# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2005, 2022 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # Delimiters # # While a vendor may parse a statement with comments it may strip them out and the server not see them # db2 iSeries returns character / for catalogSeparator, but it works only for qualified table, # not for qualified column. Overwrite with character . for both cli and iSeries delimiters.catalogSeparator=. delimiters.commentBegin=/* delimiters.commentEnd=*/ # # Keywords # keywords.columnAlias=AS # # Various limits # limits.castClobToVarcharMaxSize=30000 # # Null ordering # general.nullsAreSortedAtEnd=false general.nullsAreSortedAtStart=false general.nullsAreSortedHigh=true general.nullsAreSortedLow=false general.nullsOrdering=false general.nullsOrderingInWindowSpecification=true # # Cursor options - appended to end of generated SELECT statement. general.cursorOptions=FOR FETCH ONLY # # Various Features # supports.duplicateColumnsInSelectList=true supports.columnAliasing=true supports.tableCorrelationNames=true supports.expressionsInOrderBy=true supports.expressionsInOrderByOnGroupedQuery=false supports.orderByAlias=true supports.orderByName=true supports.orderByOrdinal=true supports.expressionsInINPredicate=true supports.likeEscapeClause=true supports.fullOuterJoins=true supports.outerJoins=true supports.subqueriesInComparisons=true supports.subqueriesInExists=true supports.subqueriesInIns=true supports.subqueriesInQuantifieds=true supports.subqueriesInCase=false supports.subqueriesInAggregate=false supports.correlatedSubqueries=true supports.scalarSubqueries=true supports.withClauseInDerivedTable=false supports.nestedWithClause=false supports.recursiveWithClause=false supports.integerDivision=true supports.nestedOlap=false supports.derivedColumnLists=true supports.blobsInGroupBy=false supports.blobsInOrderBy=false supports.emptyStringIsNull=false supports.expressionsInGroupBy=false supports.stitchJoins=false supports.rowNumberNoOrderBy=true supports.callProcedureInDerivedTable=false supports.join.subqueriesInOnClause=false supports.castClobToVarcharWithoutSubstring=true #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Grouping query optimization # # If the RDBMS has costing/execution issues with group by or distinct consider these transforms performance.convertGroupByToDistinct=false performance.convertDistinctToGroupBy=false # V5 master-detail optimization when allRows optimization is specified v5.master-detail.transform=false # # Commands # commands.Select=SELECT commands.Call=CALL # # Tables # tables.joined=true tables.derived=true tables.lateral.derived=false # # Constructors # constructors.table=true constructors.row=true constructors.array=false constructors.period=false # # Constructors - context overrides. # constructors.row.simpleCase=false constructors.row.between=false constructors.row.isDistinctFrom=false #DB2 supports table value constructor in IN clause, but not row expression list. constructors.row.inListToTable=true # # Clauses # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING clauses.With=WITH clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.Window= clauses.WithRecursive= clauses.At= clauses.TableSampleSystem= clauses.TableSampleBernoulli= # # Joins # joins.Cross=%1$s CROSS JOIN %2$s joins.Inner=%1$s INNER JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s # # Set Operators # operators.set.Union=%1$s UNION %2$s operators.set.Union.all=%1$s UNION ALL %2$s operators.set.Intersect=%1$s INTERSECT %2$s operators.set.Intersect.all= operators.set.Except=%1$s EXCEPT %2$s operators.set.Except.all= # # Logical Operators # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) operators.logical.Is= operators.logical.IsNot= # # Arithmetic and Character operators # operators.arithmetic.Add[any,any]=%1$s + %2$s operators.arithmetic.Multiply[any,any]=%1$s * %2$s operators.arithmetic.Divide[any,any]=%1$s / %2$s