123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628 |
- import csv
- import logging
- import os
- import xml.etree.ElementTree as ET
- from dataclasses import dataclass
- from datetime import datetime
- from pathlib import Path
- from typing import Callable
- from xml.dom import minidom
- import numpy as np
- import pandas as pd
- ACCOUNT_INFO = [
- "Account",
- "Make",
- "Site",
- "Origin",
- "SalesChannel",
- "CostCarrier",
- "CostAccountingString",
- ]
- TRANSLATE = [
- "Konto_Nr_Händler",
- "Konto_Nr_SKR51",
- "Marke",
- "Standort",
- "Konto_Nr",
- "Kostenstelle",
- "Absatzkanal",
- "Kostenträger",
- "Kontoart",
- "Konto_1",
- "KRM",
- "IsNumeric",
- ]
- @dataclass
- class GchrExportConfig:
- main_site: str
- current_year: str
- current_month: str
- makes_used: dict[str, str]
- sites_used: dict[str, str]
- first_month: str
- period_no: str
- bookkeep_filter: dict[str, str]
- extraction_date: datetime
- export_file: str
- bookkeep_records = dict[str, list[str]]
- header: dict[str, str] | None = None
- @dataclass
- class GchrConfig:
- first_month_of_financial_year: str
- data_path: str
- gcstruct_path: str
- export_path: str
- export_fn = Callable[[GchrExportConfig], None]
- class GCHR:
- booking_date: datetime
- _df_bookings: pd.DataFrame = None
- _df_translate: pd.DataFrame = None
- df_translate2: pd.DataFrame = None
- makes: dict[str, str] = None
- sites: dict[str, str] = None
- current_year: str
- current_month: str
- def __init__(self, base_dir: str) -> None:
- self.base_dir = base_dir
- self.account_translation = f"{self.base_dir}/data/Kontenrahmen_uebersetzt.csv"
- self.account_bookings = list(Path(self.base_dir).joinpath("data").glob("GuV_Bilanz_Salden*.csv"))
- self.first_month_of_financial_year = "10"
- pd.set_option("display.max_rows", 500)
- pd.set_option("display.float_format", lambda x: "%.2f" % x)
- def set_bookkeep_period(self, year: str, month: str) -> None:
- self.current_year = year
- self.current_month = month
- self.period = f"{year}-{month}"
- prot_file = f"{self.export_info_dir}/protokoll_{self.period}.log"
- logging.basicConfig(
- filename=prot_file,
- filemode="w",
- encoding="utf-8",
- level=logging.DEBUG,
- force=True,
- )
- @property
- def debug_file(self) -> str:
- return f"{self.export_info_dir}/debug_{self.period}.csv"
- @property
- def account_ignored(self) -> str:
- return f"{self.export_info_dir}/ignoriert_{self.period}.csv"
- # self.account_invalid = f"{self.export_info_dir}/ungueltig_{self.period}.csv"
- @property
- def last_year(self) -> str:
- return str(int(self.current_year) - 1)
- @property
- def last_year2(self) -> str:
- return str(int(self.current_year) - 2)
- @property
- def next_year(self) -> str:
- return str(int(self.current_year) + 1)
- @staticmethod
- def header(export_cfg: GchrExportConfig) -> dict[str, str]:
- return {
- "Country": "DE",
- "MainBmCode": export_cfg.main_site,
- "Month": export_cfg.current_month,
- "Year": export_cfg.current_year,
- "Currency": "EUR",
- "NumberOfMakes": len(export_cfg.makes_used),
- "NumberOfSites": len(export_cfg.sites_used),
- "ExtractionDate": export_cfg.extraction_date.strftime("%d.%m.%Y"),
