# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2005, 2020 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # Product information. # # # Delimiters. # # # Various limits. # supports.orderByAlias=false # # General settings. # general.nullsAreSortedLow=true general.nullsOrdering=false general.nullsOrderingInWindowSpecification=false # # Various features. # supports.sqlserverWindowBehaviour=true supports.withClauseInDerivedTable=false supports.nestedWithClause=false supports.blobsInGroupBy=false supports.blobsInOrderBy=false supports.mixedCaseIdentifiers=false supports.mixedCaseQuotedIdentifiers=false supports.charLiteralRoundTrip=false supports.stitchJoins=false supports.expressionsInGroupBy=false supports.subqueriesInAggregate=false supports.recursiveWithClause=false supports.booleanExpressionsInSelectList=false supports.aliasInOrderByExpression=false supports.orderByInDerivedTable=false supports.callProcedureInDerivedTable=false #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Command. # # # Tables. # tables.lateral.derived=false # # Constructors. # constructors.table=false constructors.row=false constructors.array=false constructors.period=false # # Clauses. # clauses.Top=TOP %1$s clauses.Top.Position=distinct.top clauses.At= clauses.Window= clauses.WithRecursive= clauses.TableSampleSystem= # # Joins. # # # Set operators. # operators.set.Intersect.all= operators.set.Except.all= # # Logical operators. # operators.logical.Is= operators.logical.IsNot= operators.logical.IsJson= operators.logical.IsNotJson= # # Arithmetic operators. # operators.arithmetic.Subtract[any,datetime]= operators.arithmetic.Concat[any,any]=(%1$s + %2$s) operators.arithmetic.Concat[clob,clob]= operators.arithmetic.Concat[text,clob]= operators.arithmetic.Concat[clob,text]= # # Group By Operators # operators.groupBy.Rollup= operators.groupBy.Cube= operators.groupBy.GroupingSets= # # Comparison predicates. # predicates.comparison.LessThan[any,clob]= predicates.comparison.LessThan[clob,any]= predicates.comparison.LessThanOrEquals[any,clob]= predicates.comparison.LessThanOrEquals[clob,any]= predicates.comparison.Equals[any,clob]= predicates.comparison.Equals[clob,any]= predicates.comparison.NotEquals[any,clob]= predicates.comparison.NotEquals[clob,any]= predicates.comparison.GreaterThan[any,clob]= predicates.comparison.GreaterThan[clob,any]= predicates.comparison.GreaterThanOrEquals[any,clob]= predicates.comparison.GreaterThanOrEquals[clob,any]= # # Various predicates. # predicates.In[clob,any]= predicates.In[any,clob]= predicates.Overlaps[any,any,any,any]= predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s predicates.IsDistinctFrom[blob,any]= predicates.IsDistinctFrom[any,blob]= predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) predicates.IsNotDistinctFrom[any,blob]= predicates.IsNotDistinctFrom[blob,any]= predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions. # # # Cast expression. # expressions.Cast[date,char]=CAST(CONVERT(CHAR(10), %1$s, 121) AS %2$s) expressions.Cast[date,varchar]=CAST(CONVERT(CHAR(10), %1$s, 121) AS %2$s) expressions.Cast[date,nchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s) expressions.Cast[date,nvarchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s) expressions.Cast[date,date]=CAST( (%1$s) AS DATE ) expressions.Cast[any,clob]=CAST(%1$s as TEXT) expressions.Cast[clob,char]=CAST(%1$s AS %2$s) expressions.Cast[clob,varchar]=CAST(%1$s AS %2$s) expressions.Cast[clob,any]= expressions.Cast[numeric,clob]= expressions.Cast[time,char]=CAST(CONVERT(CHAR(12),%1$s, 