# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2017, 2020 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # Delimiters # delimiters.commentBegin= delimiters.commentEnd= # delimiters.catalogDelimiter= # delimiters.schemaDelimiter= # delimiters.tableDelimiter= # delimiters.columnDelimiter= #delimiters.identifierQuoteString= # delimiters.searchStringEscape= # delimiters.catalogSeparator= # # Limits # # Normally these values would be derived from the JDBC driver DatabaseMetadata # limits.maxBinaryLiteralLength= # limits.maxCharLiteralLength= # limits.maxColumnNameLength= # limits.maxColumnsInGroupBy= # limits.maxColumnsInIndex= # limits.maxColumnsInOrderBy= # limits.maxColumnsInSelect= # limits.maxColumnsInTable= # limits.maxConnections= # limits.maxCursorNameLength= # limits.maxIndexLength= # limits.maxSchemaNameLength= # limits.maxProcedureNameLength= # limits.maxCatalogNameLength= # limits.maxRowSize= # limits.maxStatementLength= # limits.maxStatements= limits.maxStatements=1 # limits.maxTableNameLength= # limits.maxTablesInSelect= # limits.maxUserNameLength= limits.defaultTransactionIsolation= # limits.maxLengthInClause # # Keywords # keywords.columnAlias=AS # # General # # # Null ordering # # No support is provided for vendors who change how nulls sort based on data type. general.nullsAreSortedLow=true general.nullsOrdering=false # Unable to specify ordering in a window general.nullsOrderingInWindowSpecification=false # Cursor options - appended to end of generated SELECT statement. general.cursorOptions= # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=RANDOM # # Various # supports.duplicateColumnsInSelectList=true supports.columnAliasing=true supports.tableCorrelationNames=true supports.expressionsInSelectList=true supports.expressionsInINPredicate=true supports.expressionsInOrderBy=true supports.booleanExpressionsInSelectList=true supports.fieldsOfComplexTypeInSelectList=false supports.nestedOlap=false supports.orderByAlias=true supports.orderByName=true supports.orderByOrdinal=true supports.blobsInGroupBy=false supports.blobsInOrderBy=false # Results for other scalar, aggregate and set operations will differ from DQM/ISO-SQL. supports.emptyStringIsNull=false supports.crossProducts=true supports.multipleDistinctAggregates=true supports.rowNumberNoOrderBy=false supports.expressionsInSelectList=true supports.likeEscapeClause=false supports.outerJoins=true supports.fullOuterJoins=true supports.withClauseInDerivedTable=false supports.derivedColumnLists=false supports.expressionsInINPredicate=true # Subqueries not supported in Having # Subqueries not supported in Group-by # Subquery column alias not supported supports.subqueriesInComparisons=true supports.subqueriesInExists=true supports.subqueriesInIns=true supports.subqueriesInQuantifieds=false supports.subqueriesInOnClause=false supports.subqueriesInCase=false supports.correlatedSubqueries=false supports.correlatedSubqueriesInSelectList=false supports.correlatedSubqueriesInIns=false supports.scalarSubqueries=false supports.nestedWithClause=false supports.integerDivision=false supports.expressionsInGroupBy=true supports.expressionsInOrderBy=true supports.aliasInOrderByExpression=false supports.orderByUnrelated=true supports.groupByUnrelated=false supports.thetaJoins=true supports.equiJoins=true supports.crossProducts=false supports.recursiveWithClause=false supports.orderByInDerivedTable=true supports.callProcedureInDerivedTable=false supports.constantsInWindows=true #join condition supports.join.betweenInOnClause=true supports.join.inPredicateInOnClause=true supports.join.isNullInOnClause=true supports.join.likeInOnClause=true supports.join.notInOnClause=true supports.join.orInOnClause=true supports.join.subqueriesInOnClause=true supports.join.onlyEquiWithAnd=false supports.join.inner.limitedThetaJoins=false supports.join.outer.thetaJoins=true supports.join.full.thetaJoins=true supports.join.full.distinctJoins=true supports.rewriteImplicitCrossJoins=true supports.constantsInCount=true supports.hanaInputParameters=false #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Grouping query optimization # # If the RDBMS has costing/execution issues with group by or distinct consider these transforms performance.convertGroupByToDistinct=false performance.convertDistinctToGroupBy=false # V5 master-detail optimization when allRows optimization is specified v5.master-detail.transform=false performance.convertHavingToWhere=false performance.transitiveClosure=false performance.predicatePushdown=false performance.semiJoin=false # RTC 377496 # Set this entry to F to avoid generation of predicates of the form # T1.C1 = T2.C1 OR ( T1.C1 IS NULL AND T2.C1 IS NULL ). Care must be # taken, however, since doing so may cause data integrity problems if # data contains null values. performance.generateEqualOrNull=true # # Commands # commands.Select=SELECT commands.Call= # # Tables # tables.joined=true tables.derived=true tables.lateral.derived=false # # Constructors # constructors.table=false constructors.row=false constructors.array=true constructors.period=false constructors.map=false # # Constructors - context overrides. # constructors.row.simpleCase=false constructors.row.between=false constructors.row.isDistinctFrom=false constructors.row.inListToTable=false # # Clauses # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING # Does not allow column list in common table expression # Recursive form of common table expression not supported clauses.WithRecursive= clauses.With=WITH clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.Top=LIMIT %1$s clauses.At= clauses.Window= clauses.TableSampleSystem= clauses.TableSampleBernoulli= clauses.ForSystemTimeAsOf= clauses.ForSystemTimeFrom= clauses.ForSystemTimeBetween= # # Joins # # Does not allow on condition to use set functions # Does not allow join conditions to use sub-queries joins.Cross=%1$s CROSS JOIN %2$s joins.Inner=%1$s INNER JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s joins.RightNested= # # Set Operators # operators.set.Union=%1$s UNION DISTINCT %2$s operators.set.Union.all=%1$s UNION ALL %2$s operators.set.Intersect=%1$s INTERSECT DISTINCT %2$s operators.set.Intersect.all= operators.set.Except=%1$s EXCEPT DISTINCT %2$s operators.set.Except.all= # # Logical Operators # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) operators.logical.Is= operators.logical.IsNot= operators.logical.IsJson= operators.logical.IsNotJson= # # Arithmetic and Character operators # # SPARK APACHE JIRA HIVE-9537 operators.arithmetic.Concat[char,any]= operators.arithmetic.Concat[any,char]= operators.arithmetic.Concat[any,any]=concat(%1$s, %2$s) operators.arithmetic.Add[timestamp,any]= operators.arithmetic.Add[any,timestamp]= operators.arithmetic.Add[date,any]= operators.arithmetic.Add[any,date]= operators.arithmetic.Subtract[date,any]= operators.arithmetic.Subtract[any,date]= operators.arithmetic.Subtract[timestamp,any]= operators.arithmetic.Subtract[any,timestamp]= operators.arithmetic.UnaryPlus[any]=+%1$s operators.arithmetic.Negate[any]=-%1$s # # Grouping Operators # # some cases where SPARK SQL does not support grouping set scenarios other SQL engines support operators.groupBy.Rollup= operators.groupBy.Cube= operators.groupBy.GroupingSets= # # Comparison Predicates # predicates.comparison.Equals[any,any]=%1$s = %2$s predicates.comparison.GreaterThan[any,any]=%1$s > %2$s predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s predicates.comparison.LessThan[any,any]=%1$s < %2$s predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s predicates.comparison.NotEquals[any,any]=%1$s <> %2$s # # Predicates # predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s predicates.In[any,any]=%1$s IN ( %2$s ) predicates.Overlaps[any,any,any,any]= # Does not support value expression in Is Null predicates.IsNull[any]=%1$s IS NULL predicates.IsNotNull[any]=%1$s IS NOT NULL predicates.Like= predicates.Like.escape= predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= predicates.Exists= predicates.All= predicates.Any= predicates.Some= predicates.IsDistinctFrom[any,any]=NOT (%1$s <=> %2$s) predicates.IsNotDistinctFrom[any,any]=%1$s <=> %2$s # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions # expressions.ArrayElementRef.zeroBased=false # # Conditional expressions # expressions.SimpleCase=CASE expressions.SearchedCase=CASE expressions.Coalesce[any,any]=COALESCE(%1$s) # Due to how Hive compares varchar and char it will think that a zero length string and space are not equivalent # APACHE JIRA HIVE-9537, HIVE-3745 and HIVE-9745 #expressions.NullIf=CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END expressions.NullIf[any,any]=NULLIF(%1$s, %2$s) # Minimum number of arguments for Coalesce function. expressions.Coalesce.minArgs=2 # # Cast # expressions.Cast[any,any]=CAST(%1$s AS %2$s) expressions.Cast[any,double]=CAST(%1$s AS double) expressions.Cast[float,text]= expressions.Cast[double,text]= # Allow casting decimal values as varchar to prevent decomposition of binning queries. expressions.Cast[decimal,varchar]=CAST(%1$s AS %2$s) expressions.Cast[decimal,text]= # does not preserve trailing spaces of fixed length characters expressions.Cast[any,char]= # # Extract # expressions.Extract.YEAR[any]=year(%1$s) expressions.Extract.MONTH[any]=month(%1$s) expressions.Extract.DAY[any]=day(%1$s) expressions.Extract.HOUR[any]=hour(%1$s) expressions.Extract.MINUTE[any]=minute(%1$s) expressions.Extract.SECOND[any]=second(%1$s) + cast(%1$s as double) - cast(cast(from_unixtime(unix_timestamp(%1$s)) as timestamp) as double) expressions.Extract.TIMEZONE_HOUR[any]= expressions.Extract.TIMEZONE_MINUTE[any]= expressions.Extract.EPOCH[any]= # # Trim # expressions.Trim.BOTH[any]=trim(%1$s) expressions.Trim.BOTH[any,any]= expressions.Trim.LEADING[any]=ltrim(%1$s) expressions.Trim.LEADING[any,any]= expressions.Trim.TRAILING[any]=rtrim(%1$s) expressions.Trim.TRAILING[any,any]= # # Windowed aggregates (SQL/OLAP). # olap.Count[any]=COUNT(%1$s) olap.CountStar[]=COUNT(*) olap.Max[any]=MAX(%1$s) olap.Min[any]=MIN(%1$s) olap.Sum[any]=SUM(%1$s) olap.Avg[any]=AVG(%1$s) olap.StdDevPop[any]= olap.StdDevSamp[any]= olap.VarPop[any]= olap.VarSamp[any]= olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.PercentRank[]=PERCENT_RANK() olap.CumeDist[]=CUME_DIST() olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.Median[any]= olap.RatioToReport[any]= olap.RowNumber[]=ROW_NUMBER() olap.Difference[any]= olap.FirstValue[any]=FIRST_VALUE(%1$s) olap.LastValue[any]=LAST_VALUE(%1$s) # Olap Ntile without an order by will sort nulls first and not last. olap.NTile[any]= olap.Tertile[]= # Olap lag did not throw expected exceptions olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, %2$s) olap.Lag[any,any,any]= olap.Lag[any,any,any,any]= olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, %2$s) olap.Lead[any,any,any]= olap.Lead[any,any,any,any]= olap.NthValue[any,any]= olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.Collect[any]= # # Window clause # # Olap functions cannot be used in Subquery but no method to disable it. olap.Window= olap.PartitionBy=PARTITION BY %1$s olap.OrderBy=ORDER BY %1$s # # Window specification # olap.Window.Specification[POF]=true olap.Window.Specification[PF]=true olap.Window.Specification[OF]=true olap.Window.Specification[PO]=true olap.Window.Specification[P]=true olap.Window.Specification[O]=true olap.Window.Specification[F]=true olap.Window.Specification[]=true olap.Window.Frame.Moving=true # # Olap Distinct # # Apache SPARK does only supports MIN/MAX scenarios olap.Min.distinct[any]=MIN(DISTINCT %1$s) olap.Max.distinct[any]=MAX(DISTINCT %1$s) olap.Sum.distinct[any]= olap.Avg.distinct[any]= olap.Count.distinct[any]= # # Aggregates # aggregates.Max[any]=MAX(%1$s) aggregates.Min[text]= aggregates.Count[any]=COUNT(%1$s) aggregates.CountStar[]=COUNT(*) aggregates.Sum[any]=SUM(%1$s) aggregates.Avg[any]=AVG(%1$s) aggregates.StdDevPop[any]=STDDEV_POP(%1$s) aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s) aggregates.VarPop[any]=VAR_POP(%1$s) aggregates.VarSamp[any]=VAR_SAMP(%1$s) aggregates.Rank[any,any]= aggregates.DenseRank[any,any]= aggregates.PercentRank[any,any]= aggregates.CumeDistH[any,any]= aggregates.PercentileCont[any,any]= aggregates.PercentileDisc[any,any]= aggregates.Median[any]= aggregates.Grouping[any]= aggregates.XMLAgg= # Cannot have different order by clauses in array_agg aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= # # Distinct aggregates # aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s) aggregates.Min.distinct[any]=MIN(DISTINCT %1$s) aggregates.Max.distinct[any]=MAX(DISTINCT %1$s) aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s) aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s) # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Linear regression aggregates # aggregates.Corr[any,any]= aggregates.CovarPop[any,any]= aggregates.CovarSamp[any,any]= aggregates.RegrAvgX[any,any]= aggregates.RegrAvgY[any,any]= aggregates.RegrCount[any,any]= aggregates.RegrIntercept[any,any]= aggregates.RegrR2[any,any]= aggregates.RegrSlope[any,any]= aggregates.RegrSXX[any,any]= aggregates.RegrSXY[any,any]= aggregates.RegrSYY[any,any]= # # Character scalar functions # functions.CharLength[any]=LENGTH(%1$s) functions.CharLength[clob]= functions.OctetLength[any]= functions.BitLength[text]= functions.Upper[any]=UPPER(%1$s) functions.Lower[any]=LOWER(%1$s) functions.Substring[any,any]=substr(%1$s, cast(%2$s as int)) functions.Substring[any,any,any]=substr(%1$s, cast(%2$s as int), cast(%3$s as int)) functions.Position[any,any]= locate(%1$s, %2$s) functions.Index[any,any]= functions.Ascii[any]= functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= #Substring function to negative START value to parse the input string from its rightmost end. #It's not a standard SQL function, so leave the definition empty. functions.SubstringR[any,any]= functions.SubstringR[any,any,any]= # # Regular expression functions. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Ceiling[any]=CEILING(%1$s) functions.Exp[any]=EXP(%1$s) functions.Floor[any]=FLOOR(%1$s) # Ln failed exception cases functions.Ln[any]=LN(%1$s) functions.Log10[any]=LOG10(%1$s) functions.Mod[any,any]= # Power failed exception cases functions.Power[any,any]=POWER(%1$s, %2$s) functions.Random[]=RAND() functions.Random[any]=RAND(%1$s) functions.Round[any]=ROUND(%1$s) functions.Round[any,any]=ROUND(%1$s, %2$s) functions.Round[any,any,any]= functions.Sign[any]=SIGN(%1$s) # Sqrt failed exception cases functions.Sqrt[any]=SQRT(%1$s) functions.WidthBucket[any,any,any,any]= # # Array scalar functions # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trig