123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- import pandas as pd
- import numpy as np
- import xml.etree.ElementTree as ET
- import csv
- from xml.dom import minidom
- from datetime import datetime
- import logging
- from pathlib import Path
- from enum import Enum, auto
- ACCOUNT_INFO = ['Account', 'Make', 'Site', 'Origin', 'SalesChannel', 'CostCarrier', 'CostAccountingString']
- class GCHR:
- def __init__(self, project_name) -> None:
- self.base_dir = f'/home/robert/projekte/python/gcstruct/Kunden/{project_name}/'
- self.account_translation = self.base_dir + 'Kontenrahmen_uebersetzt.csv'
- self.account_bookings = Path(self.base_dir).glob('GuV_Bilanz_Salden*.csv')
- self.first_month_of_financial_year = '01'
- pd.set_option('display.max_rows', 500)
- pd.set_option('display.float_format', lambda x: '%.2f' % x)
- def set_bookkeep_period(self, year, month):
- self.current_year = year
- self.current_month = month
- period = f'{year}-{month}'
- prot_file = self.base_dir + f'protokoll_{period}.log'
- logging.basicConfig(
- filename=prot_file,
- filemode='w',
- encoding='utf-8',
- level=logging.DEBUG
- )
- self.debug_file = self.base_dir + f'debug_{period}.csv'
- self.account_ignored = self.base_dir + f'ignoriert_{period}.csv'
- self.account_invalid = self.base_dir + f'ungueltig_{period}.csv'
- self.last_year = str(int(self.current_year) - 1)
- self.last_year2 = str(int(self.current_year) - 2)
- self.next_year = str(int(self.current_year) + 1)
- def header(self, makes, sites):
- return {
- 'Country': 'DE',
- 'MainBmCode': sites[0]['Standort_HBV'],
- 'Month': self.current_month,
- 'Year': self.current_year,
- 'Currency': 'EUR',
- 'NumberOfMakes': len(makes),
- 'NumberOfSites': len(sites),
- 'ExtractionDate': datetime.now().strftime('%d.%m.%Y'),
- 'ExtractionTime': datetime.now().strftime('%H:%M:%S'),
- 'BeginFiscalYear': self.first_month_of_financial_year
- }
- def bookkeep_filter(self):
- period = [self.current_year + str(i).zfill(2) for i in range(1, 13)]
- if self.first_month_of_financial_year != '01':
- if self.first_month_of_financial_year > self.current_month:
- period = [self.last_year + str(i).zfill(2) for i in range(1, 13)] + period
- else:
- period = period + [self.next_year + str(i).zfill(2) for i in range(1, 13)]
- fm = int(self.first_month_of_financial_year)
- period = period[fm - 1:fm + 12]
- period = [self.current_year + '00'] + period
- rename_to = ['OpeningBalance'] + ['Period' + str(i).zfill(2) for i in range(1, 13)]
- return dict(zip(period, rename_to))
- def extract_acct_info(self, df: pd.DataFrame):
- acct_info = ['Marke', 'Standort', 'Konto_Nr', 'Kostenstelle', 'Absatzkanal', 'Kostenträger']
- df['Konto_Nr_SKR51'] = df.index
- df[acct_info] = df['Konto_Nr_SKR51'].str.split('-', 6, expand=True)
- return df
- def export_period(self, year, month):
- self.set_bookkeep_period(year, month)
- # Übersetzungstabelle laden
- df_translate = pd.read_csv(self.account_translation, decimal=',', sep=';', encoding='latin-1',
- converters={i: str for i in range(0, 200)})
- logging.info(df_translate.shape)
- df_translate['duplicated'] = df_translate.duplicated()
- logging.info(df_translate[df_translate['duplicated']])
