# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2005, 2022 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # Delimiters. # # # Various limits. # limits.maxDecimalPrecision=38 # # General settings. # # Null ordering. # general.nullsAreSortedLow=true general.nullsAreSortedHigh=false # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=RANDOM # # Various features. # supports.nestedWithClause=false supports.aliasInOrderByExpression=false supports.subqueriesInAggregate=false supports.recursiveWithClause=false supports.booleanExpressionsInSelectList=false supports.correlatedSubqueriesInSelectList=false supports.correlatedSubqueriesInIns=false supports.callProcedureInDerivedTable=false #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Tables. # tables.lateral.derived=false # # Constructors. # constructors.table=false constructors.row=false constructors.array=false constructors.period=false # # Constructors - context overrides. # constructors.row.simpleCase=false constructors.row.between=false # # Clauses. # clauses.Top=LIMIT %1$s clauses.At= clauses.Window= clauses.WithRecursive= clauses.TableSampleSystem= clauses.TableSampleBernoulli= clauses.ForSystemTimeAsOf= clauses.ForSystemTimeFrom= clauses.ForSystemTimeBetween= # # Joins. # # # Set operators. # # # Logical operators. # operators.logical.Is= operators.logical.IsNot= # # Arithmetic operators. # operators.arithmetic.Subtract[any,datetime]= # # Group By operators. # # # Comparison predicates. # # # Various predicates. # predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions. # # # Cast expression. # expressions.Cast[time,time_with_time_zone]= expressions.Cast[time,timestamp]= expressions.Cast[timestamp,time_with_time_zone]= expressions.Cast[decimal,integer]=CAST(TRUNC(%1$s) as INTEGER) expressions.Cast[double,integer]=CAST(TRUNC(%1$s) as INTEGER) expressions.Cast[float,integer]=CAST(TRUNC(%1$s) as INTEGER) # # Extract expression. # expressions.Extract.SECOND[any]=CAST(EXTRACT(MILLISECOND FROM %1$s) as DECIMAL)/1000 # ## COSHYP not supported by Netezza. functions.Coshyp[any]= ## SINHYP not supported by Netezza. functions.Sinhyp[any]= ## TANHYP not supported by Netezza. functions.Tanhyp[any]= # # Windowed aggregates (SQL/OLAP). # olap.RatioToReport[any]= olap.Tertile[]= olap.Difference[any]= olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.Median[any]= # RESPECT|IGNORE NULLS option is not supported. olap.Lag[any,any,any,any]= olap.Lead[any,any,any,any]= olap.NthValue[any,any]= olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.Collect[any]= # # Window clause. # # # Aggregates # aggregates.PercentileCont[any,any]= aggregates.PercentileDisc[any,any]= aggregates.Median[any]= aggregates.XMLAgg= aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[any]= # # Aggregates (distinct) # # # Linear regression aggregates. # aggregates.Corr[any,any]= aggregates.CovarPop[any,any]= aggregates.CovarSamp[any,any]= aggregates.RegrAvgX[any,any]= aggregates.RegrAvgY[any,any]= aggregates.RegrCount[any,any]= aggregates.RegrIntercept[any,any]= aggregates.RegrR2[any,any]= aggregates.RegrSlope[any,any]= aggregates.RegrSXX[any,any]= aggregates.RegrSXY[any,any]= aggregates.RegrSYY[any,any]= # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions. # functions.BitLength[any]=(OCTET_LENGTH(%1$s) * 8) functions.Index[any,any]=POSITION(%2$s IN %1$s) functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= # # Regular expression functions. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions. # functions.Abs[interval_day_time]= functions.Abs[interval_year_month]= functions.Ceiling[any]=CEIL(%1$s) functions.Round[any,any,any]= functions.Power[any,any]=POW(%1$s, %2$s) functions.Random[]=RANDOM() functions.Random[any]= functions.Log10[any]=LOG(%1$s) # # Array scalar functions. # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trigonometric functions. # # # Datetime value functions. # functions.CurrentDate[]=CURRENT_DATE functions.CurrentTime[]= functions.CurrentTimestamp[]=CURRENT_TIMESTAMP functions.LocalTime[]=CAST(CURRENT_TIME AS TIME) functions.LocalTimestamp[]=CAST(CURRENT_TIMESTAMP AS TIMESTAMP) functions.CurrentTime[numeric]= functions.CurrentTimestamp[numeric]= functions.LocalTime[numeric]= functions.LocalTimestamp[numeric]= # # XML functions. # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business date functions. # functions.AddFractionalSeconds[any,any]= functions.AddSeconds[interval_day_time,numeric]=(CAST( %1$s AS INTERVAL) + (INTERVAL '1 SECOND' * (%2$s))) functions.AddSeconds[time,numeric]=(CAST( %1$s AS TIME) + (INTERVAL '1 SECOND' * (%2$s))) functions.AddSeconds[timestamp,numeric]=(CAST( %1$s AS TIMESTAMP) + (INTERVAL '1 SECOND' * (%2$s))) functions.AddSeconds[time_with_time_zone,numeric]=(CAST( %1$s AS TIMETZ) + (INTERVAL '1 SECOND' * (%2$s))) functions.AddSeconds[timestamp_with_time_zone,numeric]= functions.AddMinutes[interval_day_time,numeric]=(CAST( %1$s AS INTERVAL) + (INTERVAL '1 MINUTE' * (%2$s))) functions.AddMinutes[time,numeric]=(CAST( %1$s AS TIME) + (INTERVAL '1 MINUTE' * (%2$s))) functions.AddMinutes[timestamp,numeric]=(CAST( %1$s AS TIMESTAMP) + (INTERVAL '1 MINUTE' * (%2$s))) functions.AddMinutes[time_with_time_zone,numeric]=(CAST( %1$s AS TIMETZ) + (INTERVAL '1 MINUTE' * (%2$s))) functions.AddMinutes[timestamp_with_time_zone,numeric]= functions.AddHours[interval_day_time,numeric]=(CAST( %1$s AS INTERVAL) + (INTERVAL '1 HOUR' * (%2$s))) functions.AddHours[time,numeric]=(CAST( %1$s AS TIME) + (INTERVAL '1 HOUR' * (%2$s))) functions.AddHours[timestamp,numeric]=(CAST( %1$s AS TIMESTAMP) + (INTERVAL '1 HOUR' * (%2$s))) functions.AddHours[time_with_time_zone,numeric]=(CAST( %1$s AS TIMETZ) + (INTERVAL '1 HOUR' * (%2$s))) functions.AddHours[timestamp_with_time_zone,numeric]= functions.AddDays[any,any]=((%1$s) + INTERVAL '1 DAY' * (%2$s)) functions.AddDays[interval_day_time,numeric]= functions.AddDays[date,numeric]=CAST((%1$s) + INTERVAL '1 DAY' * (%2$s) AS DATE) functions.AddDays[timestamp_with_time_zone,numeric]= functions.AddWeeks[any,any]=((%1$s) + INTERVAL '7 DAY' * (%2$s)) functions.AddWeeks[interval_day_time,numeric]= functions.AddWeeks[date,numeric]=CAST((%1$s) + INTERVAL '7 DAY' * (%2$s) AS DATE) functions.AddWeeks[timestamp_with_time_zone,numeric]= # Netezza has different implementation for ADD_MONTHS and %1$s + INTERVAL %2$s MONTH # ADD_MONTHS implements rule: result is last day of the month if months are added to the last day of the month. # Feb28 + 1 month -> Mar31. This is inconsistent with local processing and other vendors. #functions.AddMonths[any,any]=ADD_MONTHS(%1$s, %2$s) functions.AddMonths[any,any]=((%1$s) + (INTERVAL '1 MONTH' * (%2$s))) functions.AddMonths[interval_year_month,numeric]= functions.AddMonths[date,numeric]=CAST(((%1$s) + (INTERVAL '1 MONTH' * (%2$s))) AS DATE) functions.AddMonths[timestamp_with_time_zone,numeric]= functions.AddQuarters[any,any]=ADD_MONTHS(%1$s, (%2$s * 3)) functions.AddQuarters[interval_year_month,numeric]= functions.AddQuarters[timestamp_with_time_zone,numeric]= # ADD_MONTHS implements rule: result is last day of the month if months are added to the last day of the month. # Feb28, 2011 + 1 year -> Feb29, 2012. This is inconsistent with local processing and other vendors. #functions.AddYears[any,any]=ADD_MONTHS(%1$s, ( (%2$s) * 12 )) functions.AddYears[any,any]=(%1$s + (INTERVAL '1 YEAR' * (%2$s))) functions.AddYears[interval_year_month,numeric]= functions.AddYears[date,numeric]=CAST(((%1$s) + (INTERVAL '1 YEAR' * (%2$s))) AS