123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- import pandas as pd
- import numpy as np
- from datetime import datetime
- from gnupg_encrypt import encrypt
- base_dir = '/home/robert/projekte/python/planner/HBV/'
- hb_format = base_dir + 'hb_format.csv'
- hb_department = base_dir + 'hb_department.csv'
- hb_translation = base_dir + 'hb_translation.csv'
- plan_amount = base_dir + '../export/Planner_2021_V3_Stk.csv'
- plan_values = base_dir + '../export/Planner_2021_V3_Plan.csv'
- hb_ignored = base_dir + 'ignoriert.csv'
- current_year = '2021'
- current_date = datetime.now().strftime('%d%m%Y%H%M%S')
- current_date = '24032021112656'
- def main():
-
- df_translation = pd.read_csv(hb_translation, decimal=',', sep=';', encoding='latin-1', converters={i: str for i in range(0, 200)})
- df_translation['column_no_join'] = np.where(df_translation['column_no'].isin(['1', '3', '4']), df_translation['column_no'], '0')
-
- df_department = pd.read_csv(hb_department, decimal=',', sep=';', encoding='latin-1', converters={i: str for i in range(0, 200)})
-
- values_converter = {i: str for i in range(0, 200)}
- values_converter[4] = lambda x: np.float64(x.replace(',', '.'))
- df_values = pd.read_csv(plan_values, decimal=',', sep=';', encoding='latin-1', converters=values_converter)
- df_values['type'] = '2'
- df_amount = pd.read_csv(plan_amount, decimal=',', sep=';', encoding='latin-1', converters=values_converter)
- df_amount['type'] = '1'
- df: pd.DataFrame = df_values.append(df_amount)
- df['column_no'] = np.where(df['Vstufe 1'].str.contains('Umsatz'), '3', '0')
- df['column_no'] = np.where(df['Vstufe 1'].isin(['Materialaufwand']), '4', df['column_no'])
- df['column_no'] = np.where(df['type'].isin(['1']), '1', df['column_no'])
-
- df = df.merge(df_department, how='inner', left_on='Betrieb Nr', right_on='department_id')
- df = df.merge(df_translation, how='left', left_on=['Zeile', 'column_no'], right_on=['from', 'column_no_join'])
-
- df_ignored = df[(df['to'].isna()) & (df['Gesamt'] != 0)]
- df_ignored.to_csv(hb_ignored, decimal=',', sep=';', encoding='latin-1', index=False)
-
- rename_from = ['bm_code', 'BV_NUMMER', 'FILIAL_NR', 'to', 'column_no_y', 'Jahr', 'Gesamt']
- rename_to = ['BM_CODE', 'BV_NUMMER', 'FILIAL_NR', 'ZEILE', 'SPALTE', 'JAHR', 'WERT']
- df_valid = df[df['to'].notna()].rename(columns=dict(zip(rename_from, rename_to)))
- df_valid['SPALTE'] = df_valid['SPALTE'].str.zfill(3)
- group_by = ['BM_CODE', 'BV_NUMMER', 'FILIAL_NR']
- df_valid = df_valid[rename_to].groupby(group_by)
- for group in df_valid.groups:
- g = dict(zip(group_by, group))
- filename = base_dir + f"HB{g['BM_CODE']}{current_year}00{g['BV_NUMMER']}{g['FILIAL_NR']}0{current_date}.dat"
- df_group = df_valid.get_group(group).groupby(rename_to[:-1]).sum().reset_index()
- with open(filename, 'w') as fwh:
- for row in df_group.to_dict(orient='records'):
- fwh.write("I0155{BV_NUMMER}{FILIAL_NR}0{ZEILE}{SPALTE}00{JAHR}{WERT:16.2f}03\n".format(**row))
- encrypt(filename)
- if __name__ == '__main__':
- main()
|