gchr.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606
  1. import csv
  2. import logging
  3. import os
  4. import xml.etree.ElementTree as ET
  5. from dataclasses import dataclass
  6. from datetime import datetime
  7. from pathlib import Path
  8. from typing import Callable
  9. from xml.dom import minidom
  10. import numpy as np
  11. import pandas as pd
  12. ACCOUNT_INFO = [
  13. "Account",
  14. "Make",
  15. "Site",
  16. "Origin",
  17. "SalesChannel",
  18. "CostCarrier",
  19. "CostAccountingString",
  20. ]
  21. TRANSLATE = [
  22. "Konto_Nr_Händler",
  23. "Konto_Nr_SKR51",
  24. "Marke",
  25. "Standort",
  26. "Konto_Nr",
  27. "Kostenstelle",
  28. "Absatzkanal",
  29. "Kostenträger",
  30. "Kontoart",
  31. "Konto_1",
  32. "KRM",
  33. "IsNumeric",
  34. ]
  35. @dataclass
  36. class GchrExportConfig:
  37. main_site: str
  38. current_year: str
  39. current_month: str
  40. makes_used: dict[str, str]
  41. sites_used: dict[str, str]
  42. first_month: str
  43. period_no: str
  44. bookkeep_filter: dict[str, str]
  45. extraction_date: datetime
  46. export_file: str
  47. bookkeep_records = dict[str, list[str]]
  48. header: dict[str, str] | None = None
  49. @dataclass
  50. class GchrConfig:
  51. first_month_of_financial_year: str
  52. data_path: str
  53. gcstruct_path: str
  54. export_path: str
  55. export_fn = Callable[[GchrExportConfig], None]
  56. class GCHR:
  57. booking_date: datetime
  58. df_bookings: pd.DataFrame = None
  59. df_translate: pd.DataFrame = None
  60. df_translate2: pd.DataFrame = None
  61. makes: dict[str, str] = None
  62. sites: dict[str, str] = None
  63. current_year: str
  64. current_month: str
  65. def __init__(self, base_dir: str) -> None:
  66. self.base_dir = base_dir
  67. self.account_translation = f"{self.base_dir}/data/Kontenrahmen_uebersetzt.csv"
  68. self.account_bookings = list(Path(self.base_dir).joinpath("data").glob("GuV_Bilanz_Salden*.csv"))
  69. self.first_month_of_financial_year = "10"
  70. pd.set_option("display.max_rows", 500)
  71. pd.set_option("display.float_format", lambda x: "%.2f" % x)
  72. def set_bookkeep_period(self, year: str, month: str) -> None:
  73. self.current_year = year
  74. self.current_month = month
  75. period = f"{year}-{month}"
  76. prot_file = f"{self.export_info_dir}/protokoll_{period}.log"
  77. logging.basicConfig(
  78. filename=prot_file,
  79. filemode="w",
  80. encoding="utf-8",
  81. level=logging.DEBUG,
  82. force=True,
  83. )
  84. self.debug_file = f"{self.export_info_dir}/debug_{period}.csv"
  85. self.account_ignored = f"{self.export_info_dir}/ignoriert_{period}.csv"
  86. # self.account_invalid = f"{self.export_info_dir}/ungueltig_{period}.csv"
  87. self.last_year = str(int(self.current_year) - 1)
  88. self.last_year2 = str(int(self.current_year) - 2)
  89. self.next_year = str(int(self.current_year) + 1)
  90. @staticmethod
  91. def header(export_cfg: GchrExportConfig) -> dict[str, str]:
  92. return {
  93. "Country": "DE",
  94. "MainBmCode": export_cfg.main_site,
  95. "Month": export_cfg.current_month,
  96. "Year": export_cfg.current_year,
  97. "Currency": "EUR",
  98. "NumberOfMakes": len(export_cfg.makes_used),
  99. "NumberOfSites": len(export_cfg.sites_used),
  100. "ExtractionDate": export_cfg.extraction_date.strftime("%d.%m.%Y"),
  101. "ExtractionTime": export_cfg.extraction_date.strftime("%H:%M:%S"),
  102. "BeginFiscalYear": export_cfg.first_month,
  103. }
  104. @property
  105. def bookkeep_filter(self) -> dict[str, str]:
  106. period = [self.current_year + str(i).zfill(2) for i in range(1, 13)]
  107. if self.first_month_of_financial_year != "01":
  108. if self.first_month_of_financial_year > self.current_month:
  109. period = [self.last_year + str(i).zfill(2) for i in range(1, 13)] + period
  110. else:
  111. period = period + [self.next_year + str(i).zfill(2) for i in range(1, 13)]
  112. fm = int(self.first_month_of_financial_year)
  113. period = period[fm - 1 : fm + 12]
  114. period = [self.current_year + "00"] + period
  115. rename_to = ["OpeningBalance"] + ["Period" + str(i).zfill(2) for i in range(1, 13)]
  116. return dict(zip(period, rename_to))
  117. def extract_acct_info(self, df: pd.DataFrame) -> pd.DataFrame:
  118. acct_info = [
  119. "Marke",
  120. "Standort",
  121. "Konto_Nr",
  122. "Kostenstelle",
  123. "Absatzkanal",
  124. "Kostenträger",
  125. ]
  126. df["HasFiveDashes"] = df["Konto_Nr_SKR51"].str.count("-") == 5
  127. df["Invalid"] = "XX-XX-XXXX-XX-XX-XX"
  128. df["Konto_Nr_SKR51"] = np.where(
  129. df["HasFiveDashes"],
  130. df["Konto_Nr_SKR51"],
  131. df["Invalid"],
  132. )
  133. df[acct_info] = df["Konto_Nr_SKR51"].str.split(pat="-", n=6, expand=True)
  134. return df
  135. def export_all_periods(self, overwrite=False, today=None) -> None:
  136. dt = datetime.now()
  137. if today is not None:
  138. dt = datetime.fromisoformat(today)
  139. prev = str(dt.year - 1)
  140. periods = [(prev, str(x).zfill(2)) for x in range(dt.month, 13)] + [
  141. (str(dt.year), str(x).zfill(2)) for x in range(1, dt.month)
  142. ]
  143. for year, month in periods:
  144. filename = self.export_filename_for_period(year, month)
  145. if overwrite or not Path(filename).exists():
  146. os.makedirs(Path(filename).parent.joinpath("info"), exist_ok=True)
  147. self.export_period(year, month)
  148. def export_period(self, year: str, month: str) -> str:
  149. self.set_bookkeep_period(year, month)
  150. # Übersetzungstabelle laden
  151. self.get_translation()
  152. # Kontensalden laden
  153. df_bookings = self.filter_bookings()
  154. all_periods = set(df_bookings["Bookkeep Period"].to_list())
  155. bookkeep_period_date = datetime(int(year), int(month), 28)
  156. if df_bookings.shape[0] == 0 or len(all_periods) <= 1 or self.booking_date < bookkeep_period_date:
  157. logging.error("ABBRUCH!!! Keine Daten vorhanden!")
  158. return False
  159. filter_to = self.current_year + self.current_month
  160. period_no = list(self.bookkeep_filter.keys()).index(filter_to) + 1
  161. logging.info("df_bookings: " + str(df_bookings.shape))
  162. # Join auf Übersetzung
  163. df_combined = df_bookings.merge(self.df_translate, how="inner", on="Konto_Nr_Händler")
  164. logging.info(f"df_combined: {df_combined.shape}")
  165. df_pivot = df_combined.pivot_table(
  166. index=["Konto_Nr_SKR51"],
  167. columns=["period"],
  168. values="amount",
  169. aggfunc="sum",
  170. margins=True,
  171. margins_name="CumulatedYear",
  172. )
  173. df_pivot.drop(index="CumulatedYear", inplace=True)
  174. logging.info("df_pivot: " + str(df_pivot.shape))
  175. df = df_pivot.merge(self.df_translate2, how="inner", on="Konto_Nr_SKR51")
  176. makes_used = {}
  177. for m in sorted(list(set(df["Marke"].to_list()))):
  178. if m not in self.makes:
