# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2014, 2020 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # Delimiters # delimiters.commentBegin=/* delimiters.commentEnd=*/ # delimiters.catalogDelimiter= # delimiters.schemaDelimiter= # delimiters.tableDelimiter= # delimiters.columnDelimiter= # delimiters.identifierQuoteString= # delimiters.searchStringEscape= # delimiters.catalogSeparator= # # Keywords # keywords.columnAlias=AS # # Various limits. A value of 0 means no limit, or the limit is unknown. # # limits.maxBinaryLiteralLength= # limits.maxCharLiteralLength= # limits.maxColumnNameLength= # limits.maxColumnsInGroupBy= # limits.maxColumnsInIndex= # limits.maxColumnsInOrderBy= # limits.maxColumnsInSelect= # limits.maxColumnsInTable= # limits.maxConnections= # limits.maxCursorNameLength= # limits.maxIndexLength= # limits.maxSchemaNameLength= # limits.maxProcedureNameLength= # limits.maxCatalogNameLength= # limits.maxRowSize= # limits.maxStatementLength= # limits.maxStatements= # limits.maxTableNameLength= # limits.maxTablesInSelect= # limits.maxUserNameLength= # limits.defaultTransactionIsolation= # limits.maxLengthInClause # # General settings. # general.nullsAreSortedHigh=true general.nullsAreSortedLow=false general.nullsAreSortedAtStart=false general.nullsAreSortedAtEnd=false general.nullsOrdering=false general.nullsOrderingInWindowSpecification=true # # Cursor options - appended to end of generated SELECT statement. general.cursorOptions=FOR FETCH ONLY # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=RANDOM # # Various features. # supports.duplicateColumnsInSelectList=true supports.columnAliasing=true supports.tableCorrelationNames=true supports.expressionsInOrderBy=true supports.aliasInOrderByExpression=false supports.expressionsInINPredicate=true supports.expressionsInSelectList=true supports.booleanExpressionsInSelectList=false supports.likeEscapeClause=true supports.outerJoins=true supports.fullOuterJoins=true supports.subqueriesInComparisons=true supports.subqueriesInExists=true supports.subqueriesInIns=true supports.subqueriesInQuantifieds=true supports.subqueriesInCase=true supports.subqueriesInAggregate=false supports.correlatedSubqueries=true supports.correlatedSubqueriesInSelectList=true supports.correlatedSubqueriesInIns=true supports.withClauseInDerivedTable=false supports.nestedWithClause=false supports.integerDivision=true supports.nestedOlap=true supports.derivedColumnLists=true supports.orderByAlias=true supports.orderByName=true supports.orderByOrdinal=true supports.blobsInGroupBy=false supports.blobsInOrderBy=false supports.scalarSubqueries=true supports.emptyStringIsNull=false supports.stitchJoins=false supports.expressionsInGroupBy=true supports.equiJoins=true supports.thetaJoins=true supports.crossProducts=true supports.orderByUnrelated=true supports.groupByUnrelated=false supports.multipleDistinctAggregates=true supports.recursiveWithClause=false supports.constantsInWindows=false supports.rowNumberNoOrderBy=true supports.callProcedureInDerivedTable=false supports.join.subqueriesInOnClause=true #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Performance properties (force certain transformations to be applied). # performance.convertGroupByToDistinct=false performance.convertDistinctToGroupBy=false performance.convertHavingToWhere=false performance.transitiveClosure=false performance.predicatePushdown=false performance.semiJoin=false # # Command. # commands.Select=SELECT commands.Call= # # Tables. # tables.joined=true tables.derived=true tables.lateral.derived=true # # Constructors. # constructors.table=true constructors.row=true constructors.array=false constructors.period=false constructors.map=false # # Constructors - context overrides. # constructors.row.simpleCase=false constructors.row.between=true constructors.row.in=true constructors.row.isDistinctFrom=false constructors.row.inListToTable=true # # Clauses # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING clauses.With=WITH clauses.WithRecursive= clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.At= clauses.Window= clauses.TableSampleSystem=TABLESAMPLE SYSTEM (%1$s) clauses.TableSampleBernoulli=TABLESAMPLE BERNOULLI (%1$s) # # Joins. # joins.Cross=%1$s CROSS JOIN %2$s joins.Inner=%1$s INNER JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s joins.RightNested=%1$s # # Set operators. # operators.set.Union=%1$s UNION %2$s operators.set.Union.all=%1$s UNION ALL %2$s operators.set.Intersect=%1$s INTERSECT %2$s operators.set.Intersect.all=%1$s INTERSECT ALL %2$s operators.set.Except=%1$s EXCEPT %2$s operators.set.Except.all=%1$s EXCEPT ALL %2$s # # Logical operators. # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) operators.logical.Is= operators.logical.IsNot= # # Arithmetic operators. # operators.arithmetic.Add[any,any]=%1$s + %2$s operators.arithmetic.Subtract[any,any]=%1$s - %2$s operators.arithmetic.Subtract[any,datetime]= operators.arithmetic.Multiply[any,any]=%1$s * %2$s operators.arithmetic.Divide[any,any]=%1$s / %2$s operators.arithmetic.Negate[any]=-%1$s operators.arithmetic.UnaryPlus[any]=+%1$s operators.arithmetic.Concat[any,any]=%1$s || %2$s # # Group By Operators # operators.groupBy.Rollup=ROLLUP operators.groupBy.Cube=CUBE operators.groupBy.GroupingSets=GROUPING SETS # # Comparison predicates. # predicates.comparison.LessThan[any,any]=%1$s < %2$s predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s predicates.comparison.Equals[any,any]=%1$s = %2$s predicates.comparison.NotEquals[any,any]=%1$s <> %2$s predicates.comparison.GreaterThan[any,any]=%1$s > %2$s predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s # # Various predicates. # predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s predicates.In[any,any]=%1$s IN ( %2$s ) predicates.Overlaps[any,any,any,any]= predicates.IsNull=%1$s IS NULL predicates.IsNotNull=%1$s IS NOT NULL predicates.Like=%1$s LIKE %2$s predicates.Like.escape=%1$s LIKE %2$s ESCAPE %3$s predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= predicates.Exists=EXISTS %1$s predicates.All=ALL %1$s predicates.Any=ANY %1$s predicates.Some=SOME %1$s predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions. # expressions.SimpleCase=CASE expressions.SearchedCase=CASE expressions.Coalesce=COALESCE(%1$s) expressions.NullIf=NULLIF(%1$s, %2$s) expressions.SearchedCase.compatibleResults=true # Minimum number of arguments for Coalesce function. expressions.Coalesce.minArgs=2 # # Cast # expressions.Cast[any,any]=CAST(%1$s AS %2$s) expressions.Cast[timestamp,varchar]=cast(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d)) # # Extract # expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s) expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s) expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s) expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s) expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s) expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s) expressions.Extract.TIMEZONE_HOUR[any]= expressions.Extract.TIMEZONE_MINUTE[any]= # # Trim # expressions.Trim.BOTH[any]=TRIM(BOTH FROM %1$s) expressions.Trim.BOTH[any,any]=TRIM(BOTH %1$s FROM %2$s) expressions.Trim.LEADING[any]=TRIM(LEADING FROM %1$s) expressions.Trim.LEADING[any,any]=TRIM(LEADING %1$s FROM %2$s) expressions.Trim.TRAILING[any]=TRIM(TRAILING FROM %1$s) expressions.Trim.TRAILING[any,any]=TRIM(TRAILING %1$s FROM %2$s) # # Windowed aggregates (SQL/OLAP). # olap.Max[any]=MAX(%1$s) olap.Min[any]=MIN(%1$s) olap.Sum[any]=SUM(%1$s) # Avg may return a precise type if expression not coerced to imprecise type olap.Avg[any]=AVG(%1$s) olap.Count[any]=COUNT(%1$s) olap.CountStar[]=COUNT(*) olap.StdDevPop[any]=STDDEV_POP(%1$s) olap.StdDevSamp[any]=STDDEV_SAMP(%1$s) olap.VarPop[any]=VAR_POP(%1$s) olap.VarSamp[any]=VAR_SAMP(%1$s) olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.PercentRank[]= olap.CumeDist[]= olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.Median[any]= olap.RatioToReport[any]= olap.RowNumber[]=ROW_NUMBER() olap.Difference[any]= olap.FirstValue[any]=FIRST_VALUE(%1$s) olap.LastValue[any]=LAST_VALUE(%1$s) # Olap