#Licensed Materials - Property of IBM # #OCO Source Materials # #BI and PM: rdbmscert # #(C) Copyright IBM Corp. 2009,2020 # #US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. #This properties file contains default configuration attributes for all # #relational data sources. Any data source that is different must override # #the value in their own properties file. # # # Delimiters # # While a vendor may parse a statement with comments it may strip them out and the server not see them delimiters.commentBegin=/* delimiters.commentEnd=*/ # delimiters.catalogDelimiter= # delimiters.schemaDelimiter= # delimiters.tableDelimiter= # delimiters.columnDelimiter= # Google driver returns double quote Google issue 775 delimiters.identifierQuoteString=` # delimiters.searchStringEscape= # delimiters.catalogSeparator= delimiters.literalQuoteEscape=\\' delimiters.literalEscapeTheEscapeCharacter=true # # Keywords # keywords.columnAlias=AS # # Limits # # Normally these values would be derived from the JDBC driver DatabaseMetadata # limits.maxBinaryLiteralLength= # limits.maxCharLiteralLength= # limits.maxColumnNameLength= # limits.maxColumnsInGroupBy= # limits.maxColumnsInIndex= # limits.maxColumnsInOrderBy= # limits.maxColumnsInSelect= # limits.maxColumnsInTable= # limits.maxConnections= # limits.maxCursorNameLength= # limits.maxIndexLength= # limits.maxSchemaNameLength= # limits.maxProcedureNameLength= # limits.maxCatalogNameLength= # limits.maxRowSize= # limits.maxStatementLength= # limits.maxStatements= limits.maxStatements=1 # limits.maxTableNameLength= # limits.maxTablesInSelect= # limits.maxUserNameLength= # limits.defaultTransactionIsolation= # limits.maxLengthInClause # # General # # # Null ordering # # No support is provided for vendors who change how nulls sort based on data type. general.nullsAreSortedHigh=false general.nullsAreSortedLow=true general.nullsAreSortedAtStart=false general.nullsAreSortedAtEnd=false general.nullsOrdering=true general.nullsOrderingInWindowSpecification=true # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=RANDOM # supports.hints=false supports.constantsInWindows=false # Cursor options - appended to end of generated SELECT statement. general.cursorOptions= # # Various # supports.duplicateColumnsInSelectList=false supports.duplicateColumnNamesInSelectList=false supports.columnAliasing=true supports.tableCorrelationNames=true supports.expressionsInSelectList=true supports.expressionsInINPredicate=true supports.booleanExpressionsInSelectList=true supports.fieldsOfComplexTypeInSelectList=false supports.likeEscapeClause=false supports.outerJoins=true supports.fullOuterJoins=true supports.subqueriesInComparisons=true supports.subqueriesInExists=true supports.subqueriesInIns=true supports.subqueriesInQuantifieds=false supports.subqueriesInOnClause=false supports.subqueriesInCase=true supports.correlatedSubqueries=false supports.correlatedSubqueriesInSelectList=true supports.correlatedSubqueriesInIns=true supports.scalarSubqueries=true supports.withClauseInDerivedTable=true supports.nestedWithClause=false supports.integerDivision=false supports.nestedOlap=false supports.derivedColumnLists=false supports.orderByAlias=true supports.orderByName=true supports.orderByOrdinal=true supports.groupByAlias=true supports.blobsInGroupBy=false supports.blobsInOrderBy=false # Results for other scalar, aggregate and set operations will differ from DQM/ISO-SQL. supports.emptyStringIsNull=false supports.expressionsInGroupBy=false supports.expressionsInOrderBy=true supports.aliasInOrderByExpression=true supports.orderByUnrelated=true supports.groupByUnrelated=false supports.thetaJoins=true supports.equiJoins=true supports.crossProducts=true supports.multipleDistinctAggregates=true supports.recursiveWithClause=false # Cannot