- df_translate = df_translate[['Konto_Nr_Händler', 'Konto_Nr_SKR51', 'Marke',
- 'Marke_HBV', 'Standort', 'Standort_HBV']]
- row = {
- 'Konto_Nr_Händler': '01-01-0861-00-00-00',
- 'Konto_Nr_SKR51': '01-01-0861-00-00-00',
- 'Marke': '01',
- 'Marke_HBV': '',
- 'Standort': '01',
- 'Standort_HBV': ''
- }
- df_translate.append(row, ignore_index=True)
- # df_translate.drop(columns=['duplicated'], inplace=True)
- df_translate.drop_duplicates(inplace=True)
- df_translate.set_index('Konto_Nr_Händler')
- # Kontensalden laden
- df2 = []
- for csv_file in self.account_bookings:
- df2.append(pd.read_csv(csv_file, decimal=',', sep=';', encoding='latin-1', converters={0: str, 1: str}))
- df_bookings = pd.concat(df2)
- # Kontensalden auf gegebenen Monat filtern
- filter_from = self.current_year + self.first_month_of_financial_year
- filter_prev = self.last_year + self.first_month_of_financial_year
- if self.first_month_of_financial_year > self.current_month:
- filter_from = self.last_year + self.first_month_of_financial_year
- filter_prev = self.last_year2 + self.first_month_of_financial_year
- filter_to = self.current_year + self.current_month
- filter_opening = self.current_year + '00'
- filter_prev_opening = self.last_year + '00'
- prev_year_closed = True
- df_opening_balance = df_bookings[(df_bookings['Bookkeep Period'] == filter_opening)]
- if df_opening_balance.shape[0] == 0:
- df_opening_balance = df_bookings[(df_bookings['Bookkeep Period'] == filter_prev_opening) |
- ((df_bookings['Bookkeep Period'] >= filter_prev) &
- (df_bookings['Bookkeep Period'] < filter_from))].copy()
- df_opening_balance['Bookkeep Period'] = filter_opening
- prev_year_closed = False
- # df_opening_balance = df_opening_balance.merge(df_translate, how='inner', on='Konto_Nr_Händler')
- df_opening_balance = df_opening_balance[(df_opening_balance['Konto_Nr_Händler'].str.contains(r'-[013]\d\d+-'))]
- df_opening_balance['amount'] = (df_opening_balance['Debit Amount'] + df_opening_balance['Credit Amount']).round(2)
- # df_opening_balance.drop(columns=['Debit Amount', 'Credit Amount', 'Debit Quantity', 'Credit Quantity'], inplace=True)
- # df_opening_balance = df_opening_balance.groupby(['Marke', 'Standort']).sum()
- opening_balance = df_opening_balance['amount'].sum().round(2)
- logging.info('Gewinn/Verlustvortrag')
- logging.info(opening_balance)
- if not prev_year_closed:
- row = {
- 'Konto_Nr_Händler': '01-01-0861-00-00-00',
- 'Bookkeep Period': filter_opening,
- 'Debit Amount': opening_balance,
- 'Credit Amount': 0,
- 'Debit Quantity': 0,
- 'Credit Quantity': 0,
- 'amount': opening_balance
- }
- df_opening_balance = df_opening_balance.append(row, ignore_index=True)
- df_bookings = df_bookings[(df_bookings['Bookkeep Period'] >= filter_from) & (df_bookings['Bookkeep Period'] <= filter_to)]
- df_bookings['amount'] = (df_bookings['Debit Amount'] + df_bookings['Credit Amount']).round(2)
- df_stats = df_bookings.copy()
- # df_stats = df_stats[df_stats['Konto_Nr_Händler'].str.match(r'-[24578]\d\d\d-')]
- df_stats['Konto_Nr_Händler'] = df_stats['Konto_Nr_Händler'].str.replace(r'-(\d\d\d+)-', r'-\1_STK-', regex=True)
- df_stats['amount'] = (df_bookings['Debit Quantity'] + df_bookings['Credit Quantity']).round(2)