  179. continue
  180. makes_used[m] = self.makes[m]
  181. sites_used = {}
  182. for s in sorted(list(set((df["Marke"] + "-" + df["Standort"]).to_list()))):
  183. if s not in self.sites:
  184. continue
  185. sites_used[s] = self.sites[s]
  186. from_label = ["Marke", "Standort", "Konto_Nr", "Kostenstelle", "Absatzkanal", "Kostenträger", "KRM"]
  187. to_label = ["Make", "Site", "Account", "Origin", "SalesChannel", "CostCarrier", "CostAccountingString"]
  188. col_dict = dict(zip(from_label, to_label))
  189. df = df.rename(columns=col_dict)
  190. export_csv = self.export_filename[:-4] + ".csv"
  191. df.to_csv(export_csv, decimal=",", sep=";", encoding="latin-1", index=False)
  192. df = df[df["IsNumeric"] != False].groupby(ACCOUNT_INFO, as_index=False).aggregate("sum")
  193. # Infos ergänzen
  194. df["Decimals"] = 2
  195. # df.sort_values(by=["Konto_Nr_SKR51"], inplace=True)
  196. logging.info(df.shape)
  197. main_sites = [self.sites[s] for s in sites_used if s in self.sites and self.sites[s] != "0000"]
  198. for i, main_site in enumerate(main_sites):
  199. filename = self.export_filename
  200. if i > 0:
  201. filename = f"{filename[:-4]}_{main_site}.xml"
  202. export_cfg = GchrExportConfig(
  203. main_site,
  204. year,
  205. month,
  206. makes_used,
  207. sites_used,
  208. self.first_month_of_financial_year,
  209. period_no,
  210. self.bookkeep_filter,
  211. filename,
  212. df.to_dict(orient="records"),
  213. )
  214. export_cfg.header = self.header(export_cfg)
  215. self.export_skr51_xml(export_cfg)
  216. # Join auf Übersetzung - nicht zugeordnet
  217. df_ignored = df_bookings.merge(self.df_translate, how="left", on="Konto_Nr_Händler")
  218. df_ignored = df_ignored[df_ignored["Konto_Nr_SKR51"].isna()]
  219. if not df_ignored.empty:
  220. df_ignored = df_ignored.pivot_table(
  221. index=["Konto_Nr_Händler"],
  222. columns=["period"],
  223. values="amount",
  224. aggfunc="sum",
  225. margins=True,
  226. margins_name="CumulatedYear",
  227. )
  228. df_ignored.to_csv(self.account_ignored, decimal=",", sep=";", encoding="latin-1")
  229. return self.export_filename
  230. def get_translation(self) -> pd.DataFrame:
  231. if self.df_translate is None:
  232. df_translate_import = pd.read_csv(
  233. self.account_translation,
  234. decimal=",",
  235. sep=";",
  236. encoding="latin-1",
  237. converters={i: str for i in range(0, 200)},
  238. ).reset_index()
  239. df_makes = df_translate_import[["Marke", "Marke_HBV"]].copy().drop_duplicates()
  240. df_makes = df_makes[df_makes["Marke_HBV"] != "0000"]
  241. self.makes = dict([(e["Marke"], e["Marke_HBV"]) for e in df_makes.to_dict(orient="records")])
  242. self.makes["99"] = "0000"
  243. df_sites = df_translate_import[["Marke", "Standort", "Standort_HBV"]].copy().drop_duplicates()
  244. df_sites["Standort_HBV"] = np.where(
  245. df_sites["Standort_HBV"].str.len() != 6, "0000", df_sites["Standort_HBV"]
  246. )
  247. self.sites = dict(
  248. [(e["Marke"] + "-" + e["Standort"], e["Standort_HBV"]) for e in df_sites.to_dict(orient="records")]
  249. )
  250. df_prepared = self.prepare_translation(df_translate_import)
  251. self.df_translate = self.special_translation(df_prepared)
  252. self.df_translate2 = (
  253. self.df_translate.drop(columns=["Konto_Nr_Händler"])
  254. .copy()
  255. .drop_duplicates()
  256. .set_index("Konto_Nr_SKR51")
  257. )
