# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2005, 2022 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # This properties file contains default configuration attributes for all # relational data sources. Any data source that is different must override # the value in their own properties file. # # The #define values in comments are the values used by UDA to initialize # their dbInfo data structure. We are using this as a starting point for # the XQE default values. At some point these can be removed from this file. # # # Delimiters # # While a vendor may parse a statement with comments it may strip them out and the server not see them delimiters.commentBegin=/* delimiters.commentEnd=*/ # delimiters.catalogDelimiter= # delimiters.schemaDelimiter= # delimiters.tableDelimiter= # delimiters.columnDelimiter= # delimiters.identifierQuoteString= # delimiters.searchStringEscape= # delimiters.catalogSeparator= # # Keywords # keywords.columnAlias=AS # # Limits # # Normally these values would be derived from the JDBC driver DatabaseMetadata # limits.maxBinaryLiteralLength= # limits.maxCharLiteralLength= # limits.maxColumnNameLength= # limits.maxColumnsInGroupBy= # limits.maxColumnsInIndex= # limits.maxColumnsInOrderBy= # limits.maxColumnsInSelect= # limits.maxColumnsInTable= # limits.maxConnections= # limits.maxCursorNameLength= # limits.maxIndexLength= # limits.maxSchemaNameLength= # limits.maxProcedureNameLength= # limits.maxCatalogNameLength= # limits.maxRowSize= # limits.maxStatementLength= # limits.maxStatements= # due to issues in Redshift that causes statements to hang override the response from the driver. limits.maxStatements=1 # limits.maxTableNameLength= # limits.maxTablesInSelect= # limits.maxUserNameLength= # limits.defaultTransactionIsolation= # limits.maxLengthInClause # # General # # # Null ordering # general.nullsAreSortedHigh=true general.nullsAreSortedLow=false general.nullsAreSortedAtStart=false general.nullsAreSortedAtEnd=false general.nullsOrdering=false general.nullsOrderingInWindowSpecification=false # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=RANDOM # supports.hints=false supports.constantsInWindows=false # Cursor options - appended to end of generated SELECT statement. general.cursorOptions= # # Various # supports.duplicateColumnsInSelectList=true supports.columnAliasing=true supports.tableCorrelationNames=true supports.expressionsInSelectList=true supports.expressionsInINPredicate=true supports.expressionsInOrderBy=true supports.booleanExpressionsInSelectList=true supports.fieldsOfComplexTypeInSelectList=false supports.likeEscapeClause=true supports.outerJoins=true supports.fullOuterJoins=true supports.subqueriesInComparisons=true supports.subqueriesInExists=true supports.subqueriesInIns=true supports.subqueriesInQuantifieds=false supports.subqueriesInCase=true supports.correlatedSubqueries=true supports.correlatedSubqueriesInSelectList=true supports.correlatedSubqueriesInIns=true supports.scalarSubqueries=true supports.withClauseInDerivedTable=true supports.nestedWithClause=true supports.integerDivision=true supports.nestedOlap=false supports.derivedColumnLists=true supports.orderByAlias=true supports.orderByName=true supports.orderByOrdinal=true supports.blobsInGroupBy=false supports.blobsInOrderBy=false # Results for other scalar, aggregate and set operations will differ from DQM/ISO-SQL. supports.emptyStringIsNull=false supports.mixedCaseIdentifiers=false supports.mixedCaseQuotedIdentifiers=false supports.expressionsInGroupBy=true supports.expressionsInOrderBy=true supports.aliasInOrderByExpression=false supports.orderByUnrelated=true supports.groupByUnrelated=false supports.thetaJoins=true supports.equiJoins=true supports.crossProducts=true supports.multipleDistinctAggregates=true supports.recursiveWithClause=false supports.orderByInDerivedTable=true supports.rowNumberNoOrderBy=True supports.parameterMarkers=False supports.constantsInWindows=true supports.callProcedureInDerivedTable=false supports.join.full.thetaJoins=false supports.join.full.distinctJoins=false supports.join.subqueriesInOnClause=true #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Grouping query optimization # # If the RDBMS has costing/execution issues with group by or distinct consider these transforms performance.convertGroupByToDistinct=false performance.convertDistinctToGroupBy=false # V5 master-detail optimization when allRows optimization is specified v5.master-detail.transform=false performance.convertHavingToWhere=false performance.transitiveClosure=false performance.predicatePushdown=false performance.semiJoin=false # RTC 377496 # Set this entry to F to avoid generation of predicates of the form # T1.C1 = T2.C1 OR ( T1.C1 IS NULL AND T2.C1 IS NULL ). Care must be # taken, however, since doing so may cause data integrity problems if # data contains null values. performance.generateEqualOrNull=true # # Commands # commands.Select=SELECT commands.Call= # # Tables # tables.joined=true tables.derived=true tables.lateral.derived=false # # Constructors # constructors.table=false constructors.row=true constructors.array=false constructors.period=false constructors.map=false # # Constructors - context overrides. # constructors.row.simpleCase=true constructors.row.between=true constructors.row.isDistinctFrom=false constructors.row.inListToTable=false # # Clauses # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING clauses.WithRecursive= clauses.With=WITH clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.Top=LIMIT %1$s clauses.Top.Position= clauses.Limit= clauses.FetchFirst= clauses.At= clauses.Window= clauses.TableSampleSystem= clauses.TableSampleBernoulli= clauses.ForSystemTimeAsOf= clauses.ForSystemTimeFrom= clauses.ForSystemTimeBetween= # # Joins # # Does not allow non equi joins in full outer join joins.Cross=%1$s CROSS JOIN %2$s joins.Inner=%1$s INNER JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s joins.RightNested=%1$s # # Set Operators # # One or more set operations does not follow ISO data type combination rules. Can effect set operations, CASE, COALESCE... operators.set.Union=%1$s UNION %2$s operators.set.Union.all=%1$s UNION ALL %2$s operators.set.Intersect=%1$s INTERSECT %2$s operators.set.Intersect.all= operators.set.Except=%1$s EXCEPT %2$s operators.set.Except.all= # # Logical Operators # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) operators.logical.Is=%1$s IS %2$s operators.logical.IsNot=%1$s IS NOT %2$s operators.logical.IsJson= operators.logical.IsNotJson= # # Arithmetic and Character operators # # Division may return a precise type if expression not coerced to imprecise type operators.arithmetic.Add[any,any]=%1$s + %2$s operators.arithmetic.Subtract[any,numeric]=%1$s - %2$s operators.arithmetic.Subtract[any,datetime]= operators.arithmetic.Subtract[datetime,any]= operators.arithmetic.Multiply[any,any]=%1$s * %2$s operators.arithmetic.Divide[any,any]=%1$s / %2$s operators.arithmetic.UnaryPlus[any]=+%1$s operators.arithmetic.Negate[any]=-%1$s operators.arithmetic.Concat[any,any]=(%1$s || %2$s) operators.arithmetic.Concat[string,any]= operators.arithmetic.Concat[any,string]= # # Grouping Operators # operators.groupBy.Rollup= operators.groupBy.Cube= operators.groupBy.GroupingSets= # # Comparison Predicates # predicates.comparison.Equals[any,any]=%1$s = %2$s predicates.comparison.GreaterThan[any,any]=%1$s > %2$s predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s predicates.comparison.LessThan[any,any]=%1$s < %2$s predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s predicates.comparison.NotEquals[any,any]=%1$s <> %2$s predicates.comparison.NotEquals[any,any]=%1$s <> %2$s # # Predicates # predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s predicates.In[any,any]=%1$s IN ( %2$s ) predicates.Overlaps[any,any,any,any]=(%1$s, %2$s) OVERLAPS (%3$s, %4$s) predicates.IsNull=%1$s IS NULL predicates.IsNotNull=%1$s IS NOT NULL predicates.Like=%1$s LIKE %2$s predicates.Like.escape=%1$s LIKE %2$s ESCAPE %3$s predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= predicates.Exists=EXISTS %1$s predicates.All= predicates.Any= predicates.Some= predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions # expressions.ArrayElementRef.zeroBased=false # # Conditional expressions # expressions.SimpleCase=CASE expressions.SearchedCase=CASE expressions.Coalesce=COALESCE(%1$s) expressions.NullIf=NULLIF(%1$s, %2$s) # Minimum number of arguments for Coalesce function. expressions.Coalesce.minArgs=2 # # Cast # expressions.Cast[any,any]=CAST(%1$s AS %2$s) # ensure they do not round up to next highest value on cast expressions.Cast[decimal,integer]=CAST(TRUNC(%1$s) as INTEGER) expressions.Cast[double,integer]=CAST(TRUNC(%1$s) as INTEGER) expressions.Cast[float,integer]=CAST(TRUNC(%1$s) as INTEGER) expressions.Cast[timestamp,char]= expressions.Cast[timestamp,varchar]= # # Extract # expressions.Extract.YEAR[any]=CAST(EXTRACT(YEAR FROM %1$s) as INTEGER) expressions.Extract.MONTH[any]=CAST(EXTRACT(MONTH FROM %1$s) as INTEGER) expressions.Extract.DAY[any]=CAST(EXTRACT(DAY FROM %1$s) as INTEGER) expressions.Extract.HOUR[any]=CAST(EXTRACT(HOUR FROM %1$s) as INTEGER) expressions.Extract.MINUTE[any]=CAST(EXTRACT(MINUTE FROM %1$s) as INTEGER) expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s) + (EXTRACT (MILLISECONDS FROM %1$s) / 1000.0) expressions.Extract.TIMEZONE_HOUR[any]= expressions.Extract.TIMEