# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2005, 2020 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # Delimiters # # While a vendor may parse a statement with comments it may strip them out and the server not see them delimiters.commentBegin=/* delimiters.commentEnd=*/ # delimiters.catalogDelimiter= # delimiters.schemaDelimiter= # delimiters.tableDelimiter= # delimiters.columnDelimiter= # delimiters.identifierQuoteString= # delimiters.searchStringEscape= # delimiters.catalogSeparator= # # Keywords # keywords.columnAlias=AS # # Limits # # Normally these values would be derived from the JDBC driver DatabaseMetadata # limits.maxBinaryLiteralLength= # limits.maxCharLiteralLength= # limits.maxColumnNameLength= # limits.maxColumnsInGroupby= # limits.maxColumnsInIndex= # limits.maxColumnsInOrderBy= # limits.maxColumnsInSelect= # limits.maxColumnsInTable= # limits.maxConnections= # limits.maxCursorNameLength= # limits.maxIndexLength= # limits.maxSchemaNameLength= # limits.maxProcedureNameLength= # limits.maxCatalogNameLength= # limits.maxRowSize= # limits.maxStatementLength= # limits.maxStatements= # limits.maxTableNameLength= # limits.maxTablesInSelect= # limits.maxUserNameLength= # limits.defaultTransactionIsolation= # limits.maxLengthInClause limits.castClobToVarcharMaxSize=21845 # # General # # # Null ordering # # No support is provided for vendors who change how nulls sort based on data type. general.nullsAreSortedAtEnd=false general.nullsAreSortedAtStart=false general.nullsAreSortedHigh=false general.nullsAreSortedLow=true # Unable to specificy how nulls order on a cursor. general.nullsOrdering=false # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=RANDOM # # Various # supports.columnAliasing=true supports.tableCorrelationNames=true supports.expressionsInOrderBy=true supports.orderByAlias=true supports.orderByName=true supports.orderByOrdinal=true supports.expressionsInINPredicate=true supports.likeEscapeClause=true supports.fullOuterJoins=false supports.outerJoins=false # Subquery column alias not supported # MemSQL imposes various restrictions on subqueries some of which cannot all be accounted for by DQM supports.subqueriesInComparisons=true supports.subqueriesInExists=true supports.subqueriesInIns=true supports.subqueriesInQuantifieds=true supports.subqueriesInCase=false supports.correlatedSubqueries=false supports.correlatedSubqueriesInSelectList=false supports.correlatedSubqueriesInIns=false supports.subqueriesInAggregate=false supports.scalarSubqueries=true supports.withClauseInDerivedTable=false supports.nestedWithClause=false supports.recursiveWithClause=false supports.integerDivision=false supports.nestedOlap=false supports.derivedColumnLists=false # Does not allow grouping on non project column supports.blobsInGroupBy=false supports.blobsInOrderBy=false supports.emptyStringIsNull=false supports.expressionsInGroupBy=true supports.duplicateColumnsInSelectList=true supports.expressionsInOrderBy=true supports.aliasInOrderByExpression=true supports.orderByUnrelated=true supports.groupByUnrelated=false supports.callProcedureInDerivedTable=false supports.rowNumberNoOrderBy=true supports.parameterMarkers=false supports.constantsInWindows=true # moser thinks "null" is a schema name supports.schemasInDataManipulation=false supports.join.subqueriesInOnClause=false #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Grouping query optimization # # If the RDBMS has costing/execution issues with group by or distinct consider these transforms performance.convertGroupByToDistinct=false performance.convertDistinctToGroupBy=false # V5 master-detail optimization when allRows optimization is specified v5.master-detail.transform=false # # Commands # commands.Select=SELECT commands.Call= # # Tables # tables.joined=true tables.derived=true tables.lateral.derived=false # # Constructors # constructors.table=false constructors.row=false constructors.array=false constructors.period=false constructors.row.simpleCase=false constructors.row.between=false constructors.row.isDistinctFrom=false constructors.row.comparison=false constructors.row.in=false constructors.row.inListToTable=false # # Clauses # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING # Does not allow column list in common table expression # Recursive form of common table expression not supported clauses.WithRecursive= # Common table expression cannot be used within a derived table clauses.With=WITH clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.Top=LIMIT %1$s clauses.At= clauses.Window= clauses.TableSampleSystem= clauses.TableSampleBernoulli= clauses.ForSystemTimeAsOf= clauses.ForSystemTimeFrom= clauses.ForSystemTimeBetween= # # Joins # joins.Cross=%1$s CROSS JOIN %2$s joins.Inner=%1$s INNER JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter= joins.RightNested=(%1$s) # # Set Operators # # One or more set operations does not follow ISO data type combination rules. Can effect set operations, CASE, COALESCE... operators.set.Union=%1$s UNION %2$s operators.set.Union.all=%1$s UNION ALL %2$s operators.set.Intersect= operators.set.Intersect.all= operators.set.Except= operators.set.Except.all= # # Logical Operators # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) operators.logical.Is=%1$s IS %2$s operators.logical.IsNot=%1$s IS NOT %2$s # # Arithmetic and Character operators # operators.arithmetic.Add[any,any]=%1$s + %2$s operators.arithmetic.Subtract[any,any]=%1$s - %2$s operators.arithmetic.Subtract[datetime,datetime]= operators.arithmetic.Multiply[any,any]=%1$s * %2$s operators.arithmetic.Divide[any,any]=%1$s / %2$s operators.arithmetic.UnaryPlus[any]=+%1$s operators.arithmetic.Negate[any]=-%1$s # MySQL config may presume ANSI concat means or operation operators.arithmetic.Concat[any,any]=concat(%1$s, %2$s) # # Grouping Operators # operators.groupBy.Rollup= operators.groupBy.Cube= operators.groupBy.GroupingSets= # # Comparison Predicates # predicates.comparison.Equals[any,any]=%1$s = %2$s predicates.comparison.GreaterThan[any,any]=%1$s > %2$s predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s predicates.comparison.LessThan[any,any]=%1$s < %2$s predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s predicates.comparison.NotEquals[any,any]=%1$s <> %2$s # # Predicates # predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s predicates.In[any,any]=%1$s IN ( %2$s ) predicates.Overlaps[any,any,any,any]= predicates.IsNull=%1$s IS NULL predicates.IsNotNull=%1$s IS NOT NULL predicates.Like=%1$s LIKE %2$s predicates.Like.escape=%1$s LIKE %2$s ESCAPE %3$s predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= predicates.Exists=EXISTS %1$s predicates.All= predicates.Any= predicates.Some= predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions # expressions.ArrayElementRef.zeroBased=false # # Conditional expressions # # One or more case operations does not follow ISO type rules. expressions.SimpleCase=CASE expressions.SearchedCase=CASE expressions.Coalesce=COALESCE(%1$s) expressions.NullIf=NULLIF(%1$s, %2$s) # MySQL returns a varchar data type #expressions.NullIf[any,datetime]= #expressions.NullIf[datetime,any]= # NULLIF(%1$s, %2$s) is equivalent to CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END # # Cast # # MySQL offers limited target types expressions.Cast[any,any]=CAST(%1$s AS %2$s) expressions.Cast[any,char]= expressions.Cast[any,varchar]= expressions.Cast[any,nvarchar]= expressions.Cast[any,smallint]= expressions.Cast[any,float]= expressions.Cast[any,double]= expressions.Cast[any,clob]= expressions.Cast[any,long]= expressions.Cast[any,nchar]= expressions.Cast[any,integer]=CAST(TRUNCATE(%1$s, 0) AS SIGNED %2$s) expressions.Cast[char,timestamp]= expressions.Cast[nchar,time]= expressions.Cast[nchar,timestamp]= expressions.Cast[varchar,timestamp]= expressions.Cast[nvarchar,decimal]= expressions.Cast[nvarchar,date]= expressions.Cast[nvarchar,time]= expressions.Cast[nvarchar,timestamp]= expressions.Cast[blob,blob]= expressions.Cast[clob,any]= expressions.Cast[any,timestamp]=CAST(%1$s as DATETIME) expressions.Cast[time,timestamp]= expressions.Cast[timestamp,timestamp]= expressions.Cast[time,time]= expressions.Cast[timestamp,time]= expressions.Cast[time_with_time_zone,timestamp]= expressions.Cast[timestamp_with_time_zone,timestamp]= # # Extract # expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s) expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s) expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s) expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s) expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s) expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s) + EXTRACT(MICROSECOND FROM %1$s)/1000000 expressions.Extract.TIMEZONE_HOUR[any]= expressions.Extract.TIMEZONE_MINUTE[any]= # # Trim # expressions.Trim.BOTH[any]=TRIM(BOTH FROM %1$s) expressions.Trim.LEADING[any]=TRIM(LEADING FROM %1$s) expressions.Trim.TRAILING[any]=TRIM(TRAILING FROM %1$s) expressions.Trim.BOTH[any,any]=TRIM(BOTH %1$s FROM %2$s) expressions.Trim.LEADING[any,any]=TRIM(LEADING %1$s FROM %2$s) expressions.Trim.TRAILING[any,any]=TRIM(TRAILING %1$s FROM %2$s) # # Window clause # # Lack of window ordering impacts many aggregates being pushed # Unable to specify a literal in window ordering # Unable to specify ordering in a window general.nullsOrderingInWindowSpecification=false olap.PartitionBy=PARTITION BY %1$s olap.OrderBy=ORDER BY %1$s # # Window specification # olap.Window.Specification[POF]=true olap.Window.Specification[PF]=true olap.Window.Specification[OF]=true olap.Window.Specification[PO]=true olap.Window.Specification[P]=true olap.Window.Specification[O]=true olap.Window.Specification[F]=false olap.Window.Specification[]=true olap.Window.Frame.Moving=false # # Olap Distinct # olap.Min.distinct[any]= olap.Max.distinct[any]= olap.Sum.distinct[any]= olap.Avg.distinct[any]= olap.Count.distinct[any]= # # Aggregates # aggregates.Max[any]=MAX(%1$s) aggregates.Min[any]=MIN(%1$s) aggregates.Count[any]=COUNT(%1$s) aggregates.CountStar[]=COUNT(*) aggregates.Sum[any]=SUM(%1$s) aggregates.Avg[any]=AVG(%1$s) aggregates.StdDevPop[any]=STDDEV_POP(%1$s) aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s) aggregates.VarPop[any]=VAR_POP(%1$s) aggregates.VarSamp[any]=VAR_SAMP(%1$s) aggregates.Rank[any,any]= aggregates.DenseRank[any,any]= aggregates.PercentRank[any,any]= aggregates.CumeDistH[any,any]= aggregates.PercentileCont[any,any]= aggregates.PercentileDisc[any,any]= aggregates.Median[any]= aggregates.Grouping[any]= aggregates.XMLAgg= aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[any]=approx_count_distinct(%1$s) # # Distinct aggregates # aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s) aggregates.Min.distinct[any]=MIN(DISTINCT %1$s) aggregates.Max.distinct[any]=MAX(DISTINCT %1$s) aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s) aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s) # # Linear regression aggregates # aggregates.Corr[any,any]= aggregates.CovarPop[any,any]= aggregates.CovarSamp[any,any]= aggregates.RegrAvgX[any,any]= aggregates.RegrAvgY[any,any]= aggregates.RegrCount[any,any]= aggregates.RegrIntercept[any,any]= aggregates.RegrR2[any,any]= aggregates.RegrSlope[any,any]= aggregates.RegrSXX[any,any]= aggregates.RegrSXY[any,any]= aggregates.RegrSYY[any,any]= # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions # # Upper does not support character lobs functions.Upper[any]=UPPER(%1$s) # Lower does not support character lobs functions.Lower[any]=LOWER(%1$s) functions.CharLength[any]=CHAR_LENGTH(%1$s) functions.OctetLength[any]= functions.BitLength[any]= # Substring failed exception cases functions.Substring[any,any]=SUBSTRING(%1$s FROM %2$s) functions.Substring[any,any,any]=SUBSTRING(%1$s FROM %2$s FOR %3$s) functions.Position[any,any]=POSITION(%1$s IN %2$s) functions.Index[any,any]= functions.Ascii[any]= functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= #Substring function to negative START value to parse the input string from its rightmost end. functions.SubstringR[any,any]=SUBSTRING(%1$s FROM %2$s) functions.SubstringR[any,any,any]=SUBSTRING(%1$s FROM %2$s FOR %3$s) # # Regular expression functions. # Oracle uses POSIX regular expressions. Need to determine the difference between XQuery and POSIX. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Abs[interval_day_time]= functions.Abs[interval_year_month]= functions.Ceiling[any]=CEIL(%1$s) functions.Exp[any]=EXP(%1$s) functions.Floor[any]=FLOOR(%1$s) # Ln failed exception cases functions.Ln[any]=LN(%1$s) functions.Log10[any]=LOG10(%1$s) # Mod failed exception cases functions.Random[]=RAND() functions.Random[any]=RAND(%1$s) functions.Round[any]=ROUND(%1$s) functions.Round[any,any]=ROUND(%1$s, %2$s) functions.Round[any,any,any]= functions.Sign[any]=SIGN(%1$s) # Sqrt failed exception cases functions.Sqrt[any]=SQRT(%1$s) functions.WidthBucket[any,any,any,any]= # # Array scalar functions. # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trig Functions # functions.Arccos[any]=ACOS(%1$s) functions.Cos[any]=COS(%1$s) functions.Coshyp[any]= functions.Arcsin[any]=ASIN(%1$s) functions.Sin[any]=SIN(%1$s) functions.Sinhyp[any]= functions.Arctan[any]=ATAN(%1$s) functions.Tan[any]=TAN(%1$s) functions.Tanhyp[any]= # # Olap Functions # olap.Min[any]=MIN(%1$s) olap.Max[any]=MAX(%1$s) olap.Sum[any]=SUM(%1$s) olap.Avg[any]=AVG(%1$s) olap.Count[any]=COUNT(%1$s) olap.CountStar[]=COUNT(*) olap.FirstValue[any]= olap.LastValue[any]= olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, %2$s) olap.Lag[any,any,any]= olap.Lag[any,any,any,any]= olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, %2$s) olap.Lead[any,any,any]= olap.Lead[any,any,any,any]= olap.NTile[any]=NTILE(%1$s) olap.NthValue[any,any]= olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.Median[any]= olap.Tertile[]= olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.PercentRank[]=PERCENT_RANK() olap.CumeDist[]= olap.RatioToReport[any]= olap.RowNumber[]=ROW_NUMBER() olap.Difference[any]= olap.Collect[any]= # # Temporal value expressions # # Note: JDBC does not define fractional seconds for TIME data type. functions.CurrentDate[]=CURRENT_DATE functions.CurrentTime[]= functions.CurrentTimestamp[]= functions.CurrentTimestamp[numeric]= # current niladic functions are not with time zone functions.LocalTime[]=CURRENT_TIME functions.LocalTime[numeric]= functions.LocalTimestamp[]=CURRENT_TIMESTAMP functions.LocalTimestamp[numeric]=LOCALTIMESTAMP(%1$s) # # XML Functions # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business functions. # functions.AddFractionalSeconds[any,any]= functions.AddSeconds[any,any]= functions.AddMinutes[any,any]= functions.AddHours[any,any]= functions.AddDays[any,any]=date_add(%1$s, interval floor(%2$s) day) functions.AddWeeks[any,any]= functions.AddMonths[any,any]=date_add(%1$s, interval floor(%2$s) month) functions.AddQuarters[any,any]= functions.AddYears[any,any]=date_add(%1$s, interval floor(%2$s) year) functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]= functions.MinutesBetween[any,any]= functions.HoursBetween[any,any]= functions.DaysBetween[any,any]= functions.WeeksBetween[any,any]= functions.MonthsBetween[any,any]= functions.QuartersBetween[any,any]= functions.YearsBetween[any,any]=((year(%1$s) - year(%2$s))) functions.Age[any]= functions.DayOfWeek[any,any]=mod(dayofweek(%1$s)+7-%2$s,7) functions.DayOfYear[any]=(dayofyear(%1$s)) functions.DaysToEndOfMonth[any]=(cast(last_day(%1$s) as date) - cast(%1$s as date)) functions.FirstOfMonth[any]=(%1$s - interval(dayofmonth(%1$s)-1) day) functions.LastOfMonth[any]=(last_day(%1$s)) functions.YMDIntBetween[any,any]= functions.MakeTimestamp[any,any,any]= functions.WeekOfYear[any]=WEEKOFYEAR(%1$s) # # Literals # literals.integer=true literals.smallint=true literals.long=true literals.decimal=true literals.float=true literals.double=true literals.char=true literals.nchar=true literals.varchar=true literals.nvarchar=true literals.clob=true literals.date=true literals.time=true literals.timestamp=true literals.time_with_time_zone=false literals.timestamp_with_time_zone=false literals.interval_year=false literals.interval_month=false literals.interval_year_to_month=false literals.interval_day=false literals.interval_hour=false literals.interval_minute=false literals.interval_second=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute_to_second=false literals.binary=true literals.boolean=true literals.xml=true # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 7 characters: '.' followed by 6 character # 0-padded string representing nanoseconds or empty. literals.format.boolean=TRUE:FALSE:UNKNOWN literals.format.char='%s' literals.format.clob='%s' literals.format.date=DATE('%1$04d-%2$02d-%3$02d') literals.format.nchar='%s' literals.format.nvarchar='%s' literals.format.time=TIME('%1$02d:%2$02d:%3$02d%4$.7s') literals.format.timestamp=TIMESTAMP('%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s') literals.format.varchar='%s' # # DataTypes # dataType.smallint=true dataType.integer=true dataType.long=true dataType.decimal=true dataType.float=true dataType.double=true dataType.char=true dataType.nchar=false dataType.varchar=true dataType.nvarchar=true dataType.clob=true dataType.blob=true dataType.date=true dataType.time=true dataType.time_with_time_zone=false dataType.timestamp=true dataType.timestamp_with_time_zone=false dataType.interval_year=false dataType.interval_month=false dataType.interval_year_to_month=false dataType.interval_day=false dataType.interval_hour=false dataType.interval_minute=false dataType.interval_second=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute_to_second=false dataType.boolean=false dataType.binary=false dataType.xml=false dataType.period=false # # Collation # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence collation.sequence.sql= # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. database.charset.sql= # # dataType.comparable # # Used to indicate that some data types that are comparable locally may not by the database # e.g. dataType.comparable[varchar,nvarchar]=false # # dataType.promotion # # Used to indicate what direction the promotion needs to occur # -> these properties are not symetrical # e.g. dataType.promotion[char,nvarchar]=true