- df_bookings = pd.concat([df_opening_balance, df_bookings, df_stats])
- df_bookings = df_bookings[df_bookings['amount'] != 0.00]
- bk_filter = self.bookkeep_filter()
- period_no = list(bk_filter.keys()).index(filter_to) + 1
- # Spalten konvertieren
- df_bookings['period'] = df_bookings['Bookkeep Period'].apply(lambda x: bk_filter[x])
- logging.info('df_bookings: ' + str(df_bookings.shape))
- # Join auf Übersetzung
- df_combined = df_bookings.merge(df_translate, how='inner', on='Konto_Nr_Händler')
- logging.info('df_combined: ' + str(df_combined.shape))
- # Hack für fehlende Markenzuordnung
- df_combined['Fremdmarke'] = (df_combined['Marke_HBV'].str.match(r'^0000'))
- df_combined['Marke'] = np.where(df_combined['Fremdmarke'], '99', df_combined['Marke'])
- df_combined['Standort_egal'] = (df_combined['Standort_HBV'].str.match(r'^\d\d_'))
- df_combined['Standort_HBV'] = np.where(df_combined['Fremdmarke'] | df_combined['Standort_egal'], '0000', df_combined['Standort_HBV'])
- makes = df_combined[['Marke', 'Marke_HBV']].drop_duplicates().sort_values(by=['Marke'])
- sites = df_combined[['Marke', 'Standort', 'Standort_HBV']].drop_duplicates().sort_values(by=['Marke', 'Standort'])
- # df_combined.to_csv(account_invalid, decimal=',', sep=';', encoding='latin-1', index=False)
- # Gruppieren
- # df_grouped = df_combined.groupby(['Konto_Nr_SKR51', 'period']).sum()
- df = df_combined.pivot_table(index=['Konto_Nr_SKR51'], columns=['period'], values='amount',
- aggfunc=np.sum, margins=True, margins_name='CumulatedYear')
- logging.info('df_pivot: ' + str(df.shape))
- df = self.extract_acct_info(df)
- # df = df_translate.reset_index(drop=True).drop(columns=['Kostenträger_Ebene']).drop_duplicates()
- logging.info(df.shape)
- logging.info(df.columns)
- logging.info(df.head())
- # df = df.merge(df_translate, how='inner', on='Konto_Nr_SKR51')
- logging.info('df: ' + str(df.shape))
- df['Bilanz'] = (df['Konto_Nr'].str.match(r'^[013]'))
- df['Kontoart'] = np.where(df['Bilanz'], '1', '2')
- df['Kontoart'] = np.where(df['Konto_Nr'].str.contains('_STK'), '3', df['Kontoart'])
- df['Kontoart'] = np.where(df['Konto_Nr'].str.match(r'^[9]'), '3', df['Kontoart'])
- df['Konto_1'] = (df['Konto_Nr'].str.slice(0, 1))
- # Hack für fehlende Markenzuordnung
- df = df.merge(makes, how='left', on='Marke')
- df['Marke'] = np.where(df['Marke_HBV'].isna(), '99', df['Marke'])
- df_debug = df.drop(columns=['Bilanz'])
- logging.info(df_debug.groupby(['Kontoart']).sum())
- logging.info(df_debug.groupby(['Kontoart', 'Konto_1']).sum())
- logging.info(df_debug.groupby(['Konto_Nr']).sum())
- df_debug.groupby(['Konto_Nr']).sum().to_csv(self.debug_file, decimal=',', sep=';', encoding='latin-1')
- # Bereinigung GW-Kostenträger
- df['GW_Verkauf_1'] = (df['Konto_Nr'].str.match(r'^[78]0')) & (df['Kostenstelle'].str.match(r'^[^1]\d'))
- df['Kostenstelle'] = np.where(df['GW_Verkauf_1'] == True, '11', df['Kostenstelle'])
- df['GW_Verkauf_2'] = (df['Konto_Nr'].str.match(r'^[78]1')) & (df['Kostenstelle'].str.match(r'^[^2]\d'))
- df['Kostenstelle'] = np.where(df['GW_Verkauf_2'] == True, '21', df['Kostenstelle'])
- df['GW_Verkauf_3'] = (df['Konto_Nr'].str.match(r'^[78]3')) & (df['Kostenstelle'].str.match(r'^[^3]\d'))