114) AS %2$s) expressions.Cast[time,varchar]=CAST(CONVERT(CHAR(12), %1$s, 114) AS %2$s) expressions.Cast[time,nchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s) expressions.Cast[time,nvarchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s) expressions.Cast[time,time]=CAST( (%1$s) AS TIME ) expressions.Cast[time,text]= expressions.Cast[timestamp,text]=CONVERT(%2$s, %1$s, 121) expressions.Cast[any,float]=CAST(%1$s AS REAL) expressions.Cast[date,timestamp]=CAST(%1$s as DATETIME) expressions.Cast[null,timestamp]=CAST(%1$s as DATETIME) expressions.Cast[time,timestamp]= expressions.Cast[any,timestamp_with_time_zone]=CAST(%1$s as DATETIMEOFFSET) expressions.Cast[any,timestamp]=CAST(%1$s as DATETIME) # DB uses wrong timezone when convert time time timestamp TZ expressions.Cast[time,timestamp_with_time_zone]= expressions.Cast[timestamp,timestamp]=CAST(%1$s as DATETIME) expressions.Cast[timestamp,char]=CAST(CONVERT(CHAR(30),%1$s, 121) AS %2$s) expressions.Cast[timestamp_with_time_zone,timestamp_with_time_zone]=%1$s expressions.Cast[timestamp_with_time_zone,char]=CONVERT( %2$s, %1$s, 121 ) expressions.Cast[timestamp_with_time_zone,varchar]=CONVERT( %2$s, %1$s, 121 ) expressions.Cast[timestamp_with_time_zone,nchar]=CONVERT( %2$s, %1$s, 121 ) expressions.Cast[timestamp_with_time_zone,nvarchar]=CONVERT( NVARCHAR%2$s, %1$s, 121 ) expressions.Cast[timestamp_with_time_zone,timestamp]= expressions.Cast[char,timestamp]=CAST(%1$s as DATETIME) expressions.Cast[nchar,timestamp]=CAST(%1$s as DATETIME) expressions.Cast[nvarchar,timestamp]=CAST(%1$s as DATETIME) expressions.Cast[varchar,timestamp]=CAST(%1$s as DATETIME) # Minimum number of arguments for Coalesce function. expressions.Coalesce.minArgs=2 # # Extract expression. # expressions.Extract.YEAR[any]=DATEPART(YEAR, %1$s) expressions.Extract.MONTH[any]=DATEPART(MONTH, %1$s) expressions.Extract.DAY[any]=DATEPART(DAY, %1$s) expressions.Extract.HOUR[any]=DATEPART(HOUR, %1$s) expressions.Extract.MINUTE[any]=DATEPART(MINUTE, %1$s) expressions.Extract.SECOND[any]=(DATEPART(SECOND, %1$s) + (CAST(DATEPART(MILLISECOND, %1$s) as DECIMAL) / 1000)) expressions.Extract.TIMEZONE_HOUR[any]=DATEPART(TZOFFSET, %1$s) / 60 expressions.Extract.TIMEZONE_MINUTE[any]=DATEPART(TZOFFSET, %1$s) %% 60 expressions.Extract.EPOCH[any]= # # Trim expression. # expressions.Trim.BOTH[any]=LTRIM(RTRIM(%1$s)) expressions.Trim.BOTH[clob]= expressions.Trim.LEADING[any]=LTRIM(%1$s) expressions.Trim.LEADING[clob]= expressions.Trim.TRAILING[any]=RTRIM(%1$s) expressions.Trim.TRAILING[clob]= expressions.Trim.BOTH[any,any]= expressions.Trim.LEADING[any,any]= expressions.Trim.TRAILING[any,any]= # # Windowed aggregates (SQL/OLAP). # olap.Count[any]=COUNT_BIG(%1$s) olap.CountStar[]=COUNT_BIG(*) olap.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END) olap.StdDevSamp[any]=STDEV(%1$s) olap.StdDevPop[any]=STDEVP(%1$s) olap.VarSamp[any]=VAR(%1$s) olap.VarPop[any]=VARP(%1$s) olap.Tertile[]= olap.RatioToReport[any]= olap.Difference[any]= olap.Lag[any,any,any,any]= olap.Lead[any,any,any,any]= olap.NthValue[any,any]= olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.Collect[any]= olap.Median[any]=PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY %1$s) # # Window clause. # # # Window specification # A list of windows specifications that are supported by the DB # P = PARTITION BY # O = ORDER BY # F = FRAME # # # Olap (distinct). # olap.Max.distinct[any]= olap.Min.distinct[any]= olap.Sum.distinct[any]= olap.Avg.distinct[any]= olap.Count.distinct[any]= # # Aggregates. # aggregates.Count[any]=COUNT_BIG(%1$s) aggregates.