DATE) functions.AddYears[timestamp_with_time_zone,numeric]= functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]= functions.MinutesBetween[any,any]= functions.HoursBetween[any,any]= functions.DaysBetween[date,date]=((%1$s) - (%2$s)) functions.DaysBetween[date,timestamp]=((%1$s) - CAST(%2$s AS DATE)) functions.DaysBetween[any,any]=(CAST(%1$s AS DATE) - CAST(%2$s AS DATE)) functions.DaysBetween[timestamp,date]=(CAST(%1$s AS DATE) - (%2$s)) functions.WeeksBetween[any,any]= functions.MonthsBetween[any,any]=CAST(TRUNC(MONTHS_BETWEEN(%1$s, %2$s)) AS INTEGER) functions.QuartersBetween[any,any]= functions.YearsBetween[date,date]=EXTRACT(YEAR FROM AGE(%1$s, %2$s)) functions.YearsBetween[date,timestamp]=EXTRACT(YEAR FROM AGE(%1$s, CAST(%2$s as DATE))) functions.YearsBetween[any,any]=EXTRACT(YEAR FROM AGE(cast(%1$s AS DATE), CAST(%2$s AS DATE))) functions.YearsBetween[timestamp,date]=EXTRACT(YEAR FROM AGE(CAST(%1$s AS DATE), %2$s)) functions.Age[any]= functions.DayOfWeek[any,any]=(MOD( CAST( TO_CHAR( %1$s, 'D' ) AS INTEGER ) + 6 - %2$s, 7 ) + 1) functions.DayOfYear[any]=EXTRACT(DOY FROM %1$s) functions.DaysToEndOfMonth[any]=(EXTRACT( DAY FROM (ADD_MONTHS(%1$s - ( EXTRACT( DAY FROM %1$s ) * INTERVAL '1 DAY') + INTERVAL '1 DAY', 1) - INTERVAL '1 DAY')) - EXTRACT(DAY FROM %1$s)) functions.FirstOfMonth[any]=((%1$s) - ( EXTRACT( DAY FROM (%1$s) ) * INTERVAL '1 DAY' ) + INTERVAL '1 DAY') functions.LastOfMonth[any]=(ADD_MONTHS( ( %1$s - ( EXTRACT( DAY FROM %1$s ) * INTERVAL '1 DAY' ) + INTERVAL '1 DAY' ), 1 ) - INTERVAL '1 DAY') functions.MakeTimestamp[any,any,any]=TO_TIMESTAMP(%1$s || '-' || %2$s || '-' || %3$s, 'YYYY-MM-DD') functions.WeekOfYear[any]=CAST( TO_CHAR( CAST(%1$s AS TIMESTAMP),'IW') AS INTEGER) functions.YMDIntBetween[any,any]= # # FDS functions. # functions.concat[any,any]={fn CONCAT(%1$s, %2$s)} # # Literals. # literals.binary=false literals.blob=false literals.clob=false literals.boolean=false literals.date=true literals.time=true literals.time_with_time_zone=false literals.timestamp=true literals.timestamp_with_time_zone=false literals.interval_day=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute=false literals.interval_minute_to_second=false literals.interval_second=false literals.interval_year=false literals.interval_year_to_month=false literals.interval_month=false literals.decimal=true literals.double=true literals.float=true literals.real=true literals.integer=true literals.long=true literals.smallint=true literals.char=true literals.nchar=true literals.nvarchar=true literals.varchar=true literals.xml=false # # literal formats # literals.format.date=DATE '%1$04d-%2$02d-%3$02d' literals.format.time=TIME '%1$02d:%2$02d:%3$02d%4$.7s' literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'} literals.format.timestamp=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s' literals.format.timestamp_with_time_zone={ts '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'} # # Data types. # dataType.blob=false dataType.clob=false dataType.timestamp_with_time_zone=false dataType.interval_day=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute=false dataType.interval_minute_to_second=false dataType.interval_second=false dataType.interval_year=false dataType.interval_year_to_month=false dataType.interval_month=false dataType.period=false # # Data source type overrides # datasource.type.NCHAR=nchar(%1$s) datasource.type.NVARCHAR=nvarchar(%1$s) datasource.type.TIMETZ=time with time zone datasource.type.INTERVAL=varchar(%1$s) # # Data source type overrides # driver 4.5 datasource.type.INTERVAL_DAY=varchar(%1$s) # # We are unable to retrieve the collation sequence from teradata but we can still check if the comparison is case sensitive or not # collation.sequence.sql=SELECT '', CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH