# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2005, 2021 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # Product information. # # # Delimiters. # # # Keywords. # # # Various limits. # limits.castClobToVarcharMaxSize=4096 # # General settings. # general.nullsAreSortedHigh=true general.nullsOrdering=false # # Cursor options - appended to end of generated SELECT statement. general.cursorOptions=FOR FETCH ONLY # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=RANDOM # # Various features. # supports.subqueriesInCase=false supports.subqueriesInAggregate=false supports.withClauseInDerivedTable=false supports.nestedWithClause=false supports.expressionsInOrderBy=true supports.aliasInOrderByExpression=false supports.nestedOlap=false supports.blobsInGroupBy=false supports.blobsInOrderBy=false supports.stitchJoins=false supports.recursiveWithClause=false supports.booleanExpressionsInSelectList=false supports.callProcedureInDerivedTable=false supports.join.full.distinctJoins=false supports.join.subqueriesInOnClause=false #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Grouping query optimization # performance.convertGroupByToDistinct=true # # Command. # # # Tables. # tables.lateral.derived=false # # Constructors. # constructors.table=false constructors.array=false constructors.period=false # # Constructors - context overrides. # constructors.row.between=false constructors.row.in=false constructors.row.isDistinctFrom=false constructors.row.simpleCase=false # # Clauses. # clauses.Window= clauses.WithRecursive= clauses.TableSampleSystem= clauses.TableSampleBernoulli= # # Joins. # #joins.Cross=%2$s CROSS JOIN %1$s joins.Cross= # # Set operators. # operators.set.Intersect= operators.set.Intersect.all= # # Logical operators. # operators.logical.Is= operators.logical.IsNot= # # Arithmetic operators. # operators.arithmetic.Subtract[any,datetime]= # # Group By Operators # operators.groupBy.Rollup= operators.groupBy.Cube= operators.groupBy.GroupingSets= # # Comparison predicates. # predicates.comparison.LessThan[timestamp,date]= predicates.comparison.LessThan[date,timestamp]= predicates.comparison.LessThan[timestamp_with_time_zone,date]= predicates.comparison.LessThan[date,timestamp_with_time_zone]= predicates.comparison.LessThan[any,clob]= predicates.comparison.LessThan[clob,any]= predicates.comparison.LessThanOrEquals[date,timestamp]= predicates.comparison.LessThanOrEquals[timestamp,date]= predicates.comparison.LessThanOrEquals[date,timestamp_with_time_zone]= predicates.comparison.LessThanOrEquals[timestamp_with_time_zone,date]= predicates.comparison.LessThanOrEquals[any,clob]= predicates.comparison.LessThanOrEquals[clob,any]= predicates.comparison.Equals[date,timestamp]= predicates.comparison.Equals[timestamp,date]= predicates.comparison.Equals[date,timestamp_with_time_zone]= predicates.comparison.Equals[timestamp_with_time_zone,date]= predicates.comparison.Equals[any,clob]= predicates.comparison.Equals[clob,any]= predicates.comparison.NotEquals[date,timestamp]= predicates.comparison.NotEquals[timestamp,date]= predicates.comparison.NotEquals[date,timestamp_with_time_zone]= predicates.comparison.NotEquals[timestamp_with_time_zone,date]= predicates.comparison.NotEquals[any,clob]= predicates.comparison.NotEquals[clob,any]= predicates.comparison.GreaterThan[date,timestamp]= predicates.comparison.GreaterThan[timestamp,date]= predicates.comparison.GreaterThan[date,timestamp_with_time_zone]= predicates.comparison.GreaterThan[timestamp_with_time_zone,date]= predicates.comparison.GreaterThan[any,clob]= predicates.comparison.GreaterThan[clob,any]= predicates.comparison.GreaterThanOrEquals[date,timestamp]= predicates.comparison.GreaterThanOrEquals[timestamp,date]= predicates.comparison.GreaterThanOrEquals[date,timestamp_with_time_zone]= predicates.comparison.GreaterThanOrEquals[timestamp_with_time_zone,date]= predicates.comparison.GreaterThanOrEquals[any,clob]= predicates.comparison.GreaterThanOrEquals[clob,any]= # # Various predicates. # predicates.Overlaps[any,any,any,any]= predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s