operators.arithmetic.Divide[smallint,decimal]= operators.arithmetic.Divide[smallint,double]= operators.arithmetic.Divide[smallint,float]= operators.arithmetic.Divide[long,decimal]= operators.arithmetic.Divide[long,double]= operators.arithmetic.Divide[long,float]= operators.arithmetic.Divide[integer,decimal]= operators.arithmetic.Divide[integer,double]= operators.arithmetic.Divide[integer,float]= operators.arithmetic.UnaryPlus[any]=+%1$s operators.arithmetic.Negate[any]=-%1$s operators.arithmetic.Concat[any,any]=%1$s || %2$s operators.arithmetic.Subtract[any,datetime]= # # Grouping Operators # operators.groupBy.Rollup=ROLLUP operators.groupBy.Cube=CUBE operators.groupBy.GroupingSets=GROUPING SETS # # Comparison Predicates # predicates.comparison.Equals[any,any]=%1$s = %2$s predicates.comparison.GreaterThan[any,any]=%1$s > %2$s predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s predicates.comparison.LessThan[any,any]=%1$s < %2$s predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s predicates.comparison.NotEquals[any,any]=%1$s <> %2$s # # Various Predicates # predicates.IsNull=%1$s IS NULL predicates.IsNotNull=%1$s IS NOT NULL predicates.Like=%1$s LIKE %2$s predicates.Like.escape=%1$s LIKE %2$s ESCAPE %3$s predicates.Similar.escape= predicates.Exists=EXISTS %1$s predicates.All=ALL %1$s predicates.Some=SOME %1$s predicates.Overlaps[any,any,any,any]= predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= predicates.Between[date,timestamp,any]= predicates.Between[date,any,timestamp]= predicates.Between[timestamp,date,any]= predicates.Between[timestamp,any,date]= predicates.In[date,timestamp]= predicates.In[timestamp,date]= # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Conditional expressions # expressions.SimpleCase=CASE expressions.SearchedCase=CASE expressions.Coalesce=COALESCE(%1$s) expressions.NullIf=NULLIF(%1$s, %2$s) # # Cast # expressions.Cast[time,char]=cast(char(%1$s,JIS) as %2$s) expressions.Cast[time,varchar]=cast(char(%1$s,JIS) as %2$s) expressions.Cast[date,timestamp]=timestamp(%1$s,'00:00:00') expressions.Cast[timestamp,char]=cast(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF6') as %2$s) expressions.Cast[timestamp,varchar]=cast(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF6') as %2$s) expressions.Cast[time,nchar]=cast(char(%1$s,JIS) as CHAR(%3$d)) expressions.Cast[time,nvarchar]=cast(char(%1$s,JIS) as VARCHAR(%3$d)) expressions.Cast[timestamp,nchar]=cast(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF6') as CHAR(%3$d)) expressions.Cast[timestamp,nvarchar]=cast(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d)) expressions.Cast[any,nchar]=cast((%1$s) as CHAR(%3$d)) expressions.Cast[any,nvarchar]=cast((%1$s) as VARCHAR(%3$d)) expressions.Cast[any,xml]= # Minimum number of arguments for Coalesce function. expressions.Coalesce.minArgs=2 # # Extract # expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s) expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s) expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s) expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s) expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s) expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s) expressions.Extract.TIMEZONE_HOUR[any]= expressions.Extract.TIMEZONE_MINUTE[any]= expressions.Extract.EPOCH[any]= # # Trim # expressions.Trim.BOTH[any]=TRIM(BOTH FROM %1$s) expressions.Trim.LEADING[any]=TRIM(LEADING FROM %1$s) expressions.Trim.TRAILING[any]=TRIM(TRAILING FROM %1$s) # # Aggregates # aggregates.Max[any]=MAX(%1$s) aggregates.Min[any]=MIN(%1$s) aggregates.Count[any]=COUNT_BIG(%1$s) aggregates.CountStar[]=COUNT_BIG(*) aggregates.Sum[any]=SUM(%1$s) aggregates.Avg[any]=AVG(%1$s) aggregates.Avg[smallint]= aggregates.Avg[long]= aggregates.StdDevPop[any]= aggregates.StdDevSamp[any]= aggregates.VarPop[any]= aggregates.VarSamp[any]= aggregates.Grouping[any]= aggregates.CumeDistH[any,any]= aggregates.PercentileCont[any,any]= aggregates.PercentileDisc[any,any]= aggregates.Median[any]= aggregates.XMLAgg=XMLAGG(%1$s) aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[any]= # # Distinct