use parameter markers in subquery # Cannot use parameter markers in various scenarios supports.orderByInDerivedTable=true supports.join.betweenInOnClause=true supports.join.inPredicateInOnClause=true supports.join.isNullInOnClause=true supports.join.likeInOnClause=true supports.join.notInOnClause=true supports.join.orInOnClause=true supports.join.subqueriesInOnClause=false supports.join.onlyEquiWithAnd=false supports.join.inner.limitedThetaJoins=false # does not support a theta outer join only equality supports.join.outer.thetaJoins=false supports.join.full.thetaJoins=false supports.join.full.distinctJoins=false #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Grouping query optimization # # If the RDBMS has costing/execution issues with group by or distinct consider these transforms performance.convertGroupByToDistinct=false performance.convertDistinctToGroupBy=false # V5 master-detail optimization when allRows optimization is specified v5.master-detail.transform=false performance.convertHavingToWhere=false performance.transitiveClosure=false performance.predicatePushdown=false performance.semiJoin=false # RTC 377496 # Set this entry to F to avoid generation of predicates of the form # T1.C1 = T2.C1 OR ( T1.C1 IS NULL AND T2.C1 IS NULL ). Care must be # taken, however, since doing so may cause data integrity problems if # data contains null values. performance.generateEqualOrNull=true # # Commands # commands.Select=SELECT commands.Call= # # Tables # tables.joined=true tables.derived=true tables.lateral.derived=false # # Constructors # constructors.table=false constructors.row=false constructors.array=true constructors.period=false constructors.map=false # # Constructors - context overrides. # constructors.row.simpleCase=true constructors.row.between=false constructors.row.comparison=false constructors.row.in=false constructors.row.isDistinctFrom=false constructors.row.inListToTable=false # # Clauses # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING # Does not allow column list in common table expression # Recursive form of common table expression not supported clauses.WithRecursive= clauses.With=WITH clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.Top=LIMIT %1$s clauses.At= clauses.Window= clauses.TableSampleSystem= clauses.TableSampleBernoulli= clauses.ForSystemTimeAsOf= clauses.ForSystemTimeFrom= clauses.ForSystemTimeBetween= # # Joins # #cannot project specific columns in cross join joins.Cross= joins.Inner=%1$s INNER JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s joins.RightNested=%1$s joins.Bracket=true # # Set Operators # # One or more set operations does not follow ISO data type combination rules. Can effect set operations, CASE, COALESCE... # Google requires DISTINCT keyword operators.set.Union=%1$s UNION DISTINCT %2$s operators.set.Union.all=%1$s UNION ALL %2$s operators.set.Intersect=%1$s INTERSECT DISTINCT %2$s operators.set.Intersect.all= operators.set.Except=%1$s EXCEPT DISTINCT %2$s operators.set.Except.all= # # Logical Operators # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) # Google Bigquery is operator does not support unknown operators.logical.Is= operators.logical.IsNot= operators.logical.IsJson= operators.logical.IsNotJson= # # Arithmetic and Character operators # operators.arithmetic.Add[any,any]=%1$s + %2$s operators.arithmetic.Subtract[any,any]= operators.arithmetic.Subtract[numeric,numeric]=%1$s - %2$s operators.arithmetic.Multiply[any,any]=%1$s * %2$s operators.arithmetic.Divide[any,any]=%1$s / %2$s operators.arithmetic.UnaryPlus[any]=+%1$s operators.arithmetic.Negate[any]=-%1$s # BigQuery does not perform implicit type conversion so coerce to string for integer, date, time and timestamps operators.arithmetic.Concat[any,any]=concat(cast(%1$s as string), cast(%2$s as