gchr.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. import pandas as pd
  2. import numpy as np
  3. import xml.etree.ElementTree as ET
  4. from xml.dom import minidom
  5. from datetime import datetime
  6. base_dir = '/home/robert/projekte/python/gcstruct/'
  7. account_translation = base_dir + 'Kontenrahmen_kombiniert.csv'
  8. account_bookings = base_dir + 'GuV_Salden.csv'
  9. first_month_of_financial_year = '07'
  10. current_year = '2021'
  11. current_month = '04'
  12. last_year = str(int(current_year) - 1)
  13. next_year = str(int(current_year) + 1)
  14. def header(makes, sites):
  15. return {
  16. 'Country': 'DE',
  17. 'MainBmCode': sites[0]['Marke_HBV'],
  18. 'Month': current_month,
  19. 'Year': current_year,
  20. 'Currency': 'EUR',
  21. 'NumberOfMakes': len(makes),
  22. 'NumberOfSites': len(sites),
  23. 'ExtractionDate': datetime.now().strftime('%d.%m.%Y'),
  24. 'ExtractionTime': datetime.now().strftime('%H:%M:%S'),
  25. 'BeginFiscalYear': first_month_of_financial_year
  26. }
  27. def bookkeep_filter():
  28. period = [current_year + str(i).zfill(2) for i in range(1, 13)]
  29. if first_month_of_financial_year != '01':
  30. if first_month_of_financial_year > current_month:
  31. period = [last_year + str(i).zfill(2) for i in range(1, 13)] + period
  32. else:
  33. period = period + [next_year + str(i).zfill(2) for i in range(1, 13)]
  34. fm = int(first_month_of_financial_year)
  35. period = period[fm - 1:fm + 12]
  36. rename_to = ['Period' + str(i).zfill(2) for i in range(1, 13)]
  37. return dict(zip(period, rename_to))
  38. def main():
  39. # Übersetzungstabelle laden
  40. df_translate = pd.read_csv(account_translation, decimal=',', sep=';', encoding='latin-1', converters={i: str for i in range(0, 200)})
  41. # Kontensalden laden
  42. df_bookings = pd.read_csv(account_bookings, decimal=',', sep=';', encoding='latin-1', converters={0: str, 1: str})
  43. # Kontensalden auf gegebenen Monat filtern
  44. filter_from = current_year + first_month_of_financial_year
  45. if first_month_of_financial_year > current_month:
  46. filter_from = last_year + first_month_of_financial_year
  47. filter_to = current_year + current_month
  48. df_bookings = df_bookings[(df_bookings['Bookkeep Period'] >= filter_from) & (df_bookings['Bookkeep Period'] <= filter_to)]
  49. bk_filter = bookkeep_filter()
  50. # Spalten konvertieren
  51. df_bookings['period'] = df_bookings['Bookkeep Period'].apply(lambda x: bk_filter[x])
  52. df_bookings['amount'] = df_bookings['Debit Amount'] + df_bookings['Credit Amount']
  53. df_bookings['quantity'] = df_bookings['Debit Quantity'] + df_bookings['Credit Quantity']
  54. # Join auf Übersetzung
  55. df_combined = df_bookings.merge(df_translate, how='inner', on='Konto_Nr_Händler')
  56. # Gruppieren
  57. # df_grouped = df_combined.groupby(['Konto_Nr_SKR51', 'period']).sum()
  58. df_pivot = df_combined.pivot_table(index=['Konto_Nr_SKR51'], columns=['period'], values='amount',
  59. aggfunc=np.sum, margins=True, margins_name='CumulatedYear')
  60. # Infos ergänzen
  61. df_pivot['Decimals'] = 2
  62. df_pivot['OpeningBalance'] = 0.0
  63. df = df_translate.drop(columns=['Konto_Nr_Händler', 'Kostenträger_Ebene']).drop_duplicates()
  64. df = df.merge(df_pivot, how='inner', on='Konto_Nr_SKR51')
  65. from_label = ['Marke', 'Standort', 'Konto_Nr', 'Kostenstelle', 'Absatzkanal', 'Kostenträger']
  66. to_label = ['Make', 'Site', 'Account', 'Origin', 'SalesChannel', 'CostCarrier']
  67. df = df.rename(columns=dict(zip(from_label, to_label)))
  68. df['CostAccountingString'] = df['Make'] + df['Site'] + df['Origin'] + \
  69. df['SalesChannel'] + df['CostCarrier']
  70. makes = df[['Make', 'Marke_HBV']].drop_duplicates().sort_values(by=['Make']).to_dict(orient='records')
  71. sites = df[['Make', 'Site', 'Marke_HBV']].drop_duplicates().sort_values(by=['Make', 'Site']).to_dict(orient='records')
  72. # als xml exportieren
  73. res = df.head().to_dict(orient='records')
  74. record_elements = ['Account', 'Make', 'Site', 'Origin', 'SalesChannel', 'CostCarrier', 'CostAccountingString',
  75. 'Decimals', 'OpeningBalance'] + list(bk_filter.values()) + ['CumulatedYear']
  76. root = ET.Element('HbvData')
  77. h = ET.SubElement(root, 'Header')
  78. for k, v in header(makes, sites).items():
  79. ET.SubElement(h, k).text = str(v)
  80. make_list = ET.SubElement(root, 'MakeList')
  81. for m in makes:
  82. e = ET.SubElement(make_list, 'MakeListEntry')
  83. ET.SubElement(e, 'Make').text = m['Make']
  84. ET.SubElement(e, 'MakeCode').text = m['Marke_HBV']
  85. bm_code_list = ET.SubElement(root, 'BmCodeList')
  86. for s in sites:
  87. e = ET.SubElement(bm_code_list, 'BmCodeListEntry')
  88. ET.SubElement(e, 'Make').text = s['Make']
  89. ET.SubElement(e, 'Site').text = s['Site']
  90. ET.SubElement(e, 'BmCode').text = s['Marke_HBV']
  91. record_list = ET.SubElement(root, 'RecordList')
  92. for row in res:
  93. record = ET.SubElement(record_list, 'Record')
  94. for e in record_elements:
  95. child = ET.SubElement(record, e)
  96. field = row.get(e, 0.0)
  97. if type(field) is float:
  98. field = '{:.0f}'.format(field * 100)
  99. child.text = str(field)
  100. with open(base_dir + 'export_2021-04.xml', 'w', encoding='utf-8') as f:
  101. f.write(minidom.parseString(ET.tostring(root)).toprettyxml(indent=' '))
  102. if __name__ == '__main__':
  103. print(bookkeep_filter())
  104. main()