- "ExtractionTime": export_cfg.extraction_date.strftime("%H:%M:%S"),
- "BeginFiscalYear": export_cfg.first_month,
- }
- @property
- def bookkeep_filter(self) -> dict[str, str]:
- period = [self.current_year + str(i).zfill(2) for i in range(1, 13)]
- if self.first_month_of_financial_year != "01":
- if self.first_month_of_financial_year > self.current_month:
- period = [self.last_year + str(i).zfill(2) for i in range(1, 13)] + period
- else:
- period = period + [self.next_year + str(i).zfill(2) for i in range(1, 13)]
- fm = int(self.first_month_of_financial_year)
- period = period[fm - 1 : fm + 12]
- period = [self.current_year + "00"] + period
- rename_to = ["OpeningBalance"] + ["Period" + str(i).zfill(2) for i in range(1, 13)]
- return dict(zip(period, rename_to))
- @staticmethod
- def extract_acct_info(df: pd.DataFrame) -> pd.DataFrame:
- acct_info = [
- "Marke",
- "Standort",
- "Konto_Nr",
- "Kostenstelle",
- "Absatzkanal",
- "Kostenträger",
- ]
- df["HasFiveDashes"] = df["Konto_Nr_SKR51"].str.count("-") == 5
- df["Invalid"] = "XX-XX-XXXX-XX-XX-XX"
- df["Konto_Nr_SKR51"] = np.where(
- df["HasFiveDashes"],
- df["Konto_Nr_SKR51"],
- df["Invalid"],
- )
- df[acct_info] = df["Konto_Nr_SKR51"].str.split(pat="-", n=6, expand=True)
- return df
- def export_all_periods(self, overwrite=False, today=None) -> None:
- dt = datetime.now()
- if today is not None:
- dt = datetime.fromisoformat(today)
- prev = str(dt.year - 1)
- periods = [(prev, str(x).zfill(2)) for x in range(dt.month, 13)] + [
- (str(dt.year), str(x).zfill(2)) for x in range(1, dt.month)
- ]
- for year, month in periods:
- filename = self.export_filename_for_period(year, month)
- if overwrite or not Path(filename).exists():
- os.makedirs(Path(filename).parent.joinpath("info"), exist_ok=True)
- self.export_period(year, month)
- def export_period(self, year: str, month: str) -> str:
- self.set_bookkeep_period(year, month)
- # Kontensalden laden
- df_bookings = self.filter_bookings()
- all_periods = set(df_bookings["Bookkeep Period"].to_list())
- bookkeep_period_date = datetime(int(year), int(month), 28)
- if df_bookings.shape[0] == 0 or len(all_periods) <= 1 or self.booking_date < bookkeep_period_date:
- logging.error("ABBRUCH!!! Keine Daten vorhanden!")
- return False
- filter_to = self.current_year + self.current_month
- period_no = list(self.bookkeep_filter.keys()).index(filter_to) + 1
- logging.info("df_bookings: " + str(df_bookings.shape))
- # Join auf Übersetzung
- df_combined = df_bookings.merge(self._df_translate, how="inner", on="Konto_Nr_Händler")
- logging.info(f"df_combined: {df_combined.shape}")
- df_pivot = df_combined.pivot_table(
- index=["Konto_Nr_SKR51"],
- columns=["period"],
- values="amount",
- aggfunc="sum",
- margins=True,
- margins_name="CumulatedYear",
- )
- df_pivot.drop(index="CumulatedYear", inplace=True)
- logging.info("df_pivot: " + str(df_pivot.shape))
- df = df_pivot.merge(self.df_translate2, how="inner", on="Konto_Nr_SKR51")
- makes_used = {}
- for m in sorted(list(set(df["Marke"].to_list()))):
- if m not in self.makes:
- continue
- makes_used[m] = self.makes[m]
