gchr.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. import json
  2. import logging
  3. import os
  4. from datetime import datetime
  5. from pathlib import Path
  6. import pandas as pd
  7. from gchr.gchr_bookings import GchrBookings
  8. from gchr.gchr_export import get_export_fn
  9. from gchr.gchr_model import ACCOUNT_INFO, GchrConfig, GchrExportConfig
  10. from gchr.gchr_translate import load_translation
  11. class GCHR:
  12. cfg: GchrConfig
  13. bookings: GchrBookings
  14. _df_translate: pd.DataFrame = None
  15. df_translate2: pd.DataFrame = None
  16. makes: dict[str, str] = None
  17. sites: dict[str, str] = None
  18. timestamp: str
  19. def __init__(self, base_dir: str) -> None:
  20. self.base_dir = base_dir
  21. cfg_file = f"{self.base_dir}\\config\\gchr2.json"
  22. if Path(cfg_file).exists():
  23. with open(cfg_file, "r") as frh:
  24. self.cfg = GchrConfig(**json.load(frh))
  25. else:
  26. os.makedirs(f"{self.base_dir}\\config", exist_ok=True)
  27. self.cfg = GchrConfig(
  28. first_month_of_financial_year="01",
  29. data_dir=f"{self.base_dir}\\data",
  30. gcstruct_dir=f"{self.base_dir}\\..\\GCStruct_Aufbereitung",
  31. export_dir=f"{self.base_dir}\\Export",
  32. export_format="SKR51",
  33. )
  34. with open(cfg_file, "w") as fwh:
  35. json.dump(self.cfg.__dict__, fwh, indent=2)
  36. os.makedirs(self.cfg.data_dir, exist_ok=True)
  37. os.makedirs(f"{self.cfg.export_dir}\\temp", exist_ok=True)
  38. os.makedirs(f"{self.base_dir}\\logs", exist_ok=True)
  39. self.account_translation = f"{self.cfg.data_dir}\\Kontenrahmen_uebersetzt.csv"
  40. self.bookings = GchrBookings(self.base_dir, self.cfg.first_month_of_financial_year)
  41. self.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
  42. pd.set_option("display.max_rows", 500)
  43. pd.set_option("display.float_format", lambda x: "%.2f" % x)
  44. @property
  45. def debug_file(self) -> str:
  46. return f"{self.logs_dir}\\debug_{self.timestamp}.csv"
  47. @property
  48. def account_ignored(self) -> str:
  49. return f"{self.export_info_dir}\\ignoriert_{self.bookings.period}.csv"
  50. # self.account_invalid = f"{self.export_info_dir}\\ungueltig_{self.period}.csv"
  51. def export_all_periods(self, overwrite=False, today=None) -> None:
  52. periods = GCHR.get_all_periods(today)
  53. for year, month in periods:
  54. filename = self.export_filename_for_period(year, month)
  55. if overwrite or not Path(filename).exists():
  56. os.makedirs(Path(filename).parent.joinpath("info"), exist_ok=True)
  57. self.export_period(year, month)
  58. @staticmethod
  59. def get_all_periods(today=None) -> list[tuple[str, str]]:
  60. dt = datetime.now()
  61. if today is not None:
  62. dt = datetime.fromisoformat(today)
  63. prev = str(dt.year - 1)
  64. periods = [(prev, str(x).zfill(2)) for x in range(dt.month, 13)] + [
  65. (str(dt.year), str(x).zfill(2)) for x in range(1, dt.month)
  66. ]
  67. return periods
  68. def export_period(self, year: str, month: str) -> str:
  69. export_fn = get_export_fn(self.cfg.export_format)
  70. # Kontensalden laden
  71. df_bookings = self.bookings.filter_bookings(year, month)
  72. all_periods = set(df_bookings["Bookkeep Period"].to_list())
  73. bookkeep_period_date = datetime(int(year), int(month), 28)
  74. if df_bookings.shape[0] == 0 or len(all_periods) <= 1 or self.bookings.booking_date < bookkeep_period_date:
  75. logging.error("ABBRUCH!!! Keine Daten vorhanden!")