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END) aggregates.CountStar[]=COUNT_BIG(*) aggregates.StdDevSamp[any]=STDEV(%1$s) aggregates.StdDevPop[any]=STDEVP(%1$s) aggregates.VarSamp[any]=VAR(%1$s) aggregates.VarPop[any]=VARP(%1$s) aggregates.CumeDistH[any,any]= aggregates.PercentileCont[any,any]= aggregates.PercentileDisc[any,any]= aggregates.Median[any]= aggregates.XMLAgg= aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= # # Aggregates (distinct). # aggregates.Count.distinct[any]=COUNT_BIG(DISTINCT %1$s) aggregates.Count.distinct[blob]= # # Linear regression aggregates. # aggregates.Corr[any,any]= aggregates.CovarPop[any,any]= aggregates.CovarSamp[any,any]= aggregates.RegrAvgX[any,any]= aggregates.RegrAvgY[any,any]= aggregates.RegrCount[any,any]= aggregates.RegrIntercept[any,any]= aggregates.RegrR2[any,any]= aggregates.RegrSlope[any,any]= aggregates.RegrSXX[any,any]= aggregates.RegrSXY[any,any]= aggregates.RegrSYY[any,any]= # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions. # functions.CharLength[any]=LEN(%1$s) functions.CharLength[char]=LEN(REPLACE(%1$s, ' ', 'x')) functions.CharLength[nchar]=LEN(REPLACE(%1$s, N' ', N'x')) functions.CharLength[varchar]=LEN(REPLACE(%1$s, ' ', 'x')) functions.CharLength[nvarchar]=LEN(REPLACE(%1$s, N' ', N'x')) functions.CharLength[clob]= functions.OctetLength[any]=DATALENGTH(%1$s) functions.OctetLength[clob]= functions.BitLength[any]=(DATALENGTH(%1$s) * 8) functions.Upper[clob]= functions.Lower[clob]= functions.Substring[any,any]=SUBSTRING(%1$s, %2$s, LEN(%1$s)) functions.Substring[any,any,any]=SUBSTRING(%1$s, %2$s, %3$s) functions.Substring[clob,numeric,numeric]= functions.Position[any,any]=CHARINDEX(%1$s, %2$s) functions.Index[any,any]=CHARINDEX(%2$s, %1$s) functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= functions.Random[]=RAND() functions.Random[any]= functions.Round[any]= #Substring function to negative START value to parse the input string from its rightmost end. functions.SubstringR[any,any]= functions.SubstringR[any,any,any]= #functions.SubstringR[any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LEN(%1$s ) - ABS(%2$s) + 1))) ELSE (SUBSTRING(%1$s, %2$s)) END #functions.SubstringR[any,any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LEN(%1$s ) - ABS(%2$s) + 1), %3$s)) ELSE (SUBSTRING(%1$s, %2$s, %3$s)) END # # Regular expression functions. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions. # functions.Abs[interval_day_time]= functions.Abs[interval_year_month]= functions.Ln[any]=LOG(%1$s) functions.Mod[exact,exact]=((%1$s) %% (%2$s)) functions.Mod[variant,variant]=((%1$s) %% (%2$s)) functions.Mod[variant,exact]=((%1$s) %% (%2$s)) functions.Mod[exact, variant]=((%1$s) %% (%2$s)) functions.Mod[float,any]= functions.Mod[double,any]= functions.Mod[any,float]= functions.Mod[any,double]= functions.WidthBucket[any,any,any,any]= # # Array scalar functions. # functions.Cardinality[any]= functions.TrimArray[any,any]= # # FDS functions. # functions.cast_float[any]=convert(float(53), %1$s) functions.concat[any,any]={fn CONCAT(%1$s, %2$s)} functions.concat[clob,clob]= # # Trigonometric functions. # ## COSHYP not supported by ss. functions.Coshyp[any]= ## SINHYP not supported by SS. functions.Sinhyp[any]= ## TANHYP not supported by SS. functions.Tanhyp[any]= # # Datetime value functions. # functions.CurrentDate[]=CAST(CURRENT_TIMESTAMP AS