predicates.IsDistinctFrom[blob,any]= predicates.IsDistinctFrom[any,blob]= predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) predicates.IsNotDistinctFrom[any,blob]= predicates.IsNotDistinctFrom[blob,any]= predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= predicates.Between[date,timestamp,any]= predicates.Between[date,any,timestamp]= predicates.Between[timestamp,date,any]= predicates.Between[timestamp,any,date]= predicates.Between[date,timestamp_with_time_zone,any]= predicates.Between[date,any,timestamp_with_time_zone]= predicates.Between[timestamp_with_time_zone,date,any]= predicates.Between[timestamp_with_time_zone,any,date]= predicates.In[date,timestamp]= predicates.In[date,timestamp_with_time_zone]= predicates.In[timestamp,date]= predicates.In[timestamp_with_time_zone,date]= predicates.In[any,clob]= predicates.In[clob,any]= # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions. # # # Cast expression. # expressions.Cast[date,timestamp]=timestamp(%1$s, '00:00:00') expressions.Cast[date,timestamp_with_time_zone]= expressions.Cast[time,timestamp]=timestamp(CURRENT_DATE, %1$s) expressions.Cast[time,timestamp_with_time_zone]= expressions.Cast[time,char]=cast(char(%1$s, JIS) as %2$s) expressions.Cast[time,varchar]=cast(char(%1$s, JIS) as %2$s) expressions.Cast[timestamp,char]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as CHAR(%3$d)) expressions.Cast[timestamp,varchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d)) expressions.Cast[timestamp_with_time_zone,varchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as VARCHAR(%3$d)) expressions.Cast[timestamp_with_time_zone,char]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as CHAR(%3$d)) expressions.Cast[text,nchar]= expressions.Cast[text,nvarchar]= expressions.Cast[time,nchar]=cast(char(%1$s, JIS) as CHAR(%3$d)) expressions.Cast[time,nvarchar]=cast(char(%1$s, JIS) as VARCHAR(%3$d)) expressions.Cast[timestamp,nchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as CHAR(%3$d)) expressions.Cast[timestamp,nvarchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d)) expressions.Cast[timestamp_with_time_zone,nvarchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as VARCHAR(%3$d)) expressions.Cast[timestamp_with_time_zone,nchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as CHAR(%3$d)) expressions.Cast[any,nchar]=cast((%1$s) as CHAR(%3$d)) expressions.Cast[any,nvarchar]=cast((%1$s) as VARCHAR(%3$d)) expressions.Cast[numeric,clob]=cast(cast(%1$s as varchar(64)) as clob) expressions.Cast[datetime,clob]=cast(cast(%1$s as varchar(38)) as clob) expressions.Cast[xml,any]= #DB2/zOs requires space between the precision and scale if set zparm decimal=comma expressions.Cast[any,decimal]=CAST(%1$s AS DECIMAL(%3$d, %4$d)) expressions.Cast[any,xml]= # Minimum number of arguments for Coalesce function. expressions.Coalesce.minArgs=2 # # Extract expression. # expressions.Extract.EPOCH[any]= # # Trim expression. # expressions.Trim.BOTH[any]=LTRIM(RTRIM(%1$s)) expressions.Trim.LEADING[any]=LTRIM(%1$s) expressions.Trim.TRAILING[any]=RTRIM(%1$s) expressions.Trim.BOTH[any,any]=STRIP(%2$s, B, %1$s) expressions.Trim.LEADING[any,any]=STRIP(%2$s, L, %1$s) expressions.Trim.TRAILING[any,any]=STRIP(%2$s, T, %1$s) # # Windowed aggregates (SQL/OLAP). # olap.Count[any]=COUNT_BIG(%1$s) olap.CountStar[]=COUNT_BIG(*) olap.Count[clob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END) olap.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END) olap.StdDevSamp[any]= olap.VarSamp[any]= olap.VarPop[any]=VARIANCE(%1$s) olap.PercentRank[]= olap.CumeDist[]= olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.Median[any]= olap.NTile[any]= olap.Tertile[]= olap.RatioToReport[any]= olap.Difference[any]= olap.FirstValue[any]= olap.LastValue[any]= olap.Lag[any]= olap.Lag[any,any]= olap.Lag[any,any,any]= olap.Lag[any,any,any,any]= olap.Lead[any]= olap.Lead[any,any]= olap.Lead[any,any,any]= olap.Lead[any,any,any,any]= olap.NthValue[any,any]= olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.Collect[any]= # # Window clause. # # # Window specification # A list of windows specifications that are supported by the DB # P = PARTITION BY # O = ORDER BY # F = FRAME # olap.Window.Specification[F]=false olap.Window.Specification[PF]=false # # Olap (distinct). # olap.Max.distinct[any]= olap.Min.distinct[any]= olap.Sum.distinct[any]= olap.Avg.distinct[any]= olap.Count.distinct[any]= # # Aggregates. # aggregates.Count[any]=COUNT_BIG(%1$s) aggregates.CountStar[]=COUNT_BIG(*) aggregates.Count[clob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END) aggregates.