# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2005, 2020 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # The configuration of this properties file supports Hive 1x as a base line. # # # Product information. # # # Delimiters # delimiters.commentBegin= delimiters.commentEnd= # # Keywords. # # # Various limits. A value of 0 means no limit, or the limit is unknown. # limits.defaultTransactionIsolation= # # General settings. # general.nullsAreSortedLow=true # Until HIVE-15548 is resolved do not enable for Hive 2.1 general.nullsOrdering=false # Until HIVE-15548 is resolved do not enable for Hive 2.1 general.nullsOrderingInWindowSpecification=false # # Cursor options - appended to end of generated SELECT statement. # # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=RANDOM # # Various features. # supports.tableCorrelationNames=true supports.expressionsInOrderBy=false supports.aliasInOrderByExpression=true supports.expressionsInINPredicate=true supports.expressionsInSelectList=true supports.booleanExpressionsInSelectList=true supports.fieldsOfComplexTypeInSelectList=false supports.likeEscapeClause=false supports.outerJoins=true supports.fullOuterJoins=true #hive supports sub queries only in FROM clause supports.subqueriesInComparisons=false supports.subqueriesInExists=false supports.subqueriesInIns=false supports.subqueriesInQuantifieds=false supports.subqueriesInCase=false supports.correlatedSubqueries=false supports.correlatedSubqueriesInSelectList=false supports.correlatedSubqueriesInIns=false supports.withClauseInDerivedTable=false supports.nestedWithClause=false supports.integerDivision=false supports.groupedWindowedTables=false supports.derivedColumnLists=false supports.orderByOrdinal=false #hive supports sub queries only in FROM clause supports.scalarSubqueries=false supports.expressionsInGroupBy=true supports.equiJoins=true supports.thetaJoins=false supports.stitchJoins=false supports.crossProducts=true supports.recursiveWithClause=false supports.orderByUnrelated=false supports.groupByUnrelated=false supports.constantsInWindows=true supports.callProcedureInDerivedTable=false supports.join.orInOnClause=false supports.join.subqueriesInOnClause=false supports.join.onlyEquiWithAnd=true # Indicates whether inner joins require at least one equijoin predicate. # A INNER JOIN B ON A.C1 = B.C1 AND A.C2 > B.C2 is fine, but A INNER JOIN B ON A.C2 > B.C2 is not. supports.join.inner.limitedThetaJoins=true # # Performance properties (force certain transformations to be applied). # # # Command. # commands.Call= # # Tables. # tables.lateral.derived=false tables.joined=true tables.derived=true # # Constructors. # constructors.table=false constructors.row=false constructors.array=false constructors.period=false constructors.map=false # # Constructors - context overrides. # constructors.row.simpleCase=false constructors.row.between=false constructors.row.isDistinctFrom=false constructors.row.inListToTable=false # # Clauses. # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING clauses.With=WITH clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.Top= clauses.FetchFirst= clauses.At= clauses.Window= clauses.WithRecursive= clauses.Limit=LIMIT %1$s clauses.TableSampleSystem= clauses.TableSampleBernoulli= clauses.ForSystemTimeAsOf= clauses.ForSystemTimeFrom= clauses.ForSystemTimeBetween= # # Joins. # # Join condition does not support OR clause # Does not support non-equi joins # Does not allow on condition to use set functions # Does not allow join conditions to use sub-queries # Does not allow non equi joins in full outer join # Only allows equal with and conditions in joins # Does not support outer non-equi joins # # Nested joins may fail in Hive 1.2x when vectorization is enabled APACHE JIRA HIVE-11371 joins.Cross=%1$s CROSS JOIN %2$s joins.Inner=%1$s JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s joins.RightNested=%1$s # # Set operators. # # Apachive Hive HIVE-10487 requires the projections to have identical names unlike ISO-SQL operators.set.Union= operators.set.Union.all= #operators.set.Union.all=%1$s UNION ALL %2$s operators.set.Intersect= operators.set.Intersect.all= operators.set.Except= operators.set.Except.all= # # Logical