# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2005, 2022 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # # Product information. # product.name= # # Delimiters. # # # Various limits. # limits.maxLengthInClause=1000 limits.castClobToVarcharMaxSize=4000 limits.maxDecimalPrecision=38 # # General settings. # # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample=BERNOULLI sampling.rowsample=NTH # # Various features. # supports.integerDivision=false supports.blobsInGroupBy=false supports.blobsInOrderBy=false supports.derivedColumnLists=false supports.emptyStringIsNull=true supports.concatNullIsNull=false supports.stitchJoins=false supports.nestedWithClause=false supports.recursiveWithClause=false supports.booleanExpressionsInSelectList=false supports.nonStandardDatetimeComparison=true supports.callProcedureInDerivedTable=false #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Grouping query optimization # performance.convertGroupByToDistinct=true # # Command. # # # Tables. # # # Constructors. # constructors.table=false constructors.row=true constructors.array=false constructors.period=false # # Constructors - context overrides. # constructors.row.between=false constructors.row.comparison=false constructors.row.in=true constructors.row.isDistinctFrom=false constructors.row.simpleCase=false constructors.row.inListToTable=false # # Clauses. # clauses.Top=FETCH FIRST %1$s ROWS ONLY clauses.At= clauses.Window= clauses.WithRecursive= clauses.TableSampleBeforeAlias=true clauses.TableSampleSystem=SAMPLE BLOCK (%1$s)@2[ SEED (%2$s)] clauses.TableSampleBernoulli=SAMPLE (%1$s)@2[ SEED (%2$s)] clauses.ForSystemTimeAsOf= clauses.ForSystemTimeFrom= clauses.ForSystemTimeBetween= # # Joins. # # # Set operators. # operators.set.Except=%1$s MINUS %2$s operators.set.Except.all= operators.set.Intersect.all= # # Logical operators. # operators.logical.Is= operators.logical.IsNot= # # Arithmetic operators. # operators.arithmetic.Concat[any,any]=%1$s || %2$s operators.arithmetic.Subtract[any,datetime]= operators.arithmetic.Subtract[variant,timestamp]=%1$s - %2$s operators.arithmetic.Add[interval_day_time,timestamp_with_time_zone]= operators.arithmetic.Add[interval_year_month,timestamp_with_time_zone]= operators.arithmetic.Add[timestamp_with_time_zone,interval_day_time]= operators.arithmetic.Add[timestamp_with_time_zone,interval_year_month]= # # Group By Operators # # # Comparison predicates. # # # Various predicates. # predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s predicates.IsDistinctFrom[blob,any]= predicates.IsDistinctFrom[any,blob]= predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) predicates.IsNotDistinctFrom[blob,any]= predicates.IsNotDistinctFrom[any,blob]= predicates.Similar= predicates.Similar.escape= predicates.LikeRegex=REGEXP_LIKE(%1$s, %2$s) predicates.LikeRegex.flag=REGEXP_LIKE(%1$s, %2$s, %3$s) predicates.Like.CaseSensitive.sql=SELECT CASE WHEN 'w' LIKE '%W%' THEN 'false' ELSE 'true' END C1 FROM ( SELECT COUNT(*) r_count FROM V$NLS_PARAMETERS) T1 # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions. # # # Cast expression. # expressions.Cast[date,char]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS %2$s) expressions.Cast[date,nchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS %2$s) expressions.Cast[date,varchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS VARCHAR2(%3$d)) expressions.Cast[date,nvarchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS NVARCHAR2(%3$d)) expressions.Cast[time,text]= expressions.Cast[time,timestamp]= expressions.Cast[time,timestamp_with_time_zone]= expressions.Cast[null,date]= expressions.Cast[any,date]=TRUNC(cast(%1$s as DATE)) expressions.Cast[variant,date]=TRUNC(cast(%1$s as DATE)) expressions.Cast[timestamp,nvarchar]=CAST(TO_CHAR(cast(%1$s as TIMESTAMP(9)),'YYYY-MM-DD HH24:MI:SS.FF9') AS NVARCHAR2(%3$d)) expressions.Cast[timestamp,text]=CAST(TO_CHAR(cast(%1$s as TIMESTAMP(9)),'YYYY-MM-DD HH24:MI:SS.FF9') AS %2$s) expressions.Cast[timestamp_with_time_zone,char]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS %2$s) expressions.Cast[timestamp_with_time_zone,nchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS %2$s) expressions.Cast[timestamp_with_time_zone,varchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS VARCHAR2(%3$d)) expressions.Cast[timestamp_with_time_zone,nvarchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS NVARCHAR2(%3$d)) # these casts are disabled because they sometimes fail and cause the connection to drop. expressions.Cast[interval_day_to_second,char]= expressions.Cast[interval_day_to_second,nchar]= expressions.Cast[interval_day_to_second,varchar]= expressions.Cast[interval_day_to_second,nvarchar]= expressions.Cast[interval_year_to_month,char]= expressions.Cast[interval_year_to_month,nchar]= expressions.Cast[interval_year_to_month,varchar]= expressions.Cast[interval_year_to_month,nvarchar]= expressions.Cast[numeric,varchar]=CAST(TO_CHAR(%1$s,'TM9','NLS_NUMERIC_CHARACTERS = ''.,'' ') AS VARCHAR2(%3$d)) expressions.Cast[numeric,nvarchar]=CAST(TO_CHAR(%1$s,'TM9','NLS_NUMERIC_CHARACTERS = ''.,'' ') AS NVARCHAR2(%3$d)) expressions.Cast[numeric,date]=CASE %1$s WHEN 0 THEN TO_DATE('00010101','YYYYMMDD') ELSE TO_DATE(TO_CHAR(%1$s),'YYYYMMDD') END expressions.Cast[numeric,text]=CAST(TO_CHAR(%1$s,'TM9','NLS_NUMERIC_CHARACTERS = ''.,'' ') AS %2$s) expressions.Cast[text,numeric]=CAST(REPLACE(%1$s,'.',SUBSTR(CAST(1.2 AS CHAR(3)),2,1)) AS %2$s) #cast(avarchar(x) as nvarchar2(y)) fail with Error: ORA-01401: inserted value too large for column if x > y expressions.Cast[char,nvarchar]=CAST(TO_NCHAR(%1$d) AS NVARCHAR2(%3$d)) expressions.Cast[varchar,nvarchar]=CAST(TO_NCHAR(%1$d) AS NVARCHAR2(%3$d)) expressions.Cast[any,varchar]=CAST(%1$s AS VARCHAR2(%3$d)) expressions.Cast[any,nvarchar]=CAST(%1$s AS NVARCHAR2(%3$d)) expressions.Cast[clob,char]=CAST(TO_CHAR(%1$s) AS %2$s) expressions.Cast[clob,nchar]=CAST(TO_CHAR(%1$s) AS %2$s) expressions.Cast[clob,varchar]=CAST(%1$s AS VARCHAR2(%3$d)) expressions.Cast[clob,nvarchar]=CAST(%1$s AS NVARCHAR2(%3$d)) expressions.Cast[clob,any]= expressions.Cast[numeric,integer]=CAST(TRUNC(%1$s) AS INTEGER) expressions.Cast[any,integer]= expressions.Cast[char,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s) expressions.Cast[char,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF') expressions.Cast[char,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM') expressions.Cast[nchar,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s) expressions.Cast[nchar,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF') expressions.Cast[nchar,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM') expressions.Cast[nvarchar,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s) expressions.Cast[nvarchar,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF') expressions.Cast[nvarchar,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM') expressions.Cast[varchar,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s) expressions.Cast[varchar,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF') expressions.Cast[varchar,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM') expressions.Cast[text,xml]= expressions.Cast[blob,xml]= expressions.Cast[blob,blob]= # Minimum number of arguments for Coalesce function. expressions.Coalesce.minArgs=2 # # Extract expression. # expressions.Extract.HOUR[timestamp]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.HOUR[date]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.HOUR[time]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.HOUR[timestamp_with_time_zone]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.MINUTE[timestamp]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.MINUTE[date]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.MINUTE[time]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.MINUTE[timestamp_with_time_zone]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.SECOND[timestamp]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.SECOND[date]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.SECOND[time]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.SECOND[timestamp_with_time_zone]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP)) expressions.Extract.EPOCH[any]= # # Trim expression. # # # Windowed aggregates (SQL/OLAP). # olap.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END) olap.Tertile[]= olap.Difference[any]= olap.Collect[any]= olap.NthValue[blob,any]= olap.NthValue[blob,any,any]= olap.NthValue[blob,any,any,any]= olap.NthValue[clob,any]= olap.NthValue[clob,any,any]= olap.NthValue[clob,any,any,any]= # # Window clause. # # # Window specification # A list of windows specifications that are supported by the DB # P = PARTITION BY # O = ORDER BY # F = FRAME # olap.Window.Specification[F]=false olap.Window.Specification[PF]=false # # Aggregates. # aggregates.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END) aggregates.Sum[interval_day_to_second]= aggregates.Avg[interval_day_to_second]= aggregates.Sum[interval_year_to_month]= aggregates.Avg[interval_year_to_month]= aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[blob]= aggregates.ApproxCountDistinct[clob]= # # Aggregates (distinct). # aggregates.Sum.distinct[interval_day_to_second]= aggregates.Avg.distinct[interval_day_to_second]= aggregates.Sum.distinct[interval_year_to_month]= aggregates.Avg.distinct[interval_year_to_month]= aggregates.Count.distinct[blob]= # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Linear regression aggregates. # # # Character scalar functions. # functions.CharLength[any]=LENGTH(%1$s) functions.OctetLength[any]=LENGTHB(%1$s) functions.BitLength[any]=(LENGTHB(%1$s) * 8) functions.Substring[any,any]=SUBSTR(%1$s, %2$s) functions.Substring[any,any,any]=SUBSTR(%1$s, %2$s, %3$s) functions.Position[any,any]=INSTR(%2$s, %1$s) functions.Index[any,any]=INSTR(%1$s, %2$s) functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= # # Regular expression functions. # Oracle uses POSIX regular expressions. Need to determine the difference between XQuery and POSIX. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= #Substring function to negative START value to parse the input string from its rightmost end. functions.SubstringR[any,any]=SUBSTR(%1$s, %2$s) functions.SubstringR[any,any,any]=SUBSTR(%1$s, %2$s, %3$s) # # Numeric scalar functions. # functions.Abs[interval_day_time]= functions.Abs[interval_year_month]= functions.Ceiling[any]=CEIL(%1$s) functions.Round[any,any,any]= functions.Log10[any]=LOG(10,%1$s) functions.Random[]= functions.Random[any]= # # Array scalar functions. # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trigonometric functions. # # # Datetime value functions. # functions.CurrentTime[]= functions.CurrentDate[]=TRUNC(CURRENT_DATE) functions.LocalTime[]= functions.CurrentTime[numeric]= functions.LocalTime[numeric]= # # XML functions. # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= # # JSON functions. # functions.JSONObject= functions.JSONArray= # # Business date functions. # functions.AddFractionalSeconds[any,any]= functions.AddSeconds[any,any]=(%1$s + (INTERVAL '1' SECOND * (%2$s))) functions.AddMinutes[any,any]=(%1$s + (INTERVAL '1' MINUTE * Floor(%2$s))) functions.AddHours[any,any]=(%1$s + (INTERVAL '1' HOUR * Floor(%2$s))) functions.AddDays[any,any]=(%1$s + (INTERVAL '1' DAY * (%2$s))) functions.AddDays[time_with_time_zone,numeric]= functions.AddWeeks[any,any]=(%1$s + (INTERVAL '7' DAY * (%2$s))) functions.AddWeeks[time_with_time_zone,numeric]= functions.AddMonths[any,any]=CASE WHEN EXTRACT( DAY FROM %1$s - NUMTODSINTERVAL( EXTRACT( DAY FROM %1$s ), 'DAY' ) + INTERVAL '1' DAY + NUMTOYMINTERVAL( %2$s, 'MONTH' ) + INTERVAL '1' MONTH - INTERVAL '1' DAY ) < EXTRACT( DAY FROM %1$s ) THEN %1$s - NUMTODSINTERVAL( EXTRACT( DAY FROM %1$s ), 'DAY' ) + INTERVAL '1' DAY + NUMTOYMINTERVAL( %2$s, 'MONTH' ) + INTERVAL '1' MONTH - INTERVAL '1' DAY ELSE %1$s + NUMTOYMINTERVAL( %2$s, 'MONTH' ) END functions.AddMonths[time_with_time_zone,numeric]= functions.AddMonths[interval_year_to_month,numeric]= functions.AddQuarters[any,any]= functions.AddYears[any,any]=CASE WHEN TO_CHAR(%1$s,'MMDD') = '0229' AND MOD(%2$s,4) <> 0 THEN (%1$s + INTERVAL '1' DAY) + NUMTOYMINTERVAL(%2$s,'YEAR') - INTERVAL '1' DAY ELSE %1$s + NUMTOYMINTERVAL(%2$s,'YEAR') END functions.AddYears[time_with_time_zone,numeric]= functions.AddYears[interval_year_to_month,numeric]= functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]= functions.MinutesBetween[any,any]= functions.HoursBetween[any,any]= functions.DaysBetween[any,any]=(TRUNC( CAST( %1$s AS TIMESTAMP ) ) - TRUNC( CAST( %2$s AS TIMESTAMP ) )) functions.WeeksBetween[any,any]= functions.MonthsBetween[any,any]=TRUNC( MONTHS_BETWEEN( %1$s, %2$s ), 0 ) functions.QuartersBetween[any,any]= functions.YearsBetween[any,any]=TRUNC( ( MONTHS_BETWEEN( %1$s, %2$s) / 12 ), 0 ) functions.Age[any]= functions.DayOfWeek[any,any]=(MOD( MOD( TO_NUMBER( TO_CHAR( %1$s, 'D' ) ) - TO_NUMBER( TO_CHAR( TO_DATE( '2003-01-06', 'YYYY-MM-DD' ), 'D' ) ) + 7, 7 ) + 1 - %2$s + 7, 7 ) + 1) functions.DayOfYear[any]=TO_NUMBER( TO_CHAR( %1$s, 'DDD' ) ) functions.DaysToEndOfMonth[any]=(EXTRACT( DAY FROM LAST_DAY(%1$s) ) - EXTRACT( DAY FROM %1$s )) functions.FirstOfMonth[any]=(%1$s - NUMTODSINTERVAL(EXTRACT(DAY FROM %1$s)-1, 'DAY')) functions.LastOfMonth[any]=(%1$s + NUMTODSINTERVAL(EXTRACT(DAY FROM LAST_DAY(%1$s)) - EXTRACT(DAY FROM %1$s), 'DAY')) functions.MakeTimestamp[any,any,any]=TO_TIMESTAMP( ( LPAD( %1$d, 4, '0' ) || '-' || LPAD( %2$d, 2, '0' ) || '-' || LPAD( %3$d, 2, '0' ) ), 'YYYY-MM-DD' ) functions.WeekOfYear[any]=TO_NUMBER( TO_CHAR( %1$s, 'IW' ) ) functions.YMDIntBetween[any,any]= # # Literals. # literals.time=false literals.time_with_time_zone=false literals.timetamp_with_time_zone=true literals.interval_day=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_hour=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute=false literals.interval_minute_to_second=false literals.interval_second=false literals.interval_year=false literals.interval_month=false # # Literal format specifications. # literals.format.binary=0x%s literals.format.date={d '%1$04d-%2$02d-%3$02d'} literals.format.time={t '%1$02d:%2$02d:%3$02d'} literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'} literals.format.timestamp={ts '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s'} literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d' literals.format.interval_year_to_month=INTERVAL '%4$s%1$d-%2$02d' YEAR(9) TO MONTH literals.format.interval_day_to_second=INTERVAL '%8$s%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY(9) TO SECOND(9) # # Data types. # dataType.long=false dataType.time=false dataType.clob=false dataType.time_with_time_zone=false dataType.interval_day=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_hour=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute=false dataType.interval_minute_to_second=false dataType.interval_second=false dataType.interval_year=false dataType.interval_month=false dataType.period=false dataType.datalink=false #dataType.nvarchar=false dataType.comparable[char,nchar]=false dataType.comparable[char,nvarchar]=false dataType.comparable[varchar,nvarchar]=false dataType.comparable[varchar,nchar]=false dataType.comparable[nchar,char]=false dataType.comparable[nchar,varchar]=false dataType.comparable[nvarchar,varchar]=false dataType.comparable[nvarchar,char]=false dataType.promotion[char,nchar]=true dataType.promotion[varchar,nchar]=true dataType.promotion[char,nvarchar]=true dataType.promotion[varchar,nvarchar]=true # # Collation sequence query # collation.sequence.sql= The query can return only a single result # collation.sequence.sql=SELECT sort_tbl.sort_val || '.' || charset_tbl.charset_val, CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH FROM (SELECT VALUE AS sort_val FROM V$NLS_PARAMETERS WHERE PARAMETER IN ( 'NLS_SORT')) sort_tbl, (SELECT VALUE AS charset_val FROM V$NLS_PARAMETERS WHERE PARAMETER IN ( 'NLS_CHARACTERSET')) charset_tbl # # Collation sequence mappings # collation.sequence.mapping.=, # # NOTE: These mappings are case sensitive # collation.sequence.mapping.BINARY.WE8MSWIN1252=OrWe8mswin1252,TERTIARY collation.sequence.mapping.BINARY.WE8ISO8859P1=OrWe8iso8859p1,TERTIARY collation.sequence.mapping.BINARY.US7ASCII=OrWe8iso8859p1,TERTIARY collation.sequence.mapping.BINARY.AL32UTF8=UnicodeCodepoint,IDENTICAL