string)) operators.arithmetic.Concat[text,text]=concat(%1$s,%2$s) operators.arithmetic.Concat[double,any]= operators.arithmetic.Concat[float,any]= operators.arithmetic.Concat[decimal,any]= operators.arithmetic.Concat[any,double]= operators.arithmetic.Concat[any,float]= operators.arithmetic.Concat[any,decimal]= # # Grouping Operators # operators.groupBy.Rollup= operators.groupBy.Cube= operators.groupBy.GroupingSets= # # Comparison Predicates # predicates.comparison.Equals[any,any]=%1$s = %2$s predicates.comparison.Equals[date,timestamp]=cast(%1$s as timestamp) = %2$s predicates.comparison.Equals[timestamp,date]=%1$s = cast(%2$s as timestamp) predicates.comparison.Equals[boolean,varchar]=%1$s = cast(%2$s as boolean) predicates.comparison.Equals[varchar,boolean]=cast(%1$s as boolean) = %2$s predicates.comparison.GreaterThan[any,any]=%1$s > %2$s predicates.comparison.GreaterThan[date,timestamp]=cast(%1$s as timestamp) > %2$s predicates.comparison.GreaterThan[timestamp,date]=%1$s > cast(%2$s as timestamp) predicates.comparison.GreaterThan[boolean,varchar]=%1$s > cast(%2$s as boolean) predicates.comparison.GreaterThan[varchar,boolean]=cast(%1$s as boolean) > %2$s predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s predicates.comparison.GreaterThanOrEquals[date,timestamp]=cast(%1$s as timestamp) >= %2$s predicates.comparison.GreaterThanOrEquals[timestamp,date]=%1$s >= cast(%2$s as timestamp) predicates.comparison.GreaterThanOrEquals[boolean,varchar]=%1$s >= cast(%2$s as boolean) predicates.comparison.GreaterThanOrEquals[varchar,boolean]=cast(%1$s as boolean) >= %2$s predicates.comparison.LessThan[any,any]=%1$s < %2$s predicates.comparison.LessThan[date,timestamp]=cast(%1$s as timestamp) < %2$s predicates.comparison.LessThan[timestamp,date]=%1$s < cast(%2$s as timestamp) predicates.comparison.LessThan[boolean,varchar]=%1$s < cast(%2$s as boolean) predicates.comparison.LessThan[varchar,boolean]=cast(%1$s as boolean) < %2$s predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s predicates.comparison.LessThanOrEquals[date,timestamp]=cast(%1$s as timestamp) <= %2$s predicates.comparison.LessThanOrEquals[timestamp,date]=%1$s <= cast(%2$s as timestamp) predicates.comparison.LessThanOrEquals[boolean,varchar]=%1$s <= cast(%2$s as boolean) predicates.comparison.LessThanOrEquals[varchar,boolean]=cast(%1$s as boolean) <= %2$s predicates.comparison.NotEquals[any,any]=%1$s <> %2$s predicates.comparison.NotEquals[date,timestamp]=cast(%1$s as timestamp) <> %2$s predicates.comparison.NotEquals[timestamp,date]=%1$s <> cast(%2$s as timestamp) predicates.comparison.NotEquals[boolean,varchar]=%1$s <> cast(%2$s as boolean) predicates.comparison.NotEquals[varchar,boolean]=cast(%1$s as boolean) <> %2$s # # Predicates # predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s predicates.In[any,any]=%1$s IN ( %2$s ) predicates.Overlaps[any,any,any,any]= predicates.IsNull=%1$s IS NULL predicates.IsNotNull=%1$s IS NOT NULL predicates.Like=%1$s LIKE %2$s predicates.Like.escape= predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= predicates.Exists=EXISTS %1$s predicates.All= predicates.Any= predicates.Some= predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s # Distinct from predicate not supported by alternate is not distinct from expression could be used. predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions # expressions.ArrayElementRef.zeroBased=false # # Conditional expressions # expressions.SimpleCase=CASE expressions.SearchedCase=CASE expressions.Coalesce[any,any]=COALESCE(%1$s) expressions.Coalesce[timestamp,timestamp]=COALESCE(%1$s) expressions.Coalesce[timestamp,any]= expressions.Coalesce[numeric,timestamp]= expressions.Coalesce[numeric,time]= expressions.Coalesce[date,timestamp]= expressions.Coalesce[date,time]= expressions.NullIf[any,any]=NULLIF(%1$s, %2$s) expressions.NullIf[timestamp,timestamp]=NULLIF(%1$s, %2$s) expressions.NullIf[timestamp,any]= expressions.NullIf[numeric,timestamp]= expressions.NullIf[date,timestamp]= # NULLIF(%1$s, %2$s) is