Functions # functions.Arccos[any]=ACOS(%1$s) functions.Cos[any]=COS(%1$s) functions.Coshyp[any]= functions.Arcsin[any]=ASIN(%1$s) functions.Sin[any]=SIN(%1$s) functions.Sinhyp[any]=SINH(%1$s) functions.Arctan[any]=ATAN(%1$s) functions.Tan[any]=TAN(%1$s) functions.Tanhyp[any]=TANH(%1$s) # # Temporal value expressions # # Note: JDBC does not define fractional seconds for TIME data type. functions.CurrentDate[]=CURRENT_DATE functions.CurrentTime[]= functions.CurrentTime[numeric]= functions.CurrentTimestamp[]= functions.CurrentTimestamp[numeric]= functions.LocalTime[]= functions.LocalTime[numeric]= functions.LocalTimestamp[]=cast(from_unixtime( unix_timestamp()) as timestamp) functions.LocalTimestamp[numeric]= # # XML Functions # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= functions.XMLElement.ContentOption.NULL_ON_NULL=false functions.XMLElement.ContentOption.EMPTY_ON_NULL=false functions.XMLForest.ContentOption.NULL_ON_NULL=false functions.XMLForest.ContentOption.EMPTY_ON_NULL=false functions.XMLParse.DocumentOrContent.DOCUMENT=false functions.XMLParse.DocumentOrContent.CONTENT=false functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=true functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=true functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business date functions. # # cast timestamp to double to preserve fractional seconds versus unix_timestamp which is only to seconds functions.AddFractionalSeconds[any,any]=cast(cast(%1$s as double ) + %2$s as timestamp) functions.AddSeconds[any,any]=cast(cast(%1$s as double ) + cast( %2$s as int) as timestamp) functions.AddMinutes[any,any]=cast(cast(%1$s as double ) + (60 * cast( %2$s as int)) as timestamp) functions.AddHours[any,any]=cast(cast(%1$s as double ) + (3600 * cast( %2$s as int)) as timestamp) functions.AddDays[interval_day_time,numeric]= functions.AddDays[date,numeric]=cast(date_add(%1$s, cast(%2$s as int)) as date) # Hive truncates time component of a timestamp if date_add is used # Apache JIRA HIVE-3196 functions.AddDays[timestamp,numeric]=cast(cast(%1$s as double ) + (86400 * cast( %2$s as int)) as timestamp) functions.AddWeeks[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 7) as date) # Hive truncates time component of a timestamp if date_add is used # Apache JIRA HIVE-3196 functions.AddWeeks[timestamp,numeric]=cast(cast(%1$s as double ) + (604800 * cast( %2$s as int)) as timestamp) functions.AddMonths[any,any]= functions.AddQuarters[any,any]= functions.AddYears[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 365) as date) # Hive truncates time component of a timestamp if date_add is used # Apache JIRA HIVE-3196 functions.AddYears[timestamp,numeric]= functions.MinutesBetween[any,any]=cast((unix_timestamp( %1$s ) - unix_timestamp( %2$s)) / 60 as bigint) functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]=(unix_timestamp( %1$s ) - unix_timestamp( %2$s)) functions.HoursBetween[any,any]=cast((unix_timestamp( %1$s ) - unix_timestamp( %2$s)) / 3600 as bigint) functions.DaysBetween[any,any]=datediff(%1$s, %2$s) functions.WeeksBetween[any,any]= functions.MonthsBetween[any,any]= functions.QuartersBetween[any,any]= functions.YearsBetween[any,any]= functions.DaysToEndOfMonth[any]= functions.Age[any]= functions.FirstOfMonth[any]= functions.FirstOfMonth[date]=cast(date_add( %1$s, (day( %1$s ) - 1) * -1) as date) functions.LastOfMonth[any]= functions.MakeTimestamp[any,any,any]=to_timestamp(unix_timestamp(cast( ( cast(%1$s as integer) * 10000 ) + ( cast(%2$s as integer) * 100 ) + cast(%3$s as integer) as string), "yyyyMMdd")) functions.DayOfYear[any]= functions.DayOfWeek[any,any]= functions.WeekOfYear[any]=weekofyear(%1$s) functions.YMDIntBetween[any,any]= # # Table functions # functions.Unnest= # # Literals # literals.smallint=true literals.decimal=true literals.float=true literals.char=false literals.nchar=false literals.varchar=true literals.nvarchar=false literals.blob=false literals.clob=false literals.nclob=false literals.date=false literals.time=false literals.time_with_time_zone=false literals.timestamp=false literals.timestamp_with_time_zone=false literals.interval_year=false literals.interval_month=false literals.interval_year_to_month=false literals.interval_day=false literals.interval_hour=false literals.interval_minute=false literals.interval_second=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute_to_second=false literals.date=false literals.time=false literals.time_with_time_zone=false literals.timestamp=false literals.timestamp_with_time_zone=false literals.binary=false literals.boolean=false literals.xml=false literals.array=false literals.perioddate=false # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. literals.format.time=TIME '%1$02d:%2$02d:%3$02d%4$.10s' literals.format.time_with_time_zone=TIME '%1$02d:%2$02d:%3$02d%4$.10s%7$c%5$02d:%6$02d' literals.format.timestamp=cast( '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s' as timestamp ) literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d' literals.format.interval_day=INTERVAL %3$s'%1$d' DAY literals.format.interval_day_to_hour=INTERVAL %4$s'%1$d %2$d' DAY TO HOUR literals.format.interval_day_to_minute=INTERVAL %5$s'%1$d %2$02d:%3$02d' DAY TO MINUTE literals.format.interval_day_to_second=INTERVAL %8$s'%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY TO SECOND literals.format.interval_hour=INTERVAL %3$s'%1$d' HOUR literals.format.interval_hour_to_minute=INTERVAL %4$s'%1$02d:%2$02d' HOUR TO MINUTE literals.format.interval_hour_to_second=INTERVAL %7$s'%1$02d:%2$02d:%3$02d%4$.10s' HOUR TO SECOND literals.format.interval_minute=INTERVAL %3$s'%1$d' MINUTE literals.format.interval_minute_to_second=INTERVAL %6$s'%1$02d:%2$02d%3$.10s' MINUTE TO SECOND literals.format.interval_second=INTERVAL %3$s'%1$d%2$.10s' SECOND literals.format.interval_year=INTERVAL %3$s'%1$d' YEAR literals.format.interval_year_to_month=INTERVAL %4$s'%1$d-%2$d' YEAR TO MONTH literals.format.interval_month=INTERVAL %3$s'%1$d' MONTH # 1 parameter (string) literals.format.nchar=N'%s' # 1 parameter (string) literals.format.varchar='%s' # 1 parameter (string) literals.format.nvarchar=N'%s' # DataTypes # dataType.binary=false dataType.blob=false dataType.clob=false dataType.date=true dataType.time=false dataType.time_with_time_zone=false dataType.timestamp_with_time_zone=false dataType.interval_day=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute=false dataType.interval_minute_to_second=false dataType.interval_second=false dataType.interval_year=false dataType.interval_year_to_month=false dataType.interval_month=false dataType.decimal=false dataType.char=true dataType.nchar=false dataType.nvarchar=false dataType.xml=false dataType.period=false dataType.array=false dataType.struct=false dataType.map=false dataType.json=false # # Collation # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence collation.sequence.sql= # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. database.charset.sql= # # dataType.comparable # # Used to indicate that some data types that are comparable locally may not by the database # e.g. dataType.comparable[varchar,nvarchar]=false # # dataType.promotion # # Used to indicate what direction the promotion needs to occur # -> these properties are not symetrical # e.g. dataType.promotion[char,nvarchar]=true