  258. return self.df_translate
  259. def prepare_translation(self, df_translate_import: pd.DataFrame):
  260. df_translate = df_translate_import[
  261. [
  262. "Konto_Nr_Händler",
  263. "Konto_Nr_SKR51",
  264. ]
  265. ].drop_duplicates()
  266. logging.info(df_translate.shape)
  267. row = {
  268. "Konto_Nr_Händler": "01-01-0861-00-00-00",
  269. "Konto_Nr_SKR51": "01-01-0861-00-00-00",
  270. }
  271. df_translate = pd.concat([df_translate, pd.DataFrame.from_records([row])])
  272. df_translate.set_index("Konto_Nr_Händler")
  273. return df_translate
  274. def special_translation(self, df: pd.DataFrame) -> pd.DataFrame:
  275. df["Konto_Nr_Händler"] = df["Konto_Nr_Händler"].str.upper()
  276. df["Konto_Nr_SKR51"] = df["Konto_Nr_SKR51"].str.upper()
  277. df = self.extract_acct_info(df)
  278. df["Konto_Nr"] = df["Konto_Nr"].str.upper()
  279. logging.info(df.shape)
  280. logging.info(df.columns)
  281. logging.info(df.head())
  282. logging.info("df: " + str(df.shape))
  283. df["Bilanz"] = df["Konto_Nr"].str.match(r"^[013]")
  284. df["Kontoart"] = np.where(df["Bilanz"], "1", "2")
  285. df["Kontoart"] = np.where(df["Konto_Nr"].str.contains("_STK"), "3", df["Kontoart"])
  286. df["Kontoart"] = np.where(df["Konto_Nr"].str.match(r"^[9]"), "3", df["Kontoart"])
  287. df["Konto_1"] = df["Konto_Nr"].str.slice(0, 1)
  288. # fehlende Marken- und Standortzuordnung
  289. df["Marke"] = np.where(df["Marke"].isin(self.makes.keys()), df["Marke"], "99")
  290. df["Marke_Standort"] = df["Marke"] + "-" + df["Standort"]
  291. df["Standort"] = np.where(df["Marke_Standort"].isin(self.sites.keys()), df["Standort"], "01")
  292. df_debug = df.drop(columns=["Bilanz"])
  293. logging.info(df_debug.groupby(["Kontoart"]).aggregate("sum"))
  294. logging.info(df_debug.groupby(["Kontoart", "Konto_1"]).aggregate("sum"))
  295. logging.info(df_debug.groupby(["Konto_Nr"]).aggregate("sum"))
  296. df_debug.groupby(["Konto_Nr"]).aggregate("sum").to_csv(
  297. self.debug_file, decimal=",", sep=";", encoding="latin-1"
  298. )
  299. # Bereinigung GW-Kostenträger
  300. df["NW_Verkauf_1"] = (df["Konto_Nr"].str.match(r"^[78]0")) & (df["Kostenstelle"].str.match(r"^[^1]\d"))
  301. df["Kostenstelle"] = np.where(df["NW_Verkauf_1"] == True, "11", df["Kostenstelle"])
  302. df["Konto_7010"] = df["Konto_Nr"].str.match(r"^[78]01[01]")
  303. df["Kostenstelle"] = np.where(df["Konto_7010"] == True, "14", df["Kostenstelle"])
  304. df["GW_Verkauf_2"] = (df["Konto_Nr"].str.match(r"^[78]1")) & (df["Kostenstelle"].str.match(r"^[^2]\d"))
  305. df["Kostenstelle"] = np.where(df["GW_Verkauf_2"] == True, "21", df["Kostenstelle"])
  306. df["GW_Verkauf_3"] = (df["Konto_Nr"].str.match(r"^[78]3")) & (df["Kostenstelle"].str.match(r"^[^3]\d"))
  307. df["Kostenstelle"] = np.where(df["GW_Verkauf_3"] == True, "31", df["Kostenstelle"])
  308. df["GW_Verkauf_4"] = (df["Konto_Nr"].str.match(r"^[78]4")) & (df["Kostenstelle"].str.match(r"^[^4]\d"))
  309. df["Kostenstelle"] = np.where(df["GW_Verkauf_4"] == True, "41", df["Kostenstelle"])
  310. df["GW_Verkauf_x420"] = df["Konto_Nr"].str.match(r"^[78]420")
  311. df["Kostenstelle"] = np.where(df["GW_Verkauf_x420"] == True, "42", df["Kostenstelle"])
  312. df["GW_Verkauf_5"] = (df["Konto_Nr"].str.match(r"^[78]5")) & (df["Kostenstelle"].str.match(r"^[^5]\d"))
  313. df["Kostenstelle"] = np.where(df["GW_Verkauf_5"] == True, "51", df["Kostenstelle"])