- df['Kostenstelle'] = np.where(df['GW_Verkauf_3'] == True, '31', df['Kostenstelle'])
- df['GW_Verkauf_4'] = (df['Konto_Nr'].str.match(r'^[78]4')) & (df['Kostenstelle'].str.match(r'^[^4]\d'))
- df['Kostenstelle'] = np.where(df['GW_Verkauf_4'] == True, '41', df['Kostenstelle'])
- df['GW_Verkauf_5'] = (df['Konto_Nr'].str.match(r'^[78]5')) & (df['Kostenstelle'].str.match(r'^[^5]\d'))
- df['Kostenstelle'] = np.where(df['GW_Verkauf_5'] == True, '51', df['Kostenstelle'])
- df['GW_Verkauf_50'] = (df['Konto_Nr'].str.match(r'^[78]')) & (df['Kostenstelle'].str.match(r'^2'))
- df['Kostenträger'] = np.where(df['GW_Verkauf_50'] == True, '52', df['Kostenträger'])
- df['Kostenträger'] = np.where((df['GW_Verkauf_50'] == True) & (df['Marke'] == '01'), '50', df['Kostenträger'])
- df['GW_Stk_50'] = (df['Konto_Nr'].str.match(r'^9130')) & (df['Kostenstelle'].str.match(r'^2'))
- df['Kostenträger'] = np.where(df['GW_Stk_50'] == True, '52', df['Kostenträger'])
- df['Kostenträger'] = np.where((df['GW_Stk_50'] == True) & (df['Marke'] == '01'), '50', df['Kostenträger'])
- df['Kostenträger'] = np.where(df['Bilanz'] == True, '00', df['Kostenträger'])
- df['Konto_5er'] = (df['Konto_Nr'].str.match('^5')) | (df['Konto_Nr'].str.match('^9143'))
- df['Absatzkanal'] = np.where(df['Konto_5er'] == True, '99', df['Absatzkanal'])
- df['Teile_30_60'] = (df['Konto_Nr'].str.match(r'^[578]')) & \
- (df['Kostenstelle'].str.match(r'^[3]')) & \
- (df['Kostenträger'].str.match(r'^[^6]'))
- df['Kostenträger'] = np.where(df['Teile_30_60'] == True, '60', df['Kostenträger'])
- df['Service_40_70'] = (df['Konto_Nr'].str.match(r'^[578]')) & \
- (df['Kostenstelle'].str.match(r'^[4]')) & \
- (df['Kostenträger'].str.match(r'^[^7]'))
- df['Kostenträger'] = np.where(df['Service_40_70'] == True, '70', df['Kostenträger'])
- from_label = ['Marke', 'Standort', 'Konto_Nr', 'Kostenstelle', 'Absatzkanal', 'Kostenträger']
- to_label = ['Make', 'Site', 'Account', 'Origin', 'SalesChannel', 'CostCarrier']
- df = df.rename(columns=dict(zip(from_label, to_label)))
- makes = makes.rename(columns=dict(zip(from_label, to_label))).to_dict(orient='records')
- sites = sites.rename(columns=dict(zip(from_label, to_label))).to_dict(orient='records')
- df['CostAccountingString'] = df['Make'] + df['Site'] + df['Origin'] + \
- df['SalesChannel'] + df['CostCarrier']
- df['IsNumeric'] = (df['CostAccountingString'].str.isdigit()) & (df['Account'].str.isdigit()) & (df['Account'].str.len() == 4)
- df_invalid = df[df['IsNumeric'] == False]
- df_invalid.to_csv(self.account_invalid, decimal=',', sep=';', encoding='latin-1', index=False)
- export_csv = self.base_dir + 'export_' + self.current_year + '-' + self.current_month + '.csv'
- xmlfile = export_csv[:-4] + '.xml'
- df.to_csv(export_csv, decimal=',', sep=';', encoding='latin-1', index=False)
- df = df[df['IsNumeric'] != False].groupby(ACCOUNT_INFO, as_index=False).sum()
- # Infos ergänzen
- df['Decimals'] = 2
- # df['OpeningBalance'] = 0.0
- logging.info(df.shape)
- export_file = self.export_xml(df.to_dict(orient='records'), bk_filter, period_no, makes, sites, xmlfile)
- # Join auf Übersetzung - nicht zugeordnet
- df_ignored = df_bookings.merge(df_translate, how='left', on='Konto_Nr_Händler')