- sites_used = {}
- for s in sorted(list(set((df["Marke"] + "-" + df["Standort"]).to_list()))):
- if s not in self.sites:
- continue
- sites_used[s] = self.sites[s]
- from_label = ["Marke", "Standort", "Konto_Nr", "Kostenstelle", "Absatzkanal", "Kostenträger", "KRM"]
- to_label = ["Make", "Site", "Account", "Origin", "SalesChannel", "CostCarrier", "CostAccountingString"]
- col_dict = dict(zip(from_label, to_label))
- df = df.rename(columns=col_dict)
- export_csv = self.export_filename[:-4] + ".csv"
- df.to_csv(export_csv, decimal=",", sep=";", encoding="latin-1", index=False)
- df = df[df["IsNumeric"] != False].groupby(ACCOUNT_INFO, as_index=False).aggregate("sum")
- # Infos ergänzen
- df["Decimals"] = 2
- # df.sort_values(by=["Konto_Nr_SKR51"], inplace=True)
- logging.info(df.shape)
- main_sites = [self.sites[s] for s in sites_used if s in self.sites and self.sites[s] != "0000"]
- for i, main_site in enumerate(main_sites):
- filename = self.export_filename
- if i > 0:
- filename = f"{filename[:-4]}_{main_site}.xml"
- export_cfg = GchrExportConfig(
- main_site,
- year,
- month,
- makes_used,
- sites_used,
- self.first_month_of_financial_year,
- period_no,
- self.bookkeep_filter,
- filename,
- df.to_dict(orient="records"),
- )
- export_cfg.header = self.header(export_cfg)
- GCHR.export_skr51_xml(export_cfg)
- # Join auf Übersetzung - nicht zugeordnet
- df_ignored = df_bookings.merge(self.df_translate, how="left", on="Konto_Nr_Händler")
- df_ignored = df_ignored[df_ignored["Konto_Nr_SKR51"].isna()]
- if not df_ignored.empty:
- df_ignored = df_ignored.pivot_table(
- index=["Konto_Nr_Händler"],
- columns=["period"],
- values="amount",
- aggfunc="sum",
- margins=True,
- margins_name="CumulatedYear",
- )
- df_ignored.to_csv(self.account_ignored, decimal=",", sep=";", encoding="latin-1")
- return self.export_filename
- @property
- def df_translate(self) -> pd.DataFrame:
- if self._df_translate is None:
- df_translate_import = pd.read_csv(
- self.account_translation,
- decimal=",",
- sep=";",
- encoding="latin-1",
- converters={i: str for i in range(0, 200)},
- ).reset_index()
- self.makes = GCHR.get_makes_from_translation(df_translate_import)
- self.sites = GCHR.get_sites_from_translation(df_translate_import)
- df_prepared = GCHR.prepare_translation(df_translate_import)
- self._df_translate = self.special_translation(df_prepared)
- self.df_translate2 = (
- self._df_translate.copy()
- .drop(columns=["Konto_Nr_Händler"])
- .drop_duplicates()
- .set_index("Konto_Nr_SKR51")
- )
- return self._df_translate
- @staticmethod
- def get_makes_from_translation(df_translate_import: pd.DataFrame) -> dict[str, str]:
- df_makes = df_translate_import[["Marke", "Marke_HBV"]].copy().drop_duplicates()
- df_makes = df_makes[df_makes["Marke_HBV"] != "0000"]
- makes = dict([(e["Marke"], e["Marke_HBV"]) for e in df_makes.to_dict(orient="records")])
- makes["99"] = "0000"
- return makes
- @staticmethod
- def get_sites_from_translation(df_translate_import: pd.DataFrame) -> dict[str, str]:
- df_sites = df_translate_import[["Marke", "Standort", "Standort_HBV"]].copy().drop_duplicates()