  314. df["GW_Verkauf_50"] = (df["Konto_Nr"].str.match(r"^[78]")) & (df["Kostenstelle"].str.match(r"^2"))
  315. df["Kostenträger"] = np.where(df["GW_Verkauf_50"] == True, "52", df["Kostenträger"])
  316. df["Kostenträger"] = np.where(
  317. (df["GW_Verkauf_50"] == True) & (df["Marke"] == "01"),
  318. "50",
  319. df["Kostenträger"],
  320. )
  321. df["NW_Verkauf_00"] = (
  322. (df["Konto_Nr"].str.match(r"^[78]2"))
  323. & (df["Kostenstelle"].str.match(r"^1"))
  324. & (df["Kostenträger"].str.match(r"^[^01234]"))
  325. )
  326. df["Kostenträger"] = np.where(df["NW_Verkauf_00"] == True, "00", df["Kostenträger"])
  327. df["GW_Stk_50"] = (df["Konto_Nr"].str.match(r"^9130")) & (df["Kostenstelle"].str.match(r"^2"))
  328. df["Kostenträger"] = np.where(df["GW_Stk_50"] == True, "52", df["Kostenträger"])
  329. df["Kostenträger"] = np.where((df["GW_Stk_50"] == True) & (df["Marke"] == "01"), "50", df["Kostenträger"])
  330. df["Kostenträger"] = np.where(df["Bilanz"] == True, "00", df["Kostenträger"])
  331. df["Konto_5er"] = (df["Konto_Nr"].str.match("^5")) | (df["Konto_Nr"].str.match("^9143"))
  332. df["Absatzkanal"] = np.where(df["Konto_5er"] == True, "99", df["Absatzkanal"])
  333. df["Konto_5005"] = (df["Konto_Nr"].str.match("^5005")) & (df["Kostenstelle"].str.match(r"^[^12]"))
  334. df["Kostenstelle"] = np.where(df["Konto_5005"] == True, "20", df["Kostenstelle"])
  335. df["Kostenträger"] = np.where(df["Konto_5005"] == True, "50", df["Kostenträger"])
  336. df["Konto_5007"] = (df["Konto_Nr"].str.match("^5007")) & (df["Kostenstelle"].str.match(r"^([^4]|42)"))
  337. df["Kostenstelle"] = np.where(df["Konto_5007"] == True, "41", df["Kostenstelle"])
  338. df["Kostenträger"] = np.where(df["Konto_5007"] == True, "70", df["Kostenträger"])
  339. df["Konto_914er"] = (df["Konto_Nr"].str.match("^914[34]")) & (df["Kostenträger"].str.match(r"^[^7]"))
  340. df["Kostenträger"] = np.where(df["Konto_914er"] == True, "70", df["Kostenträger"])
  341. df["Teile_30_60"] = (
  342. (df["Konto_Nr"].str.match(r"^[578]"))
  343. & (df["Kostenstelle"].str.match(r"^[3]"))
  344. & (df["Kostenträger"].str.match(r"^[^6]"))
  345. )
  346. df["Kostenträger"] = np.where(df["Teile_30_60"] == True, "60", df["Kostenträger"])
  347. df["Service_40_70"] = (
  348. (df["Konto_Nr"].str.match(r"^[578]"))
  349. & (df["Kostenstelle"].str.match(r"^[4]"))
  350. & (df["Kostenträger"].str.match(r"^[^7]"))
  351. )
  352. df["Kostenträger"] = np.where(df["Service_40_70"] == True, "70", df["Kostenträger"])
  353. df["KRM"] = df["Marke"] + df["Standort"] + df["Kostenstelle"] + df["Absatzkanal"] + df["Kostenträger"]
  354. df["Konto_Nr_SKR51"] = (
  355. (df["Marke"] + "-" + df["Standort"] + "-" + df["Konto_Nr"])
  356. + "-"
  357. + (df["Kostenstelle"] + "-" + df["Absatzkanal"] + "-" + df["Kostenträger"])
  358. )
  359. df["IsNumeric"] = (
  360. (df["KRM"].str.isdigit())
  361. & (df["Konto_Nr"].str.isdigit())
  362. & (df["Konto_Nr"].str.len() == 4)
  363. # & (df["Konto_Nr_SKR51"].str.len() == 19)
  364. )
  365. df_invalid = df[df["IsNumeric"] == False]
  366. df_invalid.to_csv(self.export_invalid_filename, decimal=",", sep=";", encoding="latin-1", index=False)
  367. return df[df["IsNumeric"] == True][TRANSLATE]
  368. def load_bookings_from_file(self) -> None:
  369. df2 = []
  370. timestamps = []
  371. for csv_file in self.account_bookings:
  372. df2.append(
  373. pd.read_csv(