operators. # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) operators.logical.Is= operators.logical.IsNot= operators.logical.IsJson= operators.logical.IsNotJson= # # Arithmetic operators. # # For Hive concat has below format. Rest all arithmetic operators remains as in SQL.properties. # APACHE JIRA HIVE-9537 operators.arithmetic.Concat[char,any]= operators.arithmetic.Concat[any,char]= operators.arithmetic.Concat[any,any]=concat(%1$s, %2$s) operators.arithmetic.Add[timestamp,any]= operators.arithmetic.Add[any,timestamp]= operators.arithmetic.Add[date,any]= operators.arithmetic.Add[any,date]= operators.arithmetic.Subtract[date,any]= operators.arithmetic.Subtract[any,date]= operators.arithmetic.Subtract[timestamp,any]= operators.arithmetic.Subtract[any,timestamp]= # # Group By Operators # operators.groupBy.Rollup= operators.groupBy.Cube= operators.groupBy.GroupingSets= # # Comparison predicates. # # # Various predicates. # # Note in Hive 1.2x if vectorization is left on this may fail # APACHE JIRA HIVE-11372 predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s predicates.In[any,any]=%1$s IN ( %2$s ) predicates.Overlaps[any,any,any,any]= predicates.IsNull=%1$s IS NULL predicates.IsNotNull=%1$s IS NOT NULL predicates.Like= predicates.Like.escape= predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= ##Hive does not support EXISTS in where clause. predicates.Exists= predicates.All= predicates.Any= predicates.Some= predicates.IsDistinctFrom[any,any]= predicates.IsNotDistinctFrom[any,any]= # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions. # expressions.ArrayElementRef.zeroBased=false expressions.SimpleCase=CASE expressions.SearchedCase=CASE # Due to how Hive compares varchar and char it will think that a zero length string and space are not equivalent # APACHE JIRA HIVE-9537, HIVE-3745 and HIVE-9745 expressions.NullIf=CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END # APACHE JIRA HIVE-15552 will result in an error for coalesce or case expression mixing DATE and TIMESTAMPS expressions.Coalesce.minArgs=2 # # Cast expression. # expressions.Cast[any,integer]=CAST(%1$s AS int) expressions.Cast[smallint,long]= expressions.Cast[smallint,float]= expressions.Cast[any,double]=CAST(%1$s AS double) expressions.Cast[any,varchar]= expressions.Cast[integer,smallint]= expressions.Cast[integer,integer]= expressions.Cast[integer,long]= expressions.Cast[integer,float]= expressions.Cast[integer,double]= expressions.Cast[long,smallint]= expressions.Cast[long,integer]= expressions.Cast[long,float]= expressions.Cast[long,double]= expressions.Cast[decimal,text]= expressions.Cast[float,smallint]= expressions.Cast[float,integer]= expressions.Cast[float,long]= expressions.Cast[float,double]= expressions.Cast[float,text]= expressions.Cast[double,smallint]= expressions.Cast[double,integer]= expressions.Cast[double,long]= expressions.Cast[double,float]= expressions.Cast[double,double]= expressions.Cast[double,text]= expressions.Cast[varchar,smallint]= expressions.Cast[varchar,integer]= expressions.Cast[varchar,long]= expressions.Cast[varchar,float]= expressions.Cast[varchar,double]= expressions.Cast[varchar,timestamp]= # Hive does not support timestamps with up to 9 digits of precision attempting to cast a character literal or value # expression to a timestamp will loose fractional seconds. #expressions.Cast[timestamp,text]= # # Extract expression. # expressions.Extract.YEAR[any]=year(%1$s) expressions.Extract.MONTH[any]=month(%1$s) expressions.Extract.DAY[any]=day(%1$s) expressions.Extract.HOUR[any]=hour(%1$s) expressions.Extract.MINUTE[any]=minute(%1$s) expressions.Extract.SECOND[any]=second(%1$s) + cast(%1$s as double) - cast(cast(from_unixtime(unix_timestamp(%1$s)) as timestamp) as double) expressions.Extract.TIMEZONE_HOUR[any]= expressions.Extract.TIMEZONE_MINUTE[any]= expressions.Extract.EPOCH[any]= # # Trim expression. # expressions.Trim.BOTH[any]=trim(%1$s) expressions.Trim.BOTH[any,any]= expressions.Trim.LEADING[any]=ltrim(%1$s) expressions.Trim.LEADING[any,any]= expressions.Trim.TRAILING[any]=rtrim(%1$s) expressions.Trim.TRAILING[any,any]= # # Windowed aggregates (SQL/OLAP). # # Hive 2.1 fails if the input to the aggregate is a standard aggregate HIVE-15553 