- df_sites["Standort_HBV"] = np.where(df_sites["Standort_HBV"].str.len() != 6, "0000", df_sites["Standort_HBV"])
- sites = dict(
- [(e["Marke"] + "-" + e["Standort"], e["Standort_HBV"]) for e in df_sites.to_dict(orient="records")]
- )
- return sites
- @staticmethod
- def prepare_translation(df_translate_import: pd.DataFrame) -> pd.DataFrame:
- df = df_translate_import[
- [
- "Konto_Nr_Händler",
- "Konto_Nr_SKR51",
- ]
- ].drop_duplicates()
- logging.info(df.shape)
- row = {
- "Konto_Nr_Händler": "01-01-0861-00-00-00",
- "Konto_Nr_SKR51": "01-01-0861-00-00-00",
- }
- df = pd.concat([df, pd.DataFrame.from_records([row])])
- df.set_index("Konto_Nr_Händler")
- return df
- def special_translation(self, df: pd.DataFrame) -> pd.DataFrame:
- df["Konto_Nr_Händler"] = df["Konto_Nr_Händler"].str.upper()
- df["Konto_Nr_SKR51"] = df["Konto_Nr_SKR51"].str.upper()
- df = GCHR.extract_acct_info(df)
- df["Konto_Nr"] = df["Konto_Nr"].str.upper()
- logging.info(df.shape)
- logging.info(df.columns)
- logging.info(df.head())
- logging.info("df: " + str(df.shape))
- df["Bilanz"] = df["Konto_Nr"].str.match(r"^[013]")
- df["Kontoart"] = np.where(df["Bilanz"], "1", "2")
- df["Kontoart"] = np.where(df["Konto_Nr"].str.contains("_STK"), "3", df["Kontoart"])
- df["Kontoart"] = np.where(df["Konto_Nr"].str.match(r"^[9]"), "3", df["Kontoart"])
- df["Konto_1"] = df["Konto_Nr"].str.slice(0, 1)
- # fehlende Marken- und Standortzuordnung
- df["Marke"] = np.where(df["Marke"].isin(self.makes.keys()), df["Marke"], "99")
- df["Marke_Standort"] = df["Marke"] + "-" + df["Standort"]
- df["Standort"] = np.where(df["Marke_Standort"].isin(self.sites.keys()), df["Standort"], "01")
- df_debug = df.drop(columns=["Bilanz"])
- logging.info(df_debug.groupby(["Kontoart"]).aggregate("sum"))
- logging.info(df_debug.groupby(["Kontoart", "Konto_1"]).aggregate("sum"))
- logging.info(df_debug.groupby(["Konto_Nr"]).aggregate("sum"))
- df_debug.groupby(["Konto_Nr"]).aggregate("sum").to_csv(
- self.debug_file, decimal=",", sep=";", encoding="latin-1"
- )
- # Bereinigung GW-Kostenträger
- df["NW_Verkauf_1"] = (df["Konto_Nr"].str.match(r"^[78]0")) & (df["Kostenstelle"].str.match(r"^[^1]\d"))
- df["Kostenstelle"] = np.where(df["NW_Verkauf_1"] == True, "11", df["Kostenstelle"])
- df["Konto_7010"] = df["Konto_Nr"].str.match(r"^[78]01[01]")
- df["Kostenstelle"] = np.where(df["Konto_7010"] == True, "14", df["Kostenstelle"])
- df["GW_Verkauf_2"] = (df["Konto_Nr"].str.match(r"^[78]1")) & (df["Kostenstelle"].str.match(r"^[^2]\d"))
- df["Kostenstelle"] = np.where(df["GW_Verkauf_2"] == True, "21", df["Kostenstelle"])
- df["GW_Verkauf_3"] = (df["Konto_Nr"].str.match(r"^[78]3")) & (df["Kostenstelle"].str.match(r"^[^3]\d"))
- df["Kostenstelle"] = np.where(df["GW_Verkauf_3"] == True, "31", df["Kostenstelle"])
- df["GW_Verkauf_4"] = (df["Konto_Nr"].str.match(r"^[78]4")) & (df["Kostenstelle"].str.match(r"^[^4]\d"))
- df["Kostenstelle"] = np.where(df["GW_Verkauf_4"] == True, "41", df["Kostenstelle"])
- df["GW_Verkauf_x420"] = df["Konto_Nr"].str.match(r"^[78]420")
- df["Kostenstelle"] = np.where(df["GW_Verkauf_x420"] == True, "42", df["Kostenstelle"])
- df["GW_Verkauf_5"] = (df["Konto_Nr"].str.match(r"^[78]5")) & (df["Kostenstelle"].str.match(r"^[^5]\d"))
- df["Kostenstelle"] = np.where(df["GW_Verkauf_5"] == True, "51", df["Kostenstelle"])
- df["GW_Verkauf_50"] = (df["Konto_Nr"].str.match(r"^[78]")) & (df["Kostenstelle"].str.match(r"^2"))
- df["Kostenträger"] = np.where(df["GW_Verkauf_50"] == True, "52", df["Kostenträger"])
- df["Kostenträger"] = np.where(
- (df["GW_Verkauf_50"] == True) & (df["Marke"] == "01"),
- "50",
- df["Kostenträger"],
- )
- df["NW_Verkauf_00"] = (
- (df["Konto_Nr"].str.match(r"^[78]2"))
- & (df["Kostenstelle"].str.match(r"^1"))
- & (df["Kostenträger"].str.match(r"^[^01234]"))
- )
- df["Kostenträger"] = np.where(df["NW_Verkauf_00"] == True, "00", df["Kostenträger"])
- df["GW_Stk_50"] = (df["Konto_Nr"].str.match(r"^9130")) & (df["Kostenstelle"].str.match(r"^2"))
- df["Kostenträger"] = np.where(df["GW_Stk_50"] == True, "52", df["Kostenträger"])
- df["Kostenträger"] = np.where((df["GW_Stk_50"] == True) & (df["Marke"] == "01"), "50", df["Kostenträger"])
- df["Kostenträger"] = np.where(df["Bilanz"] == True, "00", df["Kostenträger"])
- df["Konto_5er"] = (df["Konto_Nr"].str.match("^5")) | (df["Konto_Nr"].str.match("^9143"))
- df["Absatzkanal"] = np.where(df["Konto_5er"] == True, "99", df["Absatzkanal"])
- df["Konto_5005"] = (df["Konto_Nr"].str.match("^5005")) & (df["Kostenstelle"].str.match(r"^[^12]"))
- df["Kostenstelle"] = np.where(df["Konto_5005"] == True, "20", df["Kostenstelle"])
- df["Kostenträger"] = np.where(df["Konto_5005"] == True, "50", df["Kostenträger"])
- df["Konto_5007"] = (df["Konto_Nr"].str.match("^5007")) & (df["Kostenstelle"].str.match(r"^([^4]|42)"))
- df["Kostenstelle"] = np.where(df["Konto_5007"] == True, "41", df["Kostenstelle"])
- df["Kostenträger"] = np.where(df["Konto_5007"] == True, "70", df["Kostenträger"])
- df["Konto_914er"] = (df["Konto_Nr"].str.match("^914[34]")) & (df["Kostenträger"].str.match(r"^[^7]"))
- df["Kostenträger"] = np.where(df["Konto_914er"] == True, "70", df["Kostenträger"])
- df["Teile_30_60"] = (
- (df["Konto_Nr"].str.match(r"^[578]"))
- & (df["Kostenstelle"].str.match(r"^[3]"))
- & (df["Kostenträger"].str.match(r"^[^6]"))
- )
- df["Kostenträger"] = np.where(df["Teile_30_60"] == True, "60", df["Kostenträger"])
- df["Service_40_70"] = (
- (df["Konto_Nr"].str.match(r"^[578]"))
- & (df["Kostenstelle"].str.match(r"^[4]"))
- & (df["Kostenträger"].str.match(r"^[^7]"))
- )
- df["Kostenträger"] = np.where(df["Service_40_70"] == True, "70", df["Kostenträger"])
- df["KRM"] = df["Marke"] + df["Standort"] + df["Kostenstelle"] + df["Absatzkanal"] + df["Kostenträger"]
- df["Konto_Nr_SKR51"] = (
- (df["Marke"] + "-" + df["Standort"] + "-" + df["Konto_Nr"])
- + "-"
- + (df["Kostenstelle"] + "-" + df["Absatzkanal"] + "-" + df["Kostenträger"])
- )
- df["IsNumeric"] = (
- (df["KRM"].str.isdigit())
- & (df["Konto_Nr"].str.isdigit())
- & (df["Konto_Nr"].str.len() == 4)
- # & (df["Konto_Nr_SKR51"].str.len() == 19)
- )
- df_invalid = df[df["IsNumeric"] == False]
- df_invalid.to_csv(self.export_invalid_filename, decimal=",", sep=";", encoding="latin-1", index=False)
- return df[df["IsNumeric"] == True][TRANSLATE]
