starmoney.py 2.0 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. import pandas as pd
  2. import numpy as np
  3. from pathlib import Path
  4. year = "2023"
  5. export_dir = f"/home/robert/Nextcloud/Sängerlust Hausen/Kasse/{year}/Export"
  6. kst = {"3115532": "0", "3123981": "1", "3124005": "2", "3123999": "3", "3124039": "4", "3123973": "5", "3124013": "6"}
  7. from_label = [
  8. "Buchungstag",
  9. "Internet",
  10. "Verwendungszweckzeile 1",
  11. "Kommentar",
  12. "KST",
  13. "Verwendungszweckzeile 3",
  14. "Verwendungszweckzeile 4",
  15. "Verwendungszweckzeile 5",
  16. "row_num",
  17. "Einnahmen",
  18. "Ausgaben",
  19. ]
  20. to_label = [
  21. "Datum",
  22. "frei",
  23. "Vorgang",
  24. "Konto",
  25. "KST",
  26. "Nr.",
  27. "Einnahmen_Kasse",
  28. "Ausgaben_Kasse",
  29. "Nr.",
  30. "Einnahmen",
  31. "Ausgaben",
  32. ]
  33. def import_csv(filename):
  34. kto = filename.name.split("_")[0]
  35. print(kto + ": " + kst[kto])
  36. df: pd.DataFrame = pd.read_csv(
  37. filename, sep=";", decimal=",", encoding="utf-8", index_col=["IBAN", "Laufende Nummer"]
  38. ).reset_index()
  39. df["Einnahmen"] = np.where(df["Betrag"] > 0, df["Betrag"], 0)
  40. df["Ausgaben"] = np.where(df["Betrag"] < 0, 0 - df["Betrag"], 0)
  41. df["KST"] = kst[kto]
  42. first_saldo = df.loc[0]["Saldo"] - df.loc[0]["Betrag"]
  43. last_saldo = df.loc[len(df) - 1]["Saldo"]
  44. df = df[df["Betrag"] != 0]
  45. df["row_num"] = np.arange(1, len(df) + 1)
  46. df = df[from_label]
  47. print(df.shape)
  48. first_row = [f"01.01.{year}", "", "Anfangsbestand - SLS " + kto, "AB", kst[kto], "", "", "", 0, first_saldo, 0]
  49. last_row = [f"31.12.{year}", "", "Endbestand - SLS " + kto, "EB", kst[kto], "", "", "", len(df) + 1, 0, last_saldo]
  50. df = pd.concat([pd.DataFrame([first_row], columns=from_label), df, pd.DataFrame([last_row], columns=from_label)])
  51. print(df.shape)
  52. return df
  53. df = [import_csv(f) for f in Path(export_dir).glob("*.csv")]
  54. df_union: pd.DataFrame = pd.concat(df)
  55. print(df_union.shape)
  56. df_union = df_union.rename(columns=dict(zip(from_label, to_label)))
  57. df_union.to_csv(export_dir + "/export.csv.txt", sep=";", decimal=",", encoding="latin-1", index=False)