  76. return False
  77. filter_to = year + month
  78. period_no = list(self.bookings.bookkeep_filter.keys()).index(filter_to) + 1
  79. logging.info("df_bookings: " + str(df_bookings.shape))
  80. # Join auf Übersetzung
  81. df_combined = df_bookings.merge(self.df_translate, how="inner", on="Konto_Nr_Händler")
  82. logging.info(f"df_combined: {df_combined.shape}")
  83. df_pivot = df_combined.pivot_table(
  84. index=["Konto_Nr_SKR51"],
  85. columns=["period"],
  86. values="amount",
  87. aggfunc="sum",
  88. margins=True,
  89. margins_name="CumulatedYear",
  90. )
  91. df_pivot.drop(index="CumulatedYear", inplace=True)
  92. logging.info("df_pivot: " + str(df_pivot.shape))
  93. df = df_pivot.merge(self.df_translate2, how="inner", on="Konto_Nr_SKR51")
  94. makes_used = {}
  95. for m in sorted(list(set(df["Marke"].to_list()))):
  96. if m not in self.makes:
  97. continue
  98. makes_used[m] = self.makes[m]
  99. sites_used = {}
  100. for s in sorted(list(set((df["Marke"] + "-" + df["Standort"]).to_list()))):
  101. if s not in self.sites:
  102. continue
  103. sites_used[s] = self.sites[s]
  104. from_label = ["Marke", "Standort", "Konto_Nr", "Kostenstelle", "Absatzkanal", "Kostenträger", "KRM"]
  105. to_label = ["Make", "Site", "Account", "Origin", "SalesChannel", "CostCarrier", "CostAccountingString"]
  106. col_dict = dict(zip(from_label, to_label))
  107. df = df.rename(columns=col_dict)
  108. export_filename = self.export_filename_for_period(year, month)
  109. export_csv = export_filename[:-4] + ".csv"
  110. df.to_csv(export_csv, decimal=",", sep=";", encoding="latin-1", index=False)
  111. df = df[df["IsNumeric"] != False].groupby(ACCOUNT_INFO, as_index=False).aggregate("sum")
  112. # Infos ergänzen
  113. df["Decimals"] = 2
  114. # df.sort_values(by=["Konto_Nr_SKR51"], inplace=True)
  115. logging.info(df.shape)
  116. main_sites = [self.sites[s] for s in sites_used if s in self.sites and self.sites[s] != "0000"]
  117. for i, main_site in enumerate(main_sites):
  118. filename = export_filename
  119. if i > 0:
  120. filename = f"{filename[:-4]}_{main_site}.xml"
  121. export_cfg = GchrExportConfig(
  122. main_site=main_site,
  123. current_year=year,
  124. current_month=month,
  125. makes_used=makes_used,
  126. sites_used=sites_used,
  127. first_month=self.cfg.first_month_of_financial_year,
  128. period_no=period_no,
  129. bookkeep_filter=self.bookings.bookkeep_filter,
  130. extraction_date=self.bookings.booking_date,
  131. export_file=filename,
  132. bookkeep_records=df.to_dict(orient="records"),
  133. )
  134. export_fn(export_cfg)
  135. # Join auf Übersetzung - nicht zugeordnet
  136. df_ignored = df_bookings.merge(self.df_translate, how="left", on="Konto_Nr_Händler")
  137. df_ignored = df_ignored[df_ignored["Konto_Nr_SKR51"].isna()]
  138. if not df_ignored.empty:
  139. df_ignored = df_ignored.pivot_table(
  140. index=["Konto_Nr_Händler"],
  141. columns=["period"],
  142. values="amount",
  143. aggfunc="sum",
  144. margins=True,
  145. margins_name="CumulatedYear",
  146. )
  147. df_ignored.to_csv(self.account_ignored, decimal=",", sep=";", encoding="latin-1")
  148. return export_filename
  149. @property
  150. def df_translate(self) -> pd.DataFrame:
  151. if self._df_translate is None:
  152. self.makes, self.sites, self._df_translate, self.df_translate2 = load_translation(
  153. self.account_translation, self.debug_file, self.export_invalid_filename
  154. )
  155. return self._df_translate
  156. @property
  157. def export_info_dir(self) -> str:
  158. return f"{self.cfg.export_dir}\\{self.bookings.current_year}\\info\\"
  159. @property
  160. def logs_dir(self) -> str:
  161. return f"{self.base_dir}\\Logs\\"
  162. @property
  163. def export_invalid_filename(self) -> str:
  164. return f"{self.cfg.export_dir}\\ungueltig.csv"
  165. def export_filename_for_period(self, year: str, month: str) -> str:
  166. return f"{self.cfg.export_dir}\\{year}\\export_{year}-{month}.xml"