equivalent to CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END # Minimum number of arguments for Coalesce function. expressions.Coalesce.minArgs=2 # # Cast # # Cannot cast from null value to Bigint # Cannot cast from null value to Double # Cannot cast from null value to Varchar # Cannot cast from null value to TimestampWithTZ expressions.Cast[any,any]= expressions.Cast[boolean,varchar]=SUBSTR(UPPER(CAST(%1$s as STRING)), 1, %3$d) expressions.Cast[boolean,boolean]=CAST(%1$s AS boolean) expressions.Cast[long,long]=CAST(%1$s as int64) expressions.Cast[long,double]=CAST(%1$s as float64) expressions.Cast[long,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d) expressions.Cast[decimal,double]=CAST(%1$s as float64) expressions.Cast[double,long]=CAST(%1$s as int64) expressions.Cast[double,double]=CAST(%1$s as float64) expressions.Cast[double,varchar]= expressions.Cast[varchar,boolean]=CAST(%1$s AS boolean) expressions.Cast[varchar,long]=CAST(%1$s as int64) expressions.Cast[varchar,double]=CAST(%1$s as float64) expressions.Cast[varchar,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d) expressions.Cast[varchar,date]=CAST(%1$s as date) expressions.Cast[varchar,timestamp]=CAST(%1$s as datetime) expressions.Cast[varchar,time]=CAST(%1$s as time) expressions.Cast[varchar,timestamp_with_time_zone]= expressions.Cast[date,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d) expressions.Cast[date,timestamp]=CAST( %1$s as DATETIME) expressions.Cast[timestamp,timestamp]=CAST( %1$s as DATETIME) expressions.Cast[date,timestamp_with_time_zone]= expressions.Cast[time,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d) expressions.Cast[time,time]=CAST(%1$s as time) expressions.Cast[time,timestamp]= expressions.Cast[time,timestamp_with_time_zone]= expressions.Cast[timestamp,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d) expressions.Cast[timestamp,date]=cast(%1$s as DATE) expressions.Cast[timestamp,time]= expressions.Cast[timestamp,timestamp]= expressions.Cast[timestamp,timestamp_with_time_zone]= expressions.Cast[timestamp_with_time_zone,varchar]= expressions.Cast[timestamp_with_time_zone,time]=CAST( extract( time from %1$s) as TIME) expressions.Cast[timestamp_with_time_zone,date]=CAST( %1$s as DATE) expressions.Cast[timestamp_with_time_zone,timestamp]= expressions.Cast[timestamp_with_time_zone,timestamp_with_time_zone]=CAST( %1$s as TIMESTAMP) expressions.Cast[date,date]=cast(%1$s as DATE) expressions.Cast[any,decimal]= expressions.Cast[decimal,text]= expressions.Cast[decimal,long]= expressions.Cast[any,long]=CAST(%1$s as int64) expressions.Cast[any,double]=CAST(%1$s as float64) expressions.Cast[any,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d) expressions.Cast[any,date]=cast(%1$s as DATE) expressions.Cast[any,timestamp]=CAST( %1$s as DATETIME) expressions.Cast[any,boolean]=CAST(%1$s AS %2$s) expressions.Cast[any,timestamp]=CAST( %1$s as TIME) # # Extract # expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s) expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s) expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s) expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s) expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s) expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s) expressions.Extract.TIMEZONE_HOUR[any]= expressions.Extract.TIMEZONE_MINUTE[any]= # # Trim # expressions.Trim.BOTH[any]=TRIM(%1$s) expressions.Trim.BOTH[any,any]=TRIM(%2$s, %1$s) expressions.Trim.LEADING[any]=LTRIM(%1$s) expressions.Trim.LEADING[any,any]=LTRIM(%2$s, %1$s) expressions.Trim.TRAILING[any]=RTRIM(%1$s) expressions.Trim.TRAILING[any,any]=RTRIM(%2$s, %1$s) # # Windowed