- def load_bookings_from_file(self) -> None:
- df_list: list[pd.DataFrame] = []
- timestamps: list[float] = []
- for csv_file in self.account_bookings:
- df_list.append(
- pd.read_csv(
- csv_file,
- decimal=",",
- sep=";",
- encoding="latin-1",
- converters={0: str, 1: str},
- )
- )
- timestamps.append(Path(csv_file).stat().st_mtime)
- self.booking_date = datetime.fromtimestamp(max(timestamps))
- df = pd.concat(df_list)
- df["amount"] = (df["Debit Amount"] + df["Credit Amount"]).round(2)
- return df
- @property
- def df_bookings(self) -> pd.DataFrame:
- if self._df_bookings is None:
- self._df_bookings = self.load_bookings_from_file()
- return self._df_bookings
- def filter_bookings(self) -> pd.DataFrame:
- # Kontensalden auf gegebenen Monat filtern
- filter_from = self.current_year + self.first_month_of_financial_year
- filter_prev = self.last_year + self.first_month_of_financial_year
- if self.first_month_of_financial_year > self.current_month:
- filter_from = self.last_year + self.first_month_of_financial_year
- filter_prev = self.last_year2 + self.first_month_of_financial_year
- filter_to = self.current_year + self.current_month
- filter_opening = self.current_year + "00"
- filter_prev_opening = self.last_year + "00"
- prev_year_closed = True
- df_opening_balance = self.df_bookings[(self.df_bookings["Bookkeep Period"] == filter_opening)]
- if df_opening_balance.shape[0] == 0:
- df_opening_balance = self.df_bookings[
- (self.df_bookings["Bookkeep Period"] == filter_prev_opening)
- | (
- (self.df_bookings["Bookkeep Period"] >= filter_prev)
- & (self.df_bookings["Bookkeep Period"] < filter_from)
- )
- ].copy()
- df_opening_balance["Bookkeep Period"] = filter_opening
- prev_year_closed = False
- df_opening_balance = df_opening_balance[(df_opening_balance["Konto_Nr_Händler"].str.contains(r"-[013]\d\d+-"))]
- opening_balance = df_opening_balance["amount"].aggregate("sum").round(2)
- logging.info("Gewinn/Verlustvortrag")
- logging.info(opening_balance)
- if not prev_year_closed:
- row = {
- "Konto_Nr_Händler": "01-01-0861-00-00-00",
- "Bookkeep Period": filter_opening,
- "Debit Amount": opening_balance * -1,
- "Credit Amount": 0,
- "Debit Quantity": 0,
- "Credit Quantity": 0,
- "amount": opening_balance * -1,
- }
- df_opening_balance = pd.concat([df_opening_balance, pd.DataFrame.from_records([row])])
- df_filtered = self.df_bookings[
- (self.df_bookings["Bookkeep Period"] >= filter_from) & (self.df_bookings["Bookkeep Period"] <= filter_to)
- ]
- # Buchungen kopieren und als Statistikkonten anhängen
- df_stats = df_filtered.copy()
- # df_stats = df_stats[df_stats['Konto_Nr_Händler'].str.match(r'-[24578]\d\d\d-')]
- df_stats["Konto_Nr_Händler"] = df_stats["Konto_Nr_Händler"].str.replace(r"-(\d\d\d+)-", r"-\1_STK-", regex=True)
- df_stats["amount"] = (df_filtered["Debit Quantity"] + df_filtered["Credit Quantity"]).round(2)
- df_combined = pd.concat([df_opening_balance, df_filtered, df_stats])
- # Spalten konvertieren
- df_combined["period"] = df_combined["Bookkeep Period"].apply(lambda x: self.bookkeep_filter[x])
- return df_combined[df_combined["amount"] != 0.00]