Ntile without an order by will sort nulls first and not last. # Ntile can not be nested in case expression SQLERRMC=SYSIBM.NTILE olap.NTile[any]= olap.Tertile[]= olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, %2$s) olap.Lag[any,any,any]=LAG(%1$s, %2$s, %3$s) olap.Lag[any,any,any,any]=LAG(%1$s, %2$s, %3$s, '%4$s') olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, %2$s) olap.Lead[any,any,any]=LEAD(%1$s, %2$s, %3$s) olap.Lead[any,any,any,any]=LEAD(%1$s, %2$s, %3$s, '%4$s') olap.NthValue[any,any]= olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.Collect[any]= # # Window clause. # olap.Window= olap.PartitionBy=PARTITION BY %1$s # Olap does not allow a constants in the order by list. # Olap does not allow a constants and expressions in the over clause. # Olap does not allow a expressions in the partition by list. olap.OrderBy=ORDER BY %1$s # # Window specification # olap.Window.Specification[POF]=true olap.Window.Specification[PF]=false olap.Window.Specification[OF]=true olap.Window.Specification[PO]=true olap.Window.Specification[P]=true olap.Window.Specification[O]=true olap.Window.Specification[F]=false olap.Window.Specification[]=true olap.Window.Frame.Moving=true # # Olap Distinct # olap.Min.distinct[any]=MIN(DISTINCT %1$s) olap.Max.distinct[any]=MAX(DISTINCT %1$s) olap.Sum.distinct[any]= olap.Avg.distinct[any]= olap.Count.distinct[any]= # # Aggregates # aggregates.Max[any]=MAX(%1$s) aggregates.Min[any]=MIN(%1$s) aggregates.Sum[any]=SUM(%1$s) aggregates.Avg[any]=AVG(%1$s) aggregates.Count[any]=COUNT(%1$s) aggregates.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END) aggregates.CountStar[]=COUNT(*) aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s) aggregates.StdDevPop[any]=STDDEV_POP(%1$s) aggregates.VarSamp[any]=VAR_SAMP(%1$s) aggregates.VarPop[any]=VAR_POP(%1$s) aggregates.Rank[any,any]= aggregates.DenseRank[any,any]= aggregates.PercentRank[any,any]= aggregates.CumeDistH[any,any]= aggregates.PercentileDisc[any,any]= aggregates.PercentileCont[any,any]= aggregates.Median[any]= aggregates.Grouping[any]= aggregates.XMLAgg= aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[any]= # # Aggregates (distinct). # aggregates.Avg.distinct[any]= aggregates.Min.distinct[any]=MIN(DISTINCT %1$s) aggregates.Max.distinct[any]=MAX(DISTINCT %1$s) aggregates.Count.distinct[any]= aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s) # # Linear regression aggregates # aggregates.Corr[any,any]=CORR(%1$s, %2$s) aggregates.CovarPop[any,any]=COVAR_POP(%1$s, %2$s) aggregates.CovarSamp[any,any]=COVAR_SAMP(%1$s, %2$s) aggregates.RegrAvgX[any,any]=REGR_AVGX(%1$s, %2$s) aggregates.RegrAvgY[any,any]=REGR_AVGY(%1$s, %2$s) aggregates.RegrCount[any,any]=REGR_COUNT(%1$s, %2$s) aggregates.RegrIntercept[any,any]=REGR_INTERCEPT(%1$s, %2$s) aggregates.RegrR2[any,any]=REGR_R2(%1$s, %2$s) aggregates.RegrSlope[any,any]=REGR_SLOPE(%1$s, %2$s) aggregates.RegrSXX[any,any]=REGR_SXX(%1$s, %2$s) aggregates.RegrSXY[any,any]=REGR_SXY(%1$s, %2$s) aggregates.RegrSYY[any,any]=REGR_SYY(%1$s, %2$s) # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions # functions.CharLength[any]=CHAR_LENGTH(%1$s) functions.OctetLength[any]=OCTET_LENGTH(%1$s) functions.BitLength[any]=(OCTET_LENGTH(%1$s) * 8) functions.Upper[any]=UPPER(%1$s) functions.Lower[any]=LOWER(%1$s) functions.Substring[any,any]=SUBSTRING(%1$s, %2$s, CODEUNITS32) functions.Substring[any,any,any]=SUBSTRING(%1$s, %2$s, %3$s, CODEUNITS32) functions.Position[any,any]=POSITION(%1$s, %2$s, CODEUNITS32) functions.Position[binary,blob]=LOCATE(blob(%1$s), %2$s) functions.Index[any,any]=POSITION(%2$s, %1$s, CODEUNITS32) functions.Ascii[any]= functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= functions.Round[double,any]=CASE WHEN (%1$s) < 0 THEN (CAST( ( (%1$s) * POWER( 10e0, (%2$s) ) - 0.5 ) AS BIGINT ) / POWER( 