aggregates (SQL/OLAP). # olap.Max[any]=MAX(%1$s) olap.Min[any]=MIN(%1$s) olap.Sum[any]=SUM(%1$s) olap.Avg[any]=AVG(%1$s) olap.Count[any]=COUNT(%1$s) olap.CountStar[]=COUNT(*) olap.StdDevPop[any]=STDDEV_POP(%1$s) olap.StdDevSamp[any]=STDDEV_SAMP(%1$s) olap.VarPop[any]=VAR_POP(%1$s) olap.VarSamp[any]=VAR_SAMP(%1$s) olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.CumeDist[]=CUME_DIST() olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.PercentRank[]=PERCENT_RANK() olap.RatioToReport[any]= olap.Median[any]= olap.RowNumber[]=ROW_NUMBER() olap.Difference[any]= olap.FirstValue[any]=FIRST_VALUE(%1$s) olap.LastValue[any]=LAST_VALUE(%1$s) # Olap Ntile without an order by will sort nulls first and not last. olap.NTile[any]=NTILE(%1$s) olap.Tertile[]= olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, %2$s) olap.Lag[any,any,any]=LAG(%1$s, %2$s, %3$s) olap.Lag[any,any,any,any]= olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, %2$s) olap.Lead[any,any,any]=LEAD(%1$s, %2$s, %3$s) olap.Lead[any,any,any,any]= olap.NthValue[any]= olap.NthValue[any,any]=NTH_VALUE(%1$s, %2$s) olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.Collect[any]= # # Window clause # olap.Window=OVER(%1$s) olap.PartitionBy=PARTITION BY %1$s # Olap does not allow a constants in the order by list. # Olap does not allow a constants in the partition by list. # Olap does not allow a constants and expressions in the over clause. # Lack of window ordering impacts many aggregates being pushed # Unable to specify a literal in window ordering olap.OrderBy=ORDER BY %1$s # # Window specification # olap.Window.Specification[POF]=true olap.Window.Specification[PF]=true olap.Window.Specification[OF]=true olap.Window.Specification[PO]=true olap.Window.Specification[P]=true olap.Window.Specification[O]=true olap.Window.Specification[F]=true olap.Window.Specification[]=true olap.Window.Frame.Moving=true # # Olap Distinct # olap.Min.distinct[any]=MIN(DISTINCT %1$s) olap.Max.distinct[any]=MAX(DISTINCT %1$s) olap.Sum.distinct[any]=SUM(DISTINCT %1$s) olap.Avg.distinct[any]= olap.Count.distinct[any]=COUNT(DISTINCT %1$s) # # Aggregates # aggregates.Max[timestamp]=MAX(%1$s) aggregates.Max[boolean]=MAX(%1$s) aggregates.Max[varchar]=MAX(%1$s) aggregates.Max[time]=MAX(%1$s) aggregates.Max[numeric]=MAX(%1$s) aggregates.Max[timestamp_with_time_zone]=MAX(%1$s) aggregates.Max[date]=MAX(%1$s) aggregates.Min[timestamp]=MIN(%1$s) aggregates.Min[boolean]=MIN(%1$s) aggregates.Min[varchar]=MIN(%1$s) aggregates.Min[time]=MIN(%1$s) aggregates.Min[numeric]=MIN(%1$s) aggregates.Min[timestamp_with_time_zone]=MIN(%1$s) aggregates.Min[date]=MIN(%1$s) aggregates.Count[any]=COUNT(%1$s) aggregates.CountStar[]=COUNT(*) aggregates.Sum[any]=SUM(%1$s) aggregates.Avg[any]=AVG(%1$s) aggregates.StdDevPop[any]=STDDEV_POP(%1$s) aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s) aggregates.VarPop[any]=VAR_POP(%1$s) aggregates.VarSamp[any]=VAR_SAMP(%1$s) aggregates.Rank[any,any]= aggregates.DenseRank[any,any]= aggregates.PercentRank[any,any]=PERCENT_RANK(%1$s) WITHIN GROUP (ORDER BY %2$s) aggregates.CumeDistH[any,any]= aggregates.PercentileDisc[any,any]= aggregates.PercentileCont[any,any]= aggregates.Median[any]= aggregates.Grouping[any]= aggregates.XMLAgg[any]= # Cannot have different order by clauses in array_agg aggregates.ArrayAgg[any]= # Vendor supports ordering in array agg but not the specification of null ordering aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= # # Distinct aggregates # aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s) aggregates.Min.distinct[any]=MIN(DISTINCT %1$s) aggregates.Max.distinct[any]=MAX(DISTINCT %1$s) aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s) aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s) # # Linear regression aggregates # aggregates.Corr[any,any]=CORR(%1$s, %2$s) aggregates.CovarPop[any,any]=COVAR_POP(%1$s, %2$s) aggregates.CovarSamp[any,any]=COVAR_SAMP(%1$s, %2$s) aggregates.RegrAvgX[any,any]= aggregates.RegrAvgY[any,any]= aggregates.RegrCount[any,any]= aggregates.RegrIntercept[any,any]= aggregates.RegrR2[any,any]= aggregates.RegrSlope[any,any]= aggregates.RegrSXX[any,any]= aggregates.RegrSXY[any,any]= aggregates.RegrSYY[any,any]= # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions # functions.CharLength[any]=CHAR_LENGTH(%1$s) functions.OctetLength[any]= functions.BitLength[any]= functions.Upper[any]=UPPER(%1$s) functions.Lower[any]=LOWER(%1$s) functions.Substring[any,any]=SUBSTR(%1$s, cast(floor(%2$s) as int64)) functions.Substring[any,any,any]=SUBSTR(%1$s, cast(floor(%2$s) as int64), cast(floor(%3$s) as int64)) functions.Position[any,any]=STRPOS(%2$s, %1$s) functions.Index[any,any]= functions.Ascii[any]= functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= #Substring function to negative START value to parse the input string from its rightmost end. #It's not a standard SQL function, so leave the definition empty. functions.SubstringR[any,any]= functions.SubstringR[any,any,any]= # # Regular expression functions. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Ceiling[any]=CEILING(%1$s) functions.Exp[any]=EXP(%1$s) functions.Floor[any]=FLOOR(%1$s) functions.Ln[any]=LN(%1$s) functions.Log10[any]=LOG10(%1$s) functions.Mod[any,any]=MOD(%1$s, %2$s) # only supports int64 types functions.Mod[long,long]=MOD(%1$s, %2$s) functions.Power[any,any]=POWER(%1$s, %2$s) functions.Random[]=RAND() functions.Random[any]= functions.Round[any]=ROUND(%1$s) functions.Round[any,any]=ROUND(%1$s, %2$s) functions.Round[any,any,any]= functions.Sign[any]=SIGN(%1$s) functions.Sqrt[any]=SQRT(%1$s) functions.WidthBucket[any,any,any,any]= # # Array scalar functions # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trig Functions # functions.Arccos[any]=ACOS(%1$s) functions.Cos[any]=COS(%1$s) functions.Coshyp[any]=COSH(%1$s) functions.Arcsin[any]=ASIN(%1$s) functions.Sin[any]=SIN(%1$s) functions.Sinhyp[any]=SINH(%1$s) functions.Arctan[any]=ATAN(%1$s) functions.Tan[any]=TAN(%1$s) functions.Tanhyp[any]=TANH(%1$s) # # Temporal value expressions # # Note: JDBC does not define fractional seconds for TIME data type. # Bigquery is automatically shifting based on TZ versus date reflecting session tz functions.CurrentDate[]= functions.CurrentTime[]=CURRENT_TIME() functions.CurrentTime[numeric]= functions.CurrentTimestamp[]=CURRENT_TIMESTAMP() functions.CurrentTimestamp[numeric]= functions.LocalTime[]= functions.LocalTime[numeric]= functions.LocalTimestamp[]= functions.LocalTimestamp[numeric]= # # XML Functions # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= functions.XMLElement.ContentOption.NULL_ON_NULL=false functions.XMLElement.ContentOption.EMPTY_ON_NULL=false functions.XMLForest.ContentOption.NULL_ON_NULL=false functions.XMLForest.ContentOption.EMPTY_ON_NULL=false functions.XMLParse.DocumentOrContent.DOCUMENT=false functions.XMLParse.DocumentOrContent.CONTENT=false functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=false functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=false functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false # # JSON functions. # functions.JSONObject= functions.JSONArray= functions.JSONExists= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business functions. # functions.AddHours[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) HOUR ) functions.AddHours[timestamp,any]= functions.AddHours[time,any]=TIME_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) HOUR ) functions.AddMinutes[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) MINUTE ) functions.AddMinutes[timestamp,any]= functions.AddMinutes[time,any]=TIME_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) MINUTE ) functions.AddSeconds[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, CAST(TRUNC(%2$s) as int64) SECOND ) functions.AddSeconds[timestamp,any]= functions.AddSeconds[time,any]=TIME_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) SECOND ) functions.AddFractionalSeconds[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, CAST(TRUNC(%2$s) as int64) MILLISECOND ) functions.AddFractionalSeconds[timestamp,any]= functions.AddFractionalSeconds[time,any]=TIME_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) MILLISECOND ) functions.AddDays[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) DAY ) functions.AddDays[timestamp,any]= functions.AddDays[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) DAY ) functions.AddWeeks[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) WEEK ) functions.AddWeeks[timestamp,any]= functions.AddWeeks[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) * 7 DAY ) functions.AddMonths[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) MONTH ) functions.AddMonths[timestamp,any]= functions.AddMonths[timestamp_with_time_zone,any]= functions.AddQuarters[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) QUARTER ) functions.AddQuarters[timestamp,any]= functions.AddQuarters[timestamp_with_time_zone,any]= functions.AddYears[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) YEAR ) functions.AddYears[timestamp,any]= functions.AddYears[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) * 365 DAY ) functions.Age[any]= functions.FractionalSecondsBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, MILLISECOND) functions.FractionalSecondsBetween[any,timestamp]= functions.FractionalSecondsBetween[timestamp,any]= functions.FractionalSecondsBetween[timestamp,time]=TIME_DIFF(%1$s, %2$s, MILLISECOND) functions.SecondsBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, SECOND) functions.SecondsBetween[any,timestamp]= functions.SecondsBetween[timestamp,any]= functions.SecondsBetween[time,time]=TIME_DIFF(%1$s, %2$s, SECOND) functions.MinutesBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, MINUTE) functions.MinutesBetween[any,timestamp]= functions.MinutesBetween[timestamp,any]= functions.MinutesBetween[time,time]=TIME_DIFF(%1$s, %2$s, MINUTE) functions.HoursBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, HOUR) functions.HoursBetween[timestamp,any]= functions.HoursBetween[any,timestamp]= functions.HoursBetween[time,time]=TIME_DIFF(%1$s, %2$s, HOUR) functions.DaysBetween[any,any]= functions.DaysBetween[date,date]=DATE_DIFF(%1$s, %2$s, DAY) functions.DaysBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, DAY) functions.WeeksBetween[any,any]= functions.MonthsBetween[any,any]= functions.QuartersBetween[any,any]= functions.YearsBetween[any,any]= functions.YearsBetween[date,date]=DATE_DIFF(%1$s, %2$s, YEAR) functions.YearsBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, YEAR) functions.DayOfWeek[any,any]= functions.DayOfWeek[date,any]=MOD(EXTRACT(DAYOFWEEK FROM %1$s) - 1 + 7 - (%2$s), 7) + 1 functions.DayOfWeek[timestamp_with_time_zone,any]=MOD(EXTRACT(DAYOFWEEK FROM %1$s) - 1 + 7 - (%2$s), 7) + 1 functions.DayOfYear[any]=EXTRACT(DAYOFYEAR FROM %1$s) functions.DaysToEndOfMonth[any] functions.DaysToEndOfMonth[date]=DATE_DIFF(DATE_ADD(DATE_TRUNC(%1$s, MONTH), interval 1 month), %1$s, DAY) - 1 functions.DaysToEndOfMonth[timestamp_with_time_zone]=EXTRACT(DAY FROM DATE_SUB(DATE_ADD(DATE_TRUNC(extract(DATE from %1$s), MONTH), INTERVAL 1 MONTH), INTERVAL 1 DAY)) - EXTRACT(DAY from %1$s) functions.FirstOfMonth[any]= functions.FirstOfMonth[date]=DATE_TRUNC(%1$s, MONTH) functions.FirstOfMonth[timestamp_with_time_zone]=TIMESTAMP_TRUNC(%1$s, MONTH) functions.LastOfMonth[any]= functions.LastOfMonth[date]=DATE_SUB( DATE_ADD( DATE_TRUNC(%1$s, MONTH), interval 1 month) ), interval 1 day) functions.LastOfMonth[timestamp_with_time_zone]=TIMESTAMP_ADD(TIMESTAMP_TRUNC( %1$s), INTERVAL EXTRACT(DAY FROM DATE_SUB(DATE_ADD(DATE_TRUNC(extract(DATE from %1$s), MONTH), INTERVAL 1 MONTH), INTERVAL 1 DAY)) - 1 DAY) functions.MakeTimestamp[any,any,any]= functions.WeekOfYear[any]= functions.YMDIntBetween[any,any]= # # Table functions. # functions.Unnest= # # Literals # literals.integer=true literals.smallint=true literals.decimal=true literals.float=true literals.char=false literals.nchar=false literals.varchar=true literals.nvarchar=false literals.blob=false literals.clob=false literals.nclob=false literals.date=true literals.time=true literals.time_with_time_zone=false literals.timestamp=true literals.timestamp_with_time_zone=true literals.interval_year=false literals.interval_month=false literals.interval_year_to_month=false literals.interval_day=false literals.interval_hour=false literals.interval_minute=false literals.interval_second=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute_to_second=false literals.time_with_time_zone=false literals.binary=false literals.boolean=true literals.xml=false literals.array=false literals.perioddate=false # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. literals.format.boolean=TRUE:FALSE:UNKNOWN literals.format.char='%s' literals.format.clob='%s' literals.format.date=DATE '%1$04d-%2$02d-%3$02d' literals.format.decimal=cast(%s as numeric) literals.format.interval_day= literals.format.interval_day_to_hour= literals.format.interval_day_to_minute= literals.format.interval_day_to_second= literals.format.interval_hour= literals.format.interval_hour_to_minute= literals.format.interval_hour_to_second= literals.format.interval_minute= literals.format.interval_minute_to_second= literals.format.interval_month= literals.format.interval_second= literals.format.interval_year= literals.format.interval_year_to_month= literals.format.nchar= literals.format.nvarchar= literals.format.time=TIME '%1$02d:%2$02d:%3$02d%4$.6s' literals.format.time_with_time_zone= literals.format.timestamp=DATETIME '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.6s' literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s%10$c%8$02d:%9$02d' literals.format.varchar='%s' # # DataTypes # dataType.smallint=false dataType.integer=false dataType.long=true dataType.decimal=true dataType.float=false dataType.double=true dataType.char=false dataType.nchar=false dataType.varchar=true dataType.nvarchar=false dataType.clob=false dataType.blob=false dataType.date=true dataType.time=true dataType.time_with_time_zone=false dataType.timestamp=true dataType.timestamp_with_time_zone=true dataType.interval_year=false dataType.interval_month=false dataType.interval_year_to_month=false dataType.interval_day=false dataType.interval_hour=false dataType.interval_minute=false dataType.interval_second=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute_to_second=false dataType.boolean=true dataType.binary=false dataType.xml=false dataType.perioddate=false dataType.array=false dataType.struct=false dataType.map=false dataType.json=false # # Collation # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence collation.sequence.sql= # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. database.charset.sql= # # dataType.comparable # # Used to indicate that some data types that are comparable locally may not by the database # e.g. dataType.comparable[varchar,nvarchar]=false # # dataType.promotion # # Used to indicate what direction the promotion needs to occur # -> these properties are not symetrical # e.g. dataType.promotion[char,nvarchar]=true