- df_ignored = df_ignored[df_ignored['Konto_Nr_SKR51'].isna()] # [['Konto_Nr_Händler', 'Bookkeep Period', 'amount', 'quantity']]
- if not df_ignored.empty:
- df_ignored = df_ignored.pivot_table(index=['Konto_Nr_Händler'], columns=['period'], values='amount',
- aggfunc=np.sum, margins=True, margins_name='CumulatedYear')
- df_ignored.to_csv(self.account_ignored, decimal=',', sep=';', encoding='latin-1')
- return export_file
- def export_xml(self, records, bk_filter, period_no, makes, sites, export_file):
- record_elements = ACCOUNT_INFO + ['Decimals'] + \
- list(bk_filter.values())[:period_no] + ['CumulatedYear']
- root = ET.Element('HbvData')
- h = ET.SubElement(root, 'Header')
- for k, v in self.header(makes, sites).items():
- ET.SubElement(h, k).text = str(v)
- make_list = ET.SubElement(root, 'MakeList')
- for m in makes:
- e = ET.SubElement(make_list, 'MakeListEntry')
- ET.SubElement(e, 'Make').text = m['Make']
- ET.SubElement(e, 'MakeCode').text = m['Marke_HBV']
- bm_code_list = ET.SubElement(root, 'BmCodeList')
- for s in sites:
- e = ET.SubElement(bm_code_list, 'BmCodeEntry')
- ET.SubElement(e, 'Make').text = s['Make']
- ET.SubElement(e, 'Site').text = s['Site']
- ET.SubElement(e, 'BmCode').text = s['Standort_HBV']
- record_list = ET.SubElement(root, 'RecordList')
- for row in records:
- record = ET.SubElement(record_list, 'Record')
- for e in record_elements:
- child = ET.SubElement(record, e)
- field = row.get(e, 0.0)
- if str(field) == 'nan':
- field = '0'
- elif type(field) is float:
- field = '{:.0f}'.format(field * 100)
- child.text = str(field)
- with open(export_file, 'w', encoding='utf-8') as fwh:
- fwh.write(minidom.parseString(ET.tostring(root)).toprettyxml(indent=' '))
- # with open(export_file, 'wb') as fwh:
- # fwh.write(ET.tostring(root))
- return export_file
- def convert_to_row(self, node):
- return [child.text for child in node]
- def convert_xml_to_csv(self, xmlfile, csvfile):
- record_list = ET.parse(xmlfile).getroot().find('RecordList')
- header = [child.tag for child in record_list.find('Record')]
- bookings = [self.convert_to_row(node) for node in record_list.findall('Record')]
- with open(csvfile, 'w') as fwh:
- cwh = csv.writer(fwh, delimiter=';')
- cwh.writerow(header)
- cwh.writerows(bookings)
- return True
- def convert_csv_to_xml(self, csvfile, xmlfile):
- makes = [{'Make': '01', 'Marke_HBV': '1844'}]
- sites = [{'Make': '01', 'Site': '01', 'Marke_HBV': '1844'}]
- with open(csvfile, 'r', encoding='latin-1') as frh:
- csv_reader = csv.DictReader(frh, delimiter=';')
- self.export_xml(csv_reader, self.bookkeep_filter(), 1, makes, sites, xmlfile)
- class Kunden(Enum):
- Altermann = auto()
- Barth_und_Frey = auto()
- Hannuschka = auto()
- Koenig_und_Partner = auto()
- Luchtenberg = auto()
- Russig_Neustadt_deop01 = auto()
- Russig_Neustadt_deop02 = auto()
- Siebrecht = auto()
- if __name__ == '__main__':
- gchr = GCHR(Kunden.Russig_Neustadt_deop02.name)
- export_file = gchr.export_period('2022', '04')
- # convert_xml_to_csv(export_file, export_file[:-4] + '.csv')
- # convert_xml_to_csv('DE2119_2105_150621_080944.xml', 'DE2119_2105_150621_080944.csv')
- # convert_csv_to_xml(base_dir + '../SKR51/maximum.csv', base_dir + '../maximum_2022-01.xml')
|