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END) aggregates.PercentRank[any,any]= aggregates.CumeDistH[any,any]= aggregates.Median[any]= aggregates.VarSamp[any]=VARIANCE_SAMP(%1$s) aggregates.VarPop[any]=VARIANCE(%1$s) aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[any]= # # Aggregates (distinct). # # # Linear regression aggregates. # aggregates.Corr[any,any]= aggregates.CovarPop[any,any]= aggregates.CovarSamp[any,any]= aggregates.RegrAvgX[any,any]= aggregates.RegrAvgY[any,any]= aggregates.RegrCount[any,any]= aggregates.RegrIntercept[any,any]= aggregates.RegrR2[any,any]= aggregates.RegrSlope[any,any]= aggregates.RegrSXX[any,any]= aggregates.RegrSXY[any,any]= aggregates.RegrSYY[any,any]= # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions. # functions.CharLength[any]=LENGTH(%1$s) functions.BitLength[any]=(CHARACTER_LENGTH(%1$s, OCTETS)*8) functions.OctetLength[any]=CHARACTER_LENGTH(%1$s, OCTETS) functions.Upper[clob]= functions.Lower[clob]= functions.Substring[any,any]=SUBSTR(%1$s, %2$s) functions.Substring[any,any,any]=SUBSTR(%1$s, %2$s, %3$s) functions.Position[any,any]=POSSTR(%2$s, %1$s) functions.Index[any,any]=POSSTR(%1$s, %2$s) functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= # # Regular expression functions. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # FDS functions. # functions.cast_longvarchar[any]=CAST(%1$s AS CLOB) functions.cast_longvarchar[time]=CAST(CHAR(%1$s, JIS) AS CLOB) # # Numeric scalar functions. # functions.Abs[interval_day_time]= functions.Abs[interval_year_month]= functions.WidthBucket[any,any,any,any]= functions.Mod[decimal,any]=MOD(INTEGER(%1$s), %2$s) functions.Random[]=RAND() functions.Random[any]=RAND(%1$s) # # Array scalar functions. # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Datetime value functions. # functions.CurrentTime[]= functions.CurrentTimestamp[]= functions.LocalTime[]=CURRENT_TIME functions.LocalTimestamp[]=CURRENT_TIMESTAMP functions.CurrentTime[numeric]= functions.CurrentTimestamp[numeric]= functions.LocalTime[numeric]= functions.LocalTimestamp[numeric]= # # XML functions. # functions.XMLTable= functions.XMLParse.DocumentOrContent.CONTENT=false functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=false # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business date functions. # functions.AddFractionalSeconds[any,any]= functions.AddSeconds[any,any]= functions.AddHours[interval_day_time,numeric]=((%1$s) + (%2$s) HOUR) functions.AddHours[time,numeric]=((%1$s) + (%2$s) HOUR) functions.AddHours[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) HOUR) functions.AddHours[time_with_time_zone,numeric]=((%1$s) + (%2$s) HOUR) functions.AddHours[timestamp_with_time_zone,numeric]=((%1$s) + (%2$s) HOUR) functions.AddMinutes[interval_day_time,numeric]=((%1$s) + (%2$s) MINUTE) functions.AddMinutes[time,numeric]=((%1$s) + (%2$s) MINUTE) functions.AddMinutes[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) MINUTE) functions.AddMinutes[time_with_time_zone,numeric]=((%1$s) + (%2$s) MINUTE) functions.AddMinutes[timestamp_with_time_zone,numeric]=((%1$s) + (%2$s) MINUTE) functions.AddDays[numeric,any]= functions.AddDays[datetime,any]=((%1$s) + (%2$s) DAY) functions.AddWeeks[any,any]= functions.AddMonths[numeric,any]= functions.AddMonths[datetime,any]=((%1$s) + (%2$s) MONTH) functions.AddQuarters[any,any]= functions.AddYears[numeric,any]= functions.AddYears[datetime,any]=((%1$s) + (%2$s) YEAR) functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[time,time]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s)))) functions.SecondsBetween[timestamp,timestamp]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s)))) functions.MinutesBetween[time,time]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s)))) functions.MinutesBetween[timestamp,timestamp]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s)))) functions.HoursBetween[time,time]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s)))) functions.HoursBetween[timestamp,timestamp]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s)))) functions.DaysBetween[any,any]=DAYS(%1$s) - DAYS(%2$s) functions.WeeksBetween[time,time]=TIMESTAMPDIFF(32, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s)))) functions.WeeksBetween[timestamp,timestamp]=TIMESTAMPDIFF(32, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s)))) # Turned