10e0, (%2$s) ) ) ELSE (CAST( ( (%1$s) * POWER( 10e0, (%2$s) ) + 0.5 ) AS BIGINT ) / POWER( 10e0, (%2$s) ) ) END functions.Round[float,any]=CASE WHEN (%1$s) < 0 THEN (CAST( ( (%1$s) * POWER( 10e0, (%2$s) ) - 0.5 ) AS BIGINT ) / POWER( 10e0, (%2$s) ) ) ELSE (CAST( ( (%1$s) * POWER( 10e0, (%2$s) ) + 0.5 ) AS BIGINT ) / POWER( 10e0, (%2$s) ) ) END functions.SubstringR[any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s, CODEUNITS32) - ABS(%2$s) + 1), CODEUNITS32)) ELSE (SUBSTRING(%1$s, %2$s, CODEUNITS32)) END functions.SubstringR[any,any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s, CODEUNITS32) - ABS(%2$s) + 1), %3$s, CODEUNITS32)) ELSE (SUBSTRING(%1$s, %2$s, %3$s, CODEUNITS32)) END # # Regular expression functions. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # FDS functions. # functions.cast_longvarchar[any]=CAST(%1$s AS LONG VARCHAR) functions.cast_longvarchar[time]=CAST(CHAR(%1$s,JIS) AS LONG VARCHAR) # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Ceiling[any]=CEILING(%1$s) functions.Exp[any]=EXP(%1$s) functions.Floor[any]=FLOOR(%1$s) functions.Ln[any]=LN(%1$s) functions.Log10[any]=LOG10(%1$s) functions.Mod[any,any]=MOD(%1$s, %2$s) functions.Power[any,any]=POWER(%1$s, %2$s) functions.Random[]=RAND() functions.Random[any]=RAND(%1$s) functions.Round[any]=ROUND(%1$s) functions.Round[any,any]=ROUND(%1$s, %2$s) functions.Round[any,any,any]= functions.Sign[any]=SIGN(%1$s) functions.Sqrt[any]=SQRT(%1$s) functions.WidthBucket[any,any,any,any]=WIDTH_BUCKET(%1$s, %2$s, %3$s, %4$s) # # Array scalar functions # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trigonometric functions. # functions.Arccos[any]=ACOS(%1$s) functions.Arcsin[any]=ASIN(%1$s) functions.Arctan[any]=ATAN(%1$s) functions.Cos[any]=COS(%1$s) functions.Coshyp[any]=COSH(%1$s) functions.Sin[any]=SIN(%1$s) functions.Sinhyp[any]=SINH(%1$s) functions.Tan[any]=TAN(%1$s) functions.Tanhyp[any]=TANH(%1$s) # # Datetime value functions. # functions.CurrentDate[]=CURRENT_DATE functions.CurrentTime[]= functions.CurrentTime[numeric]= functions.CurrentTimestamp[]= functions.CurrentTimestamp[numeric]= functions.LocalTime[]= functions.LocalTime[numeric]= functions.LocalTimestamp[]= functions.LocalTimestamp[numeric]= # # XML functions. # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= functions.XMLElement.ContentOption.NULL_ON_NULL=false functions.XMLElement.ContentOption.EMPTY_ON_NULL=false functions.XMLForest.ContentOption.NULL_ON_NULL=false functions.XMLForest.ContentOption.EMPTY_ON_NULL=false functions.XMLParse.DocumentOrContent.DOCUMENT=false functions.XMLParse.DocumentOrContent.CONTENT=false functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=false functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=false functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business functions. # functions.AddFractionalSeconds[any,any]= functions.AddSeconds[timestamp,numeric]=ADD_SECONDS(%1$s, %2$s) functions.AddSeconds[any,any]= functions.AddMinutes[timestamp,numeric]=ADD_MINUTES(%1$s, %2$s) functions.AddMinutes[any,any]= functions.AddHours[timestamp,numeric]=ADD_HOURS(%1$s, %2$s) functions.AddHours[any,any]= functions.AddDays[any,any]=ADD_DAYS(%1$s, %2$s) functions.AddWeeks[any,any]= functions.AddMonths[any,any]=ADD_MONTHS(%1$s, %2$s) functions.AddQuarters[any,any]= functions.AddYears[any,any]=ADD_YEARS(%1$s, %2$s) functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]=SECONDS_BETWEEN(%1$s, %2$s) functions.MinutesBetween[any,any]=MINUTES_BETWEEN(%1$s, %2$s) functions.HoursBetween[any,any]=HOURS_BETWEEN(%1$s, %2$s) functions.DaysBetween[any,any]=DAYS_BETWEEN(%1$s, %2$s) functions.WeeksBetween[any,any]=WEEKS_BETWEEN(%1$s, %2$s) functions.MonthsBetween[any,any]=CAST(TRUNC(MONTHS_BETWEEN(%1$s, %2$s)) AS INTEGER) functions.QuartersBetween[any,any]= functions.QuartersBetween[timestamp,timestamp]=TIMESTAMPDIFF(128, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s)))) functions.YearsBetween[any,any]=YEARS_BETWEEN(%1$s, %2$s) functions.Age[any]=AGE(%1$s) functions.DayOfWeek[any,any]=(MOD(DAYOFWEEK(%1$s) - 