DATE) functions.CurrentTime[]= functions.CurrentTimestamp[]=sysdatetimeoffset() functions.LocalTime[]= functions.LocalTimestamp[]= functions.CurrentTime[numeric]= functions.CurrentTimestamp[numeric]= functions.LocalTime[numeric]= functions.LocalTimestamp[numeric]= # # XML functions. # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business date functions. # functions.AddFractionalSeconds[any,any]= functions.AddSeconds[time,numeric]=DATEADD(MILLISECOND, %2$s * 1000, %1$s) functions.AddSeconds[timestamp,numeric]=DATEADD(MILLISECOND, %2$s * 1000, %1$s) functions.AddSeconds[time_with_time_zone,numeric]= functions.AddSeconds[timestamp_with_time_zone,numeric]= functions.AddSeconds[interval_day_time,numeric]= functions.AddMinutes[time,numeric]=DATEADD(MINUTE, %2$s, %1$s) functions.AddMinutes[timestamp,numeric]=DATEADD(MINUTE, %2$s, %1$s) functions.AddMinutes[time_with_time_zone,numeric]= functions.AddMinutes[timestamp_with_time_zone,numeric]= functions.AddMinutes[interval_day_time,numeric]= functions.AddHours[time,numeric]=DATEADD(HOUR, %2$s, %1$s) functions.AddHours[timestamp,numeric]=DATEADD(HOUR, %2$s, %1$s) functions.AddHours[time_with_time_zone,numeric]= functions.AddHours[timestamp_with_time_zone,numeric]= functions.AddHours[interval_day_time,numeric]= functions.AddDays[any,any]=DATEADD(DAY, %2$s, %1$s) functions.AddDays[time_with_time_zone,numeric]= functions.AddDays[timestamp_with_time_zone,numeric]= functions.AddWeeks[any,any]=DATEADD(WEEK, %2$s, %1$s) functions.AddWeeks[time_with_time_zone,numeric]= functions.AddWeeks[timestamp_with_time_zone,numeric]= functions.AddMonths[any,any]=DATEADD(MONTH, %2$s, %1$s) functions.AddMonths[time_with_time_zone,numeric]= functions.AddMonths[timestamp_with_time_zone,numeric]= functions.AddQuarters[any,any]=DATEADD(QUARTER, %2$s, %1$s) functions.AddQuarters[time_with_time_zone,numeric]= functions.AddQuarters[timestamp_with_time_zone,numeric]= functions.AddYears[any,any]=DATEADD(YEAR, %2$s, %1$s) functions.AddYears[time_with_time_zone,numeric]= functions.AddYears[timestamp_with_time_zone,numeric]= functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]=DATEDIFF(SECOND, %2$s, %1$s) functions.MinutesBetween[any,any]=DATEDIFF(MINUTE, %2$s, %1$s) functions.HoursBetween[any,any]=DATEDIFF(HOUR, %2$s, %1$s) functions.DaysBetween[any,any]=DATEDIFF(DAY, %2$s, %1$s) functions.WeeksBetween[any,any]=DATEDIFF(WEEK, %2$s, %1$s) functions.MonthsBetween[any,any]= functions.QuartersBetween[any,any]=DATEDIFF(QUARTER, %2$s, %1$s) functions.YearsBetween[any,any]= functions.Age[any]= functions.DayOfWeek[any,any]=(((DATEPART(WEEKDAY, %1$s) + @@DATEFIRST - 1 - 1) %% 7 + 1 - %2$s + 7) %% 7 + 1) functions.DayOfYear[any]=DATEPART(DAYOFYEAR, %1$s) functions.DaysToEndOfMonth[any]=DATEDIFF(DAY, %1$s, DATEADD (DAY, -1, DATEADD(MONTH, 1, DATEADD(DAY, 1 - DATEPART(DAY, %1$s), %1$s)))) functions.FirstOfMonth[any]=DATEADD(DAY, -DAY(%1$s) + 1, %1$s) functions.LastOfMonth[any]=DATEADD(DAY, -1, DATEADD(MONTH, 1, DATEADD(DAY, -DAY(%1$s) + 1, %1$s))) functions.MakeTimestamp[any,any,any]=CONVERT(DATETIME, CONVERT(VARCHAR(8), ((%1$s) * 10000) + ((%2$s) * 100) + %3$s)) functions.WeekOfYear[any]=DATEPART(isowk, %1$s) functions.YMDIntBetween[any,any]= # # Mappings used for transformation purposes only. # functions.size[text]=datalength(%1$s) # # Literals. # literals.binary=false literals.boolean=false literals.time_with_time_zone=false literals.interval_day=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute=false literals.interval_minute_to_second=false literals.interval_second=false literals.interval_year=false