off _Months_Between for local processing. This alignes with a hotsite fix in UDA. functions.MonthsBetween[any,any]= functions.QuartersBetween[time,time]=TIMESTAMPDIFF(128, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s)))) functions.QuartersBetween[timestamp,timestamp]=TIMESTAMPDIFF(128, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s)))) functions.YearsBetween[any,any]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE), '00:00:00') - TIMESTAMP(cast(%2$s as DATE), '00:00:00'))) functions.YearsBetween[date,timestamp]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(cast(%2$s as DATE), '00:00:00'))) functions.YearsBetween[timestamp,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE), '00:00:00') - TIMESTAMP(%2$s, '00:00:00'))) functions.YearsBetween[date,timestamp_with_time_zone]= functions.YearsBetween[timestamp_with_time_zone,date]= functions.YearsBetween[date,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(%2$s, '00:00:00'))) functions.Age[timestamp]=(CURRENT DATE - DATE(%1$s)) functions.Age[timestamp_with_time_zone]=(CURRENT DATE - DATE(%1$s)) functions.Age[any]=(CURRENT DATE - %1$s) functions.DayOfWeek[any,any]=(MOD(DAYOFWEEK(%1$s) - 1 + 7 - (%2$s), 7) + 1) functions.DayOfYear[any]=DAYOFYEAR(%1$s) functions.DaysToEndOfMonth[any]= functions.FirstOfMonth[any]=(%1$s - (DAY(%1$s)-1) DAY) functions.LastOfMonth[any]=(%1$s - (DAY(%1$s)-1) DAY + 1 MONTH - 1 DAY) functions.MakeTimestamp[any,any,any]=TIMESTAMP_ISO(DATE(CHAR(RIGHT(DIGITS(%1$s), 4) || '-' || RIGHT(DIGITS(%2$s), 2) || '-' || RIGHT(DIGITS(%3$s), 2)))) functions.WeekOfYear[any]=WEEK_ISO(%1$s) functions.YMDIntBetween[any,any]= # # Table functions. # # # Spatial functions (OpenGIS, SQL/MM). # # # Literals. # literals.binary=true literals.blob=false literals.clob=false literals.boolean=false literals.date=true literals.time=true literals.time_with_time_zone=false literals.timestamp=true literals.timestamp_with_time_zone=true literals.interval_day=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute=false literals.interval_minute_to_second=false literals.interval_second=false literals.interval_year=false literals.interval_year_to_month=false literals.interval_month=false literals.smallint=true literals.integer=true literals.long=true literals.float=true literals.double=true literals.decimal=true literals.char=true literals.nchar=true literals.varchar=true literals.nvarchar=true literals.xml=false # # Literal constraints. # # # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. # literals.format.binary=BINARY(X'%1$s') literals.format.date=DATE('%1$04d-%2$02d-%3$02d') literals.format.interval_day=%3$s%1$d DAY literals.format.interval_month=%3$s%1$d MONTH literals.format.interval_year=%3$s%1$d YEAR literals.format.time=TIME('%1$02d:%2$02d:%3$02d') literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'} literals.format.timestamp=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s' literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s%10$c%8$02d:%9$02d' literals.format.nchar='%s' literals.format.nvarchar='%s' # # Data types. # dataType.boolean=false dataType.time_with_time_zone=false dataType.timestamp_with_time_zone=true dataType.interval_day=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute=false dataType.interval_minute_to_second=false dataType.interval_second=false dataType.interval_year=false dataType.interval_year_to_month=false dataType.interval_month=false dataType.period=false #datasource.type.TIMESTAMP_WITH_TIME_ZONE=timestamp with time zone #datasource.type.timestamp_with_time_zone.separator=\\b #datasource.type.timestamp_with_time_zone.mapping=%1$s%2$s%3$s%4$s%5$s%6$s %8$s:%10$s:%12$s%13$s%14$s%15$s%16$s%17$s%18$s #datasource.type.REAL=double