olap.Max[any]=MAX(%1$s) olap.Min[any]=MIN(%1$s) olap.Sum[any]=SUM(%1$s) olap.Avg[any]=AVG(%1$s) olap.Count[any]=COUNT(%1$s) olap.CountStar[]=COUNT(*) olap.CumeDist[]=CUME_DIST() olap.StdDevSamp[any]= olap.StdDevPop[any]= olap.VarSamp[any]= olap.VarPop[any]= olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.PercentRank[]=PERCENT_RANK() olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.Median[any]= olap.RowNumber[]=ROW_NUMBER() olap.FirstValue[any]=FIRST_VALUE(%1$s) olap.NTile[any]= olap.Tertile[]= olap.RatioToReport[any]= olap.Difference[any]= olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, %2$s) olap.Lag[any,any,any]= olap.Lag[any,any,any,any]= olap.LastValue[any]=LAST_VALUE(%1$s) olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, %2$s) olap.Lead[any,any,any]= olap.Lead[any,any,any,any]= olap.NthValue[any,any]= olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.Collect[any]= # # Window clause. # olap.Window= olap.PartitionBy=PARTITION BY %1$s olap.OrderBy=ORDER BY %1$s # # Window specification # # Older Hive 1.x releases had various issues # https://issues.apache.org/jira/browse/HIVE-4663 olap.Window.Specification[POF]=true olap.Window.Specification[PF]=true olap.Window.Specification[OF]=true olap.Window.Specification[PO]=true olap.Window.Specification[P]=true olap.Window.Specification[O]=true olap.Window.Specification[F]=true olap.Window.Specification[]=true olap.Window.Frame.Moving=true # # Olap (distinct). # # Note - Hive 2.1 will impose the following restriction # Current implementation has the limitation that no ORDER BY or window specification can be supported in the partitioning clause for performance reasons #olap.Min.distinct[any]=MIN(DISTINCT %1$s) #olap.Max.distinct[any]=MAX(DISTINCT %1$s) #olap.Sum.distinct[any]=SUM(DISTINCT %1$s) #olap.Avg.distinct[any]=AVG(DISTINCT %1$s) #olap.Count.distinct[any]=COUNT(DISTINCT %1$s) olap.Min.distinct[any]= olap.Max.distinct[any]= olap.Sum.distinct[any]= olap.Avg.distinct[any]= olap.Count.distinct[any]= # # Aggregates. # aggregates.Min[text]= aggregates.Rank[any,any]= aggregates.DenseRank[any,any]= aggregates.PercentRank[any,any]= aggregates.CumeDistH[any,any]= aggregates.PercentileCont[any,any]= aggregates.PercentileDisc[any,any]= aggregates.PercentileCont[any,any]= aggregates.PercentileDisc[any,any]= aggregates.Median[any]= aggregates.XMLAgg= aggregates.Grouping[any]= aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[any]= # # Aggregates (distinct). # # # Linear regression aggregates. # aggregates.Corr[any,any]= aggregates.CovarPop[any,any]= aggregates.CovarSamp[any,any]= aggregates.RegrAvgX[any,any]= aggregates.RegrAvgY[any,any]= aggregates.RegrCount[any,any]= aggregates.RegrIntercept[any,any]= aggregates.RegrR2[any,any]= aggregates.RegrSlope[any,any]= aggregates.RegrSXX[any,any]= aggregates.RegrSXY[any,any]= aggregates.RegrSYY[any,any]= # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions. # # APACHE JIRA HIVE-9537 functions.CharLength[char]= functions.CharLength[any]=LENGTH(%1$s) functions.CharLength[clob]= functions.OctetLength[text]= functions.BitLength[text]= # note that Hive will return a char as a varchar with trailing spaces removed # APACHE JIRA HIVE-9537 functions.Upper[char]= functions.Upper[any]=UPPER(%1$s) # note that Hive will return a char as a varchar with trailing spaces removed # APACHE JIRA HIVE-9537 functions.Lower[char]= functions.Lower[any]=LOWER(%1$s) # hive will return nothing if a char field was spaces # APACHE JIRA HIVE-9537 functions.Substring[char,any]= functions.Substring[any,any]=substr(%1$s, cast(%2$s as int)) # hive will return nothing if a char field was spaces # APACHE JIRA HIVE-9537 functions.Substring[char,any,any]= # hive has copied mysql hence if position is negative they start from the end versus how ISO-SQL # typical cases using ISO-SQL substring do not use a negative start position. # APACHE JIRA HIVE-10282 functions.Substring[any,any,any]=substr(%1$s, cast(%2$s as int), cast(%3$s as int)) functions.Position[any,any]=locate(%2$s, %1$s) functions.Index[any,any]= functions.Ascii[any]= functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= # # Regular expression functions. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Ceiling[any]=CEILING(%1$s) functions.Exp[any]=EXP(%1$s) functions.Floor[any]=FLOOR(%1$s) functions.Ln[any]=LN(%1$s) functions.Log10[any]=LOG10(%1$s) functions.Power[any,any]=POWER(%1$s, %2$s) functions.Random[]=RAND() functions.Random[any]=RAND(%1$s) functions.Round[any]=ROUND(%1$s) functions.Round[any,any]=ROUND(%1$s, %2$s) functions.Sign[any]=SIGN(%1$s) functions.Sqrt[any]=SQRT(%1$s) ## mod function is not supported by Hive. Instead PMOD is supported which returns +ive value of a Mod b. functions.Mod[any,any]= ##function round with 3 parameters not supported by Hive. functions.Round[any,any,any]= ##function WidthBucket not supported by Hive. functions.WidthBucket[any,any,any,any]= # # Array scalar functions. # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trigonometric functions. # functions.Arccos[any]=ACOS(%1$s) functions.Cos[any]=COS(%1$s) functions.Arcsin[any]=ASIN(%1$s) functions.Sin[any]=SIN(%1$s) functions.Arctan[any]=ATAN(%1$s) functions.Tan[any]=TAN(%1$s) ## COSHYP not supported by Hive. functions.Coshyp[any]= ## SINHYP not supported by Hive. functions.Sinhyp[any]= ## TANHYP not supported by Hive. functions.Tanhyp[any]= #Substring function to negative START value to parse the input string from its rightmost end. functions.SubstringR[any,any]= functions.SubstringR[any,any,any]= # # Datetime value functions. # functions.CurrentDate[]=cast(to_date(cast(from_unixtime( unix_timestamp()) as timestamp)) as date) functions.CurrentTime[]= # APACHE JIRA HIVE-11377 functions.CurrentTimestamp[]= functions.LocalTime[]= functions.LocalTimestamp[]=cast(from_unixtime( unix_timestamp()) as timestamp) functions.CurrentTime[numeric]= functions.CurrentTimestamp[numeric]= functions.LocalTime[numeric]= functions.LocalTimestamp[numeric]= # # XML functions. # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= functions.XMLElement.ContentOption.NULL_ON_NULL=false functions.XMLElement.ContentOption.EMPTY_ON_NULL=false functions.XMLForest.ContentOption.NULL_ON_NULL=false functions.XMLForest.ContentOption.EMPTY_ON_NULL=false functions.XMLParse.DocumentOrContent.DOCUMENT=false functions.XMLParse.DocumentOrContent.CONTENT=false functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=true functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=true functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business date functions. # # cast timestamp to double to preserve fractional seconds versus unix_timestamp which is only to seconds functions.AddFractionalSeconds[any,any]=cast(cast(%1$s as double ) + %2$s as timestamp) functions.AddSeconds[any,any]=cast(cast(%1$s as double ) + cast( %2$s as int) as timestamp) functions.AddMinutes[any,any]=cast(cast(%1$s as double ) + (60 * cast( %2$s as int)) as timestamp) functions.AddHours[any,any]=cast(cast(%1$s as double ) + (3600 * cast( %2$s as int)) as timestamp) functions.AddDays[interval_day_time,numeric]= functions.AddDays[date,numeric]=cast(date_add(%1$s, cast(%2$s as int)) as date) # Hive truncates time component of a timestamp if date_add is used # Apache JIRA HIVE-3196 functions.AddDays[timestamp,numeric]=cast(cast(%1$s as double ) + (86400 * cast( %2$s as int)) as timestamp) functions.AddWeeks[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 7) as date) # Hive truncates time component of a timestamp if date_add is used # Apache JIRA HIVE-3196 functions.AddWeeks[timestamp,numeric]=cast(cast(%1$s as double ) + (604800 * cast( %2$s as int)) as timestamp) functions.AddMonths[any,any]= functions.AddQuarters[any,any]= functions.AddYears[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 365) as date) # Hive truncates time component of a timestamp if date_add is used # Apache JIRA HIVE-3196 functions.AddYears[timestamp,numeric]= functions.MinutesBetween[any,any]=cast((unix_timestamp( %1$s ) - unix_timestamp( %2$s)) / 60 as bigint) functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]=(unix_timestamp( %1$s ) - unix_timestamp( %2$s)) functions.HoursBetween[any,any]=cast((unix_timestamp( %1$s ) - unix_timestamp( %2$s)) / 3600 as bigint) functions.DaysBetween[any,any]=datediff(%1$s, %2$s) functions.WeeksBetween[any,any]= functions.MonthsBetween[any,any]= functions.QuartersBetween[any,any]= functions.YearsBetween[any,any]= functions.DaysToEndOfMonth[any]= functions.Age[any]= functions.FirstOfMonth[any]= #FirstOfMonth