literals.interval_year_to_month=false literals.interval_month=false literals.xml=false # # Literal format specifications. # literals.format.date=CONVERT(DATE, '%1$04d-%2$02d-%3$02d') literals.format.date.procedure={d '%1$04d-%2$02d-%3$02d'} literals.format.time=CONVERT(TIME, {t '%1$02d:%2$02d:%3$02d%4$.4s'}) literals.format.time.procedure={t '%1$02d:%2$02d:%3$02d%4$.4s'} literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'} literals.format.timestamp=CONVERT(DATETIME2, '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.4s') literals.format.timestamp_with_time_zone=CONVERT(DATETIMEOFFSET, '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d') # # Literal Exceptions. # # In MS SQL Server datetime value is rendered to accuracy of 1/300 seconds # and value are rounded to increment of .000, .003 or .007 seconds as shown below: # 1999-12-31 23:59:59.999 is rounded to 2000-01-01 00:00:00.000 # 1999-12-31 23:59:59.998 is rounded to 1999-12-31 23:59:59.997 # 1999-12-31 23:59:59.997 is rounded to 1999-12-31 23:59:59.997 # 1999-12-31 23:59:59.996 is rounded to 1999-12-31 23:59:59.997 # 1999-12-31 23:59:59.995 is rounded to 1999-12-31 23:59:59.997 # 1999-12-31 23:59:59.994 is rounded to 1999-12-31 23:59:59.993 # 1999-12-31 23:59:59.993 is rounded to 1999-12-31 23:59:59.993 # 1999-12-31 23:59:59.992 is rounded to 1999-12-31 23:59:59.993 # 1999-12-31 23:59:59.991 is rounded to 1999-12-31 23:59:59.990 # 1999-12-31 23:59:59.990 is rounded to 1999-12-31 23:59:59.990 # The value of End_Time_Literal must be of the form # "HH:MM:SS.FFFFFFFFF". literals.exception.End_Time_Literal=23:59:59.998000000 # # Data types. # dataType.time_with_time_zone=false dataType.interval_day=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute=false dataType.interval_minute_to_second=false dataType.interval_second=false dataType.interval_year=false dataType.interval_year_to_month=false dataType.interval_month=false dataType.period=false # # Collation sequence query # collation.sequence.sql= The query can return only a single result # collation.sequence.sql=SELECT CAST( ServerProperty('collation') AS VARCHAR(100)), CASE WHEN 'A' = 'a' and '�' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and '�' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and '�' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH database.charset.sql=select CAST(COLLATIONPROPERTY(CAST(DATABASEPROPERTYEX(db_name(), 'Collation') as VARCHAR(100)), 'CodePage') as varchar(100)) # # Collation sequence mappings # collation.sequence.mapping.=, # # NOTE: These mappings are case sensitive # collation.sequence.mapping.SQL_Latin1_General_CP1_CI_AI=MsSqlLatin1GeneralCp1,PRIMARY collation.sequence.mapping.SQL_Latin1_General_CP1_CI_AS=MsSqlLatin1GeneralCp1,SECONDARY collation.sequence.mapping.SQL_Latin1_General_CP1_CS_AS=MsSqlLatin1GeneralCp1,TERTIARY # # Support for SQL data types that are not defined in the JDBC 3.0 standard # datasource.type.=CCL datatype name # all spaces need to be replaced with an underscore (_) # #datasource.type.datetimeoffset=timestamp with time zone # # If the unsupported type returns value information in a non-standard way # then a way to pull apart the non standard string and a mapping to put it # back together. # datasource.type..separator=Regex for splitting the string # datasource.type..mapping=String formatter for putting the pieces back together # #datasource.type.timestamp_with_time_zone.separator=[ ]|[:]|[\.] #datasource.type.timestamp_with_time_zone.mapping=%1$s %2$s:%3$s:%4$s.%5$s%6$s:%7$s