- @property
- def export_filename(self) -> str:
- return self.export_filename_for_period(self.current_year, self.current_month)
- @property
- def export_info_dir(self) -> str:
- return f"{self.base_dir}/Export/{self.current_year}/info/"
- @property
- def export_invalid_filename(self) -> str:
- return f"{self.base_dir}/Export/ungueltig.csv"
- def export_filename_for_period(self, year: str, month: str) -> str:
- return f"{self.base_dir}/Export/{year}/export_{year}-{month}.xml"
- @staticmethod
- def export_skr51_xml(export_cfg: GchrExportConfig):
- record_elements = (
- ACCOUNT_INFO
- + ["Decimals"]
- + list(export_cfg.bookkeep_filter.values())[: export_cfg.period_no]
- + ["CumulatedYear"]
- )
- root = ET.Element("HbvData")
- h = ET.SubElement(root, "Header")
- for k, v in export_cfg.header.items():
- ET.SubElement(h, k).text = str(v)
- make_list = ET.SubElement(root, "MakeList")
- for make, make_code in export_cfg.makes_used.items():
- e = ET.SubElement(make_list, "MakeListEntry")
- ET.SubElement(e, "Make").text = make
- ET.SubElement(e, "MakeCode").text = make_code
- bm_code_list = ET.SubElement(root, "BmCodeList")
- for s, bmcode in export_cfg.sites_used.items():
- make, site = s.split("-")
- e = ET.SubElement(bm_code_list, "BmCodeEntry")
- ET.SubElement(e, "Make").text = make
- ET.SubElement(e, "Site").text = site
- ET.SubElement(e, "BmCode").text = bmcode
- record_list = ET.SubElement(root, "RecordList")
- for row in export_cfg.bookkeep_records:
- record = ET.SubElement(record_list, "Record")
- for e in record_elements:
- child = ET.SubElement(record, e)
- field = row.get(e, 0.0)
- if str(field) == "nan":
- field = "0"
- elif type(field) is float:
- field = "{:.0f}".format(field * 100)
- child.text = str(field)
- with open(export_cfg.export_file, "w", encoding="utf-8") as fwh:
- fwh.write(minidom.parseString(ET.tostring(root)).toprettyxml(indent=" "))
- @staticmethod
- def convert_to_row(node: list[ET.Element]) -> list[str]:
- return [child.text for child in node]
- @staticmethod
- def convert_xml_to_csv(xmlfile: str, csvfile: str) -> bool:
- with open(xmlfile) as frh:
- record_list = ET.parse(frh).getroot().find("RecordList")
- header = [child.tag for child in record_list.find("Record")]
- bookings = [GCHR.convert_to_row(node) for node in record_list.findall("Record")]
- with open(csvfile, "w") as fwh:
- cwh = csv.writer(fwh, delimiter=";")
- cwh.writerow(header)
- cwh.writerows(bookings)
- return True
- def convert_csv_to_xml(self, csvfile: str, xmlfile: str) -> None:
- self.makes = {"01": "1844"}
- self.sites = {"01-01": "1844"}
- with open(csvfile, "r", encoding="latin-1") as frh:
- csv_reader = csv.DictReader(frh, delimiter=";")
- GCHR.export_skr51_xml(csv_reader, self.bookkeep_filter(), 1, list(self.sites.values())[0], xmlfile)
- def gchr_local() -> None:
- base_dir = os.getcwd() + "/../GCHR2_Testdaten/Kunden"
- for path in Path(base_dir).glob("*"):
- if path.is_dir():
- print(path.name)
- gchr_export(str(path))
- def gchr_export(base_dir: str) -> None:
- gchr = GCHR(base_dir)
- # gchr.export_all_periods(overwrite=True, today="2022-08-01")
- gchr.export_all_periods()
|