does not work with Julian Calender for Hive 3.1. Defect 278152 functions.FirstOfMonth[date]=cast(date_add( %1$s, (day( %1$s ) - 1) * -1) as date) functions.LastOfMonth[any]= functions.MakeTimestamp[any,any,any]= functions.DayOfYear[any]= functions.DayOfWeek[any,any]= functions.WeekOfYear[any]=weekofyear(%1$s) functions.YMDIntBetween[any,any]= # # Table functions. # functions.Unnest= # # FDS functions. # functions.cast_smallint[any]= functions.cast_integer[any]= functions.cast_float[any]= functions.cast_real[any]= functions.cast_double[any]= functions.cast_double_precision[any]= functions.cast_decimal[any]= functions.cast_decimal[any,any]= functions.cast_decimal[any,any,any]= functions.cast_numeric[any]= functions.cast_numeric[any,any]= functions.cast_numeric[any,any,any]= functions.cast_date[any]= functions.cast_time[any]= functions.cast_timestamp[any]= functions.cast_char[any]= functions.cast_char[any,any]= functions.cast_varchar[any]= functions.cast_varchar[any,any]= # # Literals. # literals.binary=false literals.boolean=false literals.date=true literals.time=false literals.time_with_time_zone=false literals.timestamp=false literals.timestamp_with_time_zone=false literals.interval_day=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute=false literals.interval_minute_to_second=false literals.interval_second=false literals.interval_year=false literals.interval_year_to_month=false literals.interval_month=false literals.decimal=false literals.char=true literals.nchar=false literals.nvarchar=false literals.xml=false literals.distinct=false literals.array=false literals.perioddate=false # # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. # literals.format.time=TIME '%1$02d:%2$02d:%2$02d%4$.10s' literals.format.time_with_time_zone=TIME '%1$02d:%2$02d:%2$02d%4$.10s%7$c%5$02d:%6$02d' literals.format.timestamp=cast( '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s' as timestamp ) literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d' literals.format.interval_day=INTERVAL %3$s'%1$d' DAY literals.format.interval_day_to_hour=INTERVAL %4$s'%1$d %2$d' DAY TO HOUR literals.format.interval_day_to_minute=INTERVAL %5$s'%1$d %2$02d:%3$02d' DAY TO MINUTE literals.format.interval_day_to_second=INTERVAL %8$s'%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY TO SECOND literals.format.interval_hour=INTERVAL %3$s'%1$d' HOUR literals.format.interval_hour_to_minute=INTERVAL %4$s'%1$02d:%2$02d' HOUR TO MINUTE literals.format.interval_hour_to_second=INTERVAL %7$s'%1$02d:%2$02d:%3$02d%4$.10s' HOUR TO SECOND literals.format.interval_minute=INTERVAL %3$s'%1$d' MINUTE literals.format.interval_minute_to_second=INTERVAL %6$s'%1$02d:%2$02d%3$.10s' MINUTE TO SECOND literals.format.interval_second=INTERVAL %3$s'%1$d%2$.10s' SECOND literals.format.interval_year=INTERVAL %3$s'%1$d' YEAR literals.format.interval_year_to_month=INTERVAL %4$s'%1$d-%2$d' YEAR TO MONTH literals.format.interval_month=INTERVAL %3$s'%1$d' MONTH # 1 parameter (string) literals.format.nchar='%s' # 1 parameter (string) literals.format.varchar='%s' # 1 parameter (string) literals.format.nvarchar='%s' # # Data types. # dataType.binary=false dataType.blob=false dataType.clob=false dataType.date=true dataType.time=false dataType.time_with_time_zone=false dataType.timestamp_with_time_zone=false dataType.interval_day=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute=false dataType.interval_minute_to_second=false dataType.interval_second=false dataType.interval_year=false dataType.interval_year_to_month=false dataType.interval_month=false dataType.decimal=false dataType.char=true dataType.nchar=false dataType.nvarchar=false dataType.xml=false dataType.period=false dataType.array=false dataType.struct=false dataType.map=false dataType.json=false # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence # collation.sequence.sql= # # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. # database.charset.sql= # # Support for SQL data types that are not defined in the JDBC 3.0 standard # datasource.type.=CCL datatype name # all spaces need to be replaced with an underscore (_) # datasource.type.string=varchar(2048)