  374. csv_file,
  375. decimal=",",
  376. sep=";",
  377. encoding="latin-1",
  378. converters={0: str, 1: str},
  379. )
  380. )
  381. timestamps.append(Path(csv_file).stat().st_mtime)
  382. self.booking_date = datetime.fromtimestamp(max(timestamps))
  383. self.df_bookings = pd.concat(df2)
  384. self.df_bookings["amount"] = (self.df_bookings["Debit Amount"] + self.df_bookings["Credit Amount"]).round(2)
  385. def filter_bookings(self) -> pd.DataFrame:
  386. if self.df_bookings is None:
  387. self.load_bookings_from_file()
  388. # Kontensalden auf gegebenen Monat filtern
  389. filter_from = self.current_year + self.first_month_of_financial_year
  390. filter_prev = self.last_year + self.first_month_of_financial_year
  391. if self.first_month_of_financial_year > self.current_month:
  392. filter_from = self.last_year + self.first_month_of_financial_year
  393. filter_prev = self.last_year2 + self.first_month_of_financial_year
  394. filter_to = self.current_year + self.current_month
  395. filter_opening = self.current_year + "00"
  396. filter_prev_opening = self.last_year + "00"
  397. prev_year_closed = True
  398. df_opening_balance = self.df_bookings[(self.df_bookings["Bookkeep Period"] == filter_opening)]
  399. if df_opening_balance.shape[0] == 0:
  400. df_opening_balance = self.df_bookings[
  401. (self.df_bookings["Bookkeep Period"] == filter_prev_opening)
  402. | (
  403. (self.df_bookings["Bookkeep Period"] >= filter_prev)
  404. & (self.df_bookings["Bookkeep Period"] < filter_from)
  405. )
  406. ].copy()
  407. df_opening_balance["Bookkeep Period"] = filter_opening
  408. prev_year_closed = False
  409. df_opening_balance = df_opening_balance[(df_opening_balance["Konto_Nr_Händler"].str.contains(r"-[013]\d\d+-"))]
  410. opening_balance = df_opening_balance["amount"].aggregate("sum").round(2)
  411. logging.info("Gewinn/Verlustvortrag")
  412. logging.info(opening_balance)
  413. if not prev_year_closed:
  414. row = {
  415. "Konto_Nr_Händler": "01-01-0861-00-00-00",
  416. "Bookkeep Period": filter_opening,
  417. "Debit Amount": opening_balance * -1,
  418. "Credit Amount": 0,
  419. "Debit Quantity": 0,
  420. "Credit Quantity": 0,
  421. "amount": opening_balance * -1,
  422. }
  423. df_opening_balance = pd.concat([df_opening_balance, pd.DataFrame.from_records([row])])
  424. df_filtered = self.df_bookings[
  425. (self.df_bookings["Bookkeep Period"] >= filter_from) & (self.df_bookings["Bookkeep Period"] <= filter_to)
  426. ]
  427. # Buchungen kopieren und als Statistikkonten anhängen
  428. df_stats = df_filtered.copy()
  429. # df_stats = df_stats[df_stats['Konto_Nr_Händler'].str.match(r'-[24578]\d\d\d-')]
  430. df_stats["Konto_Nr_Händler"] = df_stats["Konto_Nr_Händler"].str.replace(r"-(\d\d\d+)-", r"-\1_STK-", regex=True)
  431. df_stats["amount"] = (df_filtered["Debit Quantity"] + df_filtered["Credit Quantity"]).round(2)
  432. df_combined = pd.concat([df_opening_balance, df_filtered, df_stats])
  433. # Spalten konvertieren
  434. df_combined["period"] = df_combined["Bookkeep Period"].apply(lambda x: self.bookkeep_filter[x])
  435. return df_combined[df_combined["amount"] != 0.00]
  436. @property
  437. def export_filename(self) -> str:
  438. return self.export_filename_for_period(self.current_year, self.current_month)
  439. @property
  440. def export_info_dir(self) -> str:
  441. return f"{self.base_dir}/Export/{self.current_year}/info/"