1 + 7 - (%2$s), 7) + 1) functions.DayOfYear[any]=DAYOFYEAR(%1$s) functions.DaysToEndOfMonth[any]=DAYS_TO_END_OF_MONTH(%1$s) functions.FirstOfMonth[any]=FIRST_DAY(%1$s) functions.LastOfMonth[any]=LAST_DAY(%1$s) functions.MakeTimestamp[any,any,any]=TIMESTAMP_ISO( DATE( CHAR( RIGHT( DIGITS( %1$s ), 4 ) || '-' || RIGHT( DIGITS( %2$s ), 2 ) || '-' || RIGHT( DIGITS( %3$s ), 2 ) ) ) ) functions.WeekOfYear[any]=WEEK_ISO(%1$s) functions.YMDIntBetween[any,any]=YMD_BETWEEN(%1$s, %2$s) # # Table functions # # # Literals # literals.binary=false literals.boolean=false literals.smallint=true literals.decimal=false literals.float=true literals.char=false literals.nchar=false literals.varchar=true literals.nvarchar=false literals.blob=false literals.clob=false literals.nclob=false literals.date=true literals.time=false literals.time_with_time_zone=false literals.timestamp=true literals.timestamp_with_time_zone=false literals.interval_year=false literals.interval_month=false literals.interval_year_to_month=false literals.interval_day=false literals.interval_hour=false literals.interval_minute=false literals.interval_second=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute_to_second=false literals.xml=false literals.BADMATCHdistinct=false literals.array=false literals.perioddate=false # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. literals.format.boolean=TRUE:FALSE:UNKNOWN literals.format.char='%s' literals.format.varchar='%s' literals.format.clob='%s' literals.format.date=DATE('%1$04d-%2$02d-%3$02d') literals.format.interval_day=INTERVAL %3$s'%1$d' DAY literals.format.interval_day_to_hour=INTERVAL %4$s'%1$d %2$d' DAY TO HOUR literals.format.interval_day_to_minute=INTERVAL %5$s'%1$d %2$02d:%3$02d' DAY TO MINUTE literals.format.interval_day_to_second=INTERVAL %8$s'%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY TO SECOND literals.format.interval_hour=INTERVAL %3$s'%1$d' HOUR literals.format.interval_hour_to_minute=INTERVAL %4$s'%1$02d:%2$02d' HOUR TO MINUTE literals.format.interval_hour_to_second=INTERVAL %7$s'%1$02d:%2$02d:%3$02d%4$.10s' HOUR TO SECOND literals.format.interval_minute=INTERVAL %3$s'%1$d' MINUTE literals.format.interval_minute_to_second=INTERVAL %6$s'%1$02d:%2$02d%3$.10s' MINUTE TO SECOND literals.format.interval_second=INTERVAL %3$s'%1$d%2$.10s' SECOND literals.format.interval_year=INTERVAL %3$s'%1$d' YEAR literals.format.interval_year_to_month=INTERVAL %4$s'%1$d-%2$d' YEAR TO MONTH literals.format.interval_month=INTERVAL %3$s'%1$d' MONTH literals.format.nchar='%s' literals.format.nvarchar='%s' literals.format.time=TIME('%1$02d:%2$02d:%3$02d') literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'} literals.format.timestamp=TIMESTAMP('%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s') literals.format.timestamp_with_time_zone={ts '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'} # # Data types. # dataType.smallint=true dataType.integer=true dataType.long=true dataType.decimal=false dataType.float=true dataType.double=true dataType.char=false dataType.nchar=false dataType.varchar=true dataType.nvarchar=false dataType.clob=false dataType.blob=false dataType.date=true dataType.time=false dataType.time_with_time_zone=false dataType.timestamp=true dataType.timestamp_with_time_zone=false dataType.interval_year=false dataType.interval_month=false dataType.interval_year_to_month=false dataType.interval_day=false dataType.interval_hour=false dataType.interval_minute=false dataType.interval_second=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute_to_second=false dataType.boolean=false dataType.binary=false dataType.xml=false dataType.perioddate=false dataType.array=false dataType.struct=false dataType.map=false dataType.json=false # # Collation # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence collation.sequence.sql= # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. database.charset.sql=