123456789101112131415161718192021222324252627282930313233343536 |
- import pandas as pd
- import numpy as np
- import json
- from functools import reduce
- source_csv = "data\\Kontenrahmen_Import.csv"
- target_csv = "data\\Kontenrahmen.csv"
- result_csv = "data\\Kontenrahmen_Ergebnis.csv"
- debug = False
- cols_pkey = ["Konto_Nr"]
- def update(d, other):
- d.update(dict(dict(other)))
- return d
- def get_dict(cols, type):
- return dict(dict(zip(cols,[type] * len(cols))))
- #cols_dict = reduce(update, (get_dict(cols_pkey, np.str), get_dict(cols_str, np.str), get_dict(cols_float, np.float)), {})
- df_source = pd.read_csv(source_csv, decimal=",", sep=";", encoding="ansi", converters={i: str for i in range(0, 200)})
- df_source['pkey'] = reduce(lambda x, y: x + "_" + df_source[y], cols_pkey, "")
- df_source = df_source.set_index('pkey')
- df_target = pd.read_csv(target_csv, decimal=",", sep=";", encoding="ansi", converters={i: str for i in range(0, 200)})
- target_columns = df_target.columns
- df_target['pkey'] = reduce(lambda x, y: x + "_" + df_target[y], cols_pkey, "")
- df_target = df_target.set_index('pkey')
- df_join = df_source.join(df_target, rsuffix='_other')[target_columns]
- #df_result = df_join[(df_join['Gesamt'] != 0) & (df_join['Serviceberater'] != "")]
- df_join.to_csv(result_csv, decimal=",", sep=";", encoding="ansi", index=None)
|