aggregates # aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s) aggregates.Min.distinct[any]=MIN(DISTINCT %1$s) aggregates.Max.distinct[any]=MAX(DISTINCT %1$s) aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s) aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s) # # Linear regression aggregates # aggregates.Corr[any,any]= aggregates.CovarPop[any,any]= aggregates.CovarSamp[any,any]= aggregates.RegrAvgX[any,any]= aggregates.RegrAvgY[any,any]= aggregates.RegrCount[any,any]= aggregates.RegrIntercept[any,any]= aggregates.RegrR2[any,any]= aggregates.RegrSlope[any,any]= aggregates.RegrSXX[any,any]= aggregates.RegrSXY[any,any]= aggregates.RegrSYY[any,any]= # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions # functions.CharLength[any]=LENGTH(%1$s) functions.BitLength[any]=(OCTET_LENGTH(%1$s) * 8) functions.Upper[any]=UPPER(%1$s) functions.Lower[any]=LOWER(%1$s) functions.Index[any,any]=POSITION(%2$s IN %1$s) functions.Position[any,any]=POSITION(%1$s IN %2$s) functions.Substring[any,any]=SUBSTR(%1$s, %2$s) functions.Substring[any,any,any]=SUBSTR(%1$s, %2$s, %3$s) functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= functions.Round[any,any,any]= functions.Round[any]= # # Regular expression functions. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Abs[interval_day_time]= functions.Abs[interval_year_month]= functions.Ceiling[any]= functions.Exp[any]=EXP(%1$s) functions.Floor[any]= functions.Ln[any]=LN(%1$s) functions.Log10[any]=LOG10(%1$s) functions.Sign[any]=SIGN(%1$s) functions.Sqrt[any]=SQRT(%1$s) functions.WidthBucket[any,any,any,any]= # # Array scalar functions. # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trig Functions # functions.Cos[any]=COS(%1$s) functions.Coshyp[any]=COSH(%1$s) functions.Sin[any]=SIN(%1$s) functions.Sinhyp[any]=SINH(%1$s) functions.Tan[any]=TAN(%1$s) functions.Tanhyp[any]=TANH(%1$s) # # Olap Functions # olap.Min[any]=MIN(%1$s) olap.Max[any]=MAX(%1$s) olap.Sum[any]=SUM(%1$s) olap.Avg[any]=AVG(%1$s) olap.Count[any]=COUNT(%1$s) olap.CountStar[]=COUNT(*) olap.CumeDist[]=CUME_DIST() olap.LastValue[any]=LAST_VALUE(%1$s) olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, %2$s) olap.Lag[any,any,any]=LAG(%1$s, %2$s, %3$s) olap.Lag[any,any,any,any]=LAG(%1$s, %2$s, %3$s) %4$s olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, %2$s) olap.Lead[any,any,any]=LEAD(%1$s, %2$s, %3$s) olap.Lead[any,any,any,any]=LEAD(%1$s, %2$s, %3$s) %4$s olap.NTile[any]=NTILE(%1$s) olap.FirstValue[any]=FIRST_VALUE(%1$s) olap.Tertile[]= olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.PercentRank[]= olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.RatioToReport[any]=RATIO_TO_REPORT(%1$s) olap.RowNumber[]=ROW_NUMBER() olap.Difference[any]= olap.NthValue[any,any]=NTH_VALUE(%1$s, %2$s) olap.NthValue[any,any,any]=NTH_VALUE(%1$s, %2$s) %3$s olap.NthValue[any,any,any,any]=NTH_VALUE(%1$s, %2$s) %3$s %4$s olap.Median[any]= olap.StdDevSamp[any]=STDDEV_SAMP(%1$s) olap.StdDevPop[any]=STDDEV_POP(%1$s) olap.VarSamp[any]=VAR_SAMP(%1$s) olap.VarPop[any]=VAR_POP(%1$s) olap.Collect[any]= # # Window clause # olap.PartitionBy=PARTITION BY %1$s olap.OrderBy=ORDER BY %1$s # # Window specification # A list of windows specifications that are supported by the DB # P = PARTITION BY # O = ORDER BY # F = FRAME # These settings are NOT consulted for the following functions: # RANK, DENSE_RANK, PERCENT_RANK, LAG, LEAD, NTILE and ROW_NUMBER. # #unbounded preceding and current row not supported. olap.Window.Specification[POF]=true olap.Window.Specification[PO]=true olap.Window.Specification[OF]=true olap.Window.Specification[PF]=false olap.Window.Specification[P]=true olap.Window.Specification[O]=true olap.Window.Specification[F]=true olap.Window.Specification[]=true olap.Window.Frame.Moving=true # # Olap (distinct). # olap.Max.distinct[any]=MAX(DISTINCT %1$s) olap.Min.distinct[any]=MIN(DISTINCT %1$s) olap.Sum.distinct[any]=SUM(DISTINCT %1$s) olap.Avg.distinct[any]=AVG(DISTINCT %1$s) olap.Count.distinct[any]=COUNT(DISTINCT %1$s) # # Temporal value expressions # functions.CurrentDate[]=CURRENT_DATE functions.CurrentTime[]=CURRENT_TIME functions.CurrentTime[numeric]= functions.CurrentTimestamp[]=CURRENT_TIMESTAMP functions.CurrentTimestamp[numeric]= functions.LocalTime[]= LOCALTIME functions.LocalTime[numeric]= functions.LocalTimestamp[]=LOCALTIMESTAMP functions.LocalTimestamp[numeric]= # # XML Functions # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat=XMLConcat(%1$s) functions.XMLExists= functions.XMLNamespaces= functions.XMLParse= functions.XMLPI= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= #jt400 driver 10.6/10.7 return clob instead of xml functions.XMLElement.ContentOption.NULL_ON_NULL=false functions.XMLElement.ContentOption.EMPTY_ON_NULL=false functions.XMLParse.DocumentOrContent.CONTENT=false functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=false # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business date functions. # functions.AddFractionalSeconds[any,any]= functions.AddSeconds[time,numeric]=(TIME(%1$s) + (%2$s) SECOND) functions.AddSeconds[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) SECOND) functions.AddSeconds[time_with_time_zone,numeric]= functions.AddSeconds[timestamp_with_time_zone,numeric]= functions.AddSeconds[interval_day_time,numeric]=((%1$s) + (%2$s) SECOND) functions.AddMinutes[interval_day_time,numeric]=((%1$s) + (%2$s) MINUTE) functions.AddMinutes[time,numeric]=(TIME(%1$s) + (%2$s) MINUTE) functions.AddMinutes[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) MINUTE) functions.AddMinutes[time_with_time_zone,numeric]= functions.AddMinutes[timestamp_with_time_zone,numeric]= functions.AddHours[interval_day_time,numeric]=((%1$s) + (%2$s) HOUR) functions.AddHours[time,numeric]=TIME(%1$s) + (%2$s) HOUR functions.AddHours[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) HOUR) functions.AddHours[time_with_time_zone,numeric]= functions.AddHours[timestamp_with_time_zone,numeric]= functions.AddDays[any,any]=((%1$s) + (%2$s) DAY) functions.AddDays[timestamp_with_time_zone,numeric]= functions.AddWeeks[any,any]=((%1$s) + (%2$s * 7) DAY) functions.AddWeeks[timestamp_with_time_zone,numeric]= functions.AddMonths[any,any]=((%1$s) + (%2$s) MONTH) functions.AddMonths[timestamp_with_time_zone,numeric]= functions.AddQuarters[any,any]=((%1$s) + (%2$s * 3) MONTH) functions.AddQuarters[timestamp_with_time_zone,numeric]= functions.AddYears[any,any]=((%1$s) + (%2$s) YEAR) functions.AddYears[timestamp_with_time_zone,numeric]= functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[time,time]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s)))) functions.SecondsBetween[timestamp,timestamp]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s)))) functions.MinutesBetween[time,time]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s)))) functions.MinutesBetween[timestamp,timestamp]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s)))) functions.HoursBetween[time,time]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s)))) functions.HoursBetween[timestamp,timestamp]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s)))) functions.DaysBetween[any,any]=(DAYS(%1$s) - DAYS(%2$s)) functions.WeeksBetween[any,any]= functions.MonthsBetween[any,any]= functions.QuartersBetween[any,any]= functions.YearsBetween[any,any]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE),'00:00:00') - TIMESTAMP(cast(%2$s as DATE),'00:00:00'))) functions.YearsBetween[date,timestamp]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(cast(%2$s as DATE),'00:00:00'))) functions.YearsBetween[timestamp,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE),'00:00:00') - TIMESTAMP(%2$s, '00:00:00'))) functions.YearsBetween[date,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(%2$s, '00:00:00'))) functions.Age[any]=(CURRENT DATE - %1$s) functions.DayOfWeek[any,any]=(MOD( DAYOFWEEK( %1$s ) - 1 + 7 - %2$s, 7 ) + 1) functions.DayOfYear[any]=DAYOFYEAR( %1$s ) functions.DaysToEndOfMonth[any]= functions.FirstOfMonth[any]=(%1$s - (DAY(%1$s)-1) DAY) functions.LastOfMonth[any]=(%1$s - (DAY(%1$s)-1) DAY + 1 MONTH - 1 DAY) functions.WeekOfYear[any]=WEEK_ISO(%1$s) functions.MakeTimestamp[any,any,any]=TIMESTAMP_ISO( DATE( CHAR( RIGHT( DIGITS( %1$s ), 4 ) || '-' || RIGHT( DIGITS( %2$s ), 2 ) || '-' || RIGHT( DIGITS( %3$s ), 2 ) ) ) ) functions.YMDIntBetween[any,any]= # # Literals # literals.integer=true literals.smallint=true literals.long=true literals.decimal=true literals.float=true literals.double=true literals.char=true literals.nchar=true literals.varchar=true literals.nvarchar=true literals.clob=true literals.date=true literals.time=true literals.time_with_time_zone=false literals.timestamp=true literals.timestamp_with_time_zone=false literals.interval_year=false literals.interval_month=false literals.interval_year_to_month=false literals.interval_day=false literals.interval_hour=false literals.interval_minute=false literals.interval_second=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute_to_second=false literals.binary=false literals.boolean=true literals.xml=true # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. literals.format.boolean=TRUE:FALSE:UNKNOWN literals.format.char='%s' literals.format.varchar='%s' literals.format.nchar=N'%s' literals.format.nvarchar=N'%s' literals.format.clob='%s' literals.format.date=DATE('%1$04d-%2$02d-%3$02d') literals.format.interval_day=%3$s%1$d DAY literals.format.interval_day_to_hour=INTERVAL %4$s'%1$d %2$d' DAY TO HOUR literals.format.interval_day_to_minute=INTERVAL %5$s'%1$d %2$02d:%3$02d' DAY TO MINUTE literals.format.interval_day_to_second=INTERVAL %8$s'%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY TO SECOND literals.format.interval_hour=INTERVAL %3$s'%1$d' HOUR literals.format.interval_hour_to_minute=INTERVAL %4$s'%1$02d:%2$02d' HOUR TO MINUTE literals.format.interval_hour_to_second=INTERVAL %7$s'%1$02d:%2$02d:%3$02d%4$.10s' HOUR TO SECOND literals.format.interval_minute=INTERVAL %3$s'%1$d' MINUTE literals.format.interval_minute_to_second=INTERVAL %6$s'%1$02d:%2$02d%3$.10s' MINUTE TO SECOND literals.format.interval_month=%3$s%1$d MONTH literals.format.interval_second=INTERVAL %3$s'%1$d%2$.10s' SECOND literals.format.interval_year=%3$s%1$d YEAR literals.format.interval_year_to_month=INTERVAL %4$s'%1$d-%2$d' YEAR TO MONTH literals.format.time=TIME('%1$02d:%2$02d:%3$02d') literals.format.time_with_time_zone=TIME'%1$02d:%2$02d:%3$02d%4$.10s%7$c%5$02d:%6$02d' literals.format.timestamp=TIMESTAMP('%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s') literals.format.timestamp_with_time_zone=TIMESTAMP'%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d' # # DataTypes # dataType.smallint=true dataType.integer=true dataType.long=true dataType.decimal=true dataType.float=true dataType.double=true dataType.char=true dataType.nchar=true dataType.varchar=true dataType.nvarchar=true dataType.clob=true dataType.blob=true dataType.date=true dataType.time=true dataType.time_with_time_zone=false dataType.timestamp=true dataType.timestamp_with_time_zone=false dataType.interval_year=false dataType.interval_month=false dataType.interval_year_to_month=false dataType.interval_day=false dataType.interval_hour=false dataType.interval_minute=false dataType.interval_second=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute_to_second=false dataType.boolean=false dataType.binary=false dataType.xml=true dataType.period=false # # Collation # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence collation.sequence.sql= # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. database.charset.sql= # # dataType.comparable # # Used to indicate that some data types that are comparable locally may not by the database # e.g. dataType.comparable[varchar,nvarchar]=false # # dataType.promotion # # Used to indicate what direction the promotion needs to occur # -> these properties are not symetrical # e.g. dataType.promotion[char,nvarchar]=true #datasource.type.XML=xml #datasource.type.GRAPHIC=char #datasource.type.VARGRAPHIC=varchar #datasource.type.DECFLOAT=double