  442. @property
  443. def export_invalid_filename(self) -> str:
  444. return f"{self.base_dir}/Export/ungueltig.csv"
  445. def export_filename_for_period(self, year: str, month: str) -> str:
  446. return f"{self.base_dir}/Export/{year}/export_{year}-{month}.xml"
  447. @staticmethod
  448. def export_skr51_xml(export_cfg: GchrExportConfig):
  449. record_elements = (
  450. ACCOUNT_INFO
  451. + ["Decimals"]
  452. + list(export_cfg.bookkeep_filter.values())[: export_cfg.period_no]
  453. + ["CumulatedYear"]
  454. )
  455. root = ET.Element("HbvData")
  456. h = ET.SubElement(root, "Header")
  457. for k, v in export_cfg.header.items():
  458. ET.SubElement(h, k).text = str(v)
  459. make_list = ET.SubElement(root, "MakeList")
  460. for make, make_code in export_cfg.makes_used.items():
  461. e = ET.SubElement(make_list, "MakeListEntry")
  462. ET.SubElement(e, "Make").text = make
  463. ET.SubElement(e, "MakeCode").text = make_code
  464. bm_code_list = ET.SubElement(root, "BmCodeList")
  465. for s, bmcode in export_cfg.sites_used.items():
  466. make, site = s.split("-")
  467. e = ET.SubElement(bm_code_list, "BmCodeEntry")
  468. ET.SubElement(e, "Make").text = make
  469. ET.SubElement(e, "Site").text = site
  470. ET.SubElement(e, "BmCode").text = bmcode
  471. record_list = ET.SubElement(root, "RecordList")
  472. for row in export_cfg.bookkeep_records:
  473. record = ET.SubElement(record_list, "Record")
  474. for e in record_elements:
  475. child = ET.SubElement(record, e)
  476. field = row.get(e, 0.0)
  477. if str(field) == "nan":
  478. field = "0"
  479. elif type(field) is float:
  480. field = "{:.0f}".format(field * 100)
  481. child.text = str(field)
  482. with open(export_cfg.export_file, "w", encoding="utf-8") as fwh:
  483. fwh.write(minidom.parseString(ET.tostring(root)).toprettyxml(indent=" "))
  484. def convert_to_row(self, node: list[ET.Element]) -> list[str]:
  485. return [child.text for child in node]
  486. def convert_xml_to_csv(self, xmlfile: str, csvfile: str) -> bool:
  487. with open(xmlfile) as frh:
  488. record_list = ET.parse(frh).getroot().find("RecordList")
  489. header = [child.tag for child in record_list.find("Record")]
  490. bookings = [self.convert_to_row(node) for node in record_list.findall("Record")]
  491. with open(csvfile, "w") as fwh:
  492. cwh = csv.writer(fwh, delimiter=";")
  493. cwh.writerow(header)
  494. cwh.writerows(bookings)
  495. return True
  496. def convert_csv_to_xml(self, csvfile: str, xmlfile: str) -> None:
  497. self.makes = {"01": "1844"}
  498. self.sites = {"01-01": "1844"}
  499. with open(csvfile, "r", encoding="latin-1") as frh:
  500. csv_reader = csv.DictReader(frh, delimiter=";")
  501. self.export_skr51_xml(csv_reader, self.bookkeep_filter(), 1, list(self.sites.values())[0], xmlfile)
  502. def gchr_local() -> None:
  503. base_dir = os.getcwd() + "/../GCHR2_Testdaten/Kunden"
  504. for path in Path(base_dir).glob("*"):
  505. if path.is_dir():
  506. print(path.name)
  507. gchr_export(str(path))
  508. def gchr_export(base_dir: str) -> None:
  509. gchr = GCHR(base_dir)
  510. # gchr.export_all_periods(overwrite=True, today="2022-08-01")
  511. gchr.export_all_periods()
  512. if __name__ == "__main__":
  513. gchr_local()
  514. # import cProfile
  515. # cProfile.run(
  516. # "gchr_local()",
  517. # "gchr_local.prof",
  518. # )