448. # Buchungen kopieren und als Statistikkonten anhängen
  449. df_stats = df_filtered.copy()
  450. # df_stats = df_stats[df_stats['Konto_Nr_Händler'].str.match(r'-[24578]\d\d\d-')]
  451. df_stats["Konto_Nr_Händler"] = df_stats["Konto_Nr_Händler"].str.replace(r"-(\d\d\d+)-", r"-\1_STK-", regex=True)
  452. df_stats["amount"] = (df_filtered["Debit Quantity"] + df_filtered["Credit Quantity"]).round(2)
  453. df_combined = pd.concat([df_opening_balance, df_filtered, df_stats])
  454. # Spalten konvertieren
  455. df_combined["period"] = df_combined["Bookkeep Period"].apply(lambda x: self.bookkeep_filter[x])
  456. return df_combined[df_combined["amount"] != 0.00]
  457. @property
  458. def export_filename(self) -> str:
  459. return self.export_filename_for_period(self.current_year, self.current_month)
  460. @property
  461. def export_info_dir(self) -> str:
  462. return f"{self.base_dir}/Export/{self.current_year}/info/"
  463. @property
  464. def export_invalid_filename(self) -> str:
  465. return f"{self.base_dir}/Export/ungueltig.csv"
  466. def export_filename_for_period(self, year: str, month: str) -> str:
  467. return f"{self.base_dir}/Export/{year}/export_{year}-{month}.xml"
  468. @staticmethod
  469. def export_skr51_xml(export_cfg: GchrExportConfig):
  470. record_elements = (
  471. ACCOUNT_INFO
  472. + ["Decimals"]
  473. + list(export_cfg.bookkeep_filter.values())[: export_cfg.period_no]
  474. + ["CumulatedYear"]
  475. )
  476. root = ET.Element("HbvData")
  477. h = ET.SubElement(root, "Header")
  478. for k, v in export_cfg.header.items():
  479. ET.SubElement(h, k).text = str(v)
  480. make_list = ET.SubElement(root, "MakeList")
  481. for make, make_code in export_cfg.makes_used.items():
  482. e = ET.SubElement(make_list, "MakeListEntry")
  483. ET.SubElement(e, "Make").text = make
  484. ET.SubElement(e, "MakeCode").text = make_code
  485. bm_code_list = ET.SubElement(root, "BmCodeList")
  486. for s, bmcode in export_cfg.sites_used.items():
  487. make, site = s.split("-")
  488. e = ET.SubElement(bm_code_list, "BmCodeEntry")
  489. ET.SubElement(e, "Make").text = make
  490. ET.SubElement(e, "Site").text = site
  491. ET.SubElement(e, "BmCode").text = bmcode
  492. record_list = ET.SubElement(root, "RecordList")
  493. for row in export_cfg.bookkeep_records:
  494. record = ET.SubElement(record_list, "Record")
  495. for e in record_elements:
  496. child = ET.SubElement(record, e)
  497. field = row.get(e, 0.0)
  498. if str(field) == "nan":
  499. field = "0"
  500. elif type(field) is float:
  501. field = "{:.0f}".format(field * 100)
  502. child.text = str(field)
  503. with open(export_cfg.export_file, "w", encoding="utf-8") as fwh:
  504. fwh.write(minidom.parseString(ET.tostring(root)).toprettyxml(indent=" "))
  505. @staticmethod
  506. def convert_to_row(node: list[ET.Element]) -> list[str]:
  507. return [child.text for child in node]
  508. @staticmethod
  509. def convert_xml_to_csv(xmlfile: str, csvfile: str) -> bool:
  510. with open(xmlfile) as frh:
  511. record_list = ET.parse(frh).getroot().find("RecordList")
  512. header = [child.tag for child in record_list.find("Record")]
  513. bookings = [GCHR.convert_to_row(node) for node in record_list.findall("Record")]
  514. with open(csvfile, "w") as fwh:
  515. cwh = csv.writer(fwh, delimiter=";")
  516. cwh.writerow(header)
  517. cwh.writerows(bookings)
  518. return True
  519. def convert_csv_to_xml(self, csvfile: str, xmlfile: str) -> None:
  520. self.makes = {"01": "1844"}
  521. self.sites = {"01-01": "1844"}
  522. with open(csvfile, "r", encoding="latin-1") as frh:
  523. csv_reader = csv.DictReader(frh, delimiter=";")
  524. GCHR.export_skr51_xml(csv_reader, self.bookkeep_filter(), 1, list(self.sites.values())[0], xmlfile)
  525. def gchr_local() -> None:
  526. base_dir = os.getcwd() + "/../GCHR2_Testdaten/Kunden"
  527. for path in Path(base_dir).glob("*"):
  528. if path.is_dir():
  529. print(path.name)
  530. gchr_export(str(path))
  531. def gchr_export(base_dir: str) -> None:
  532. gchr = GCHR(base_dir)
  533. # gchr.export_all_periods(overwrite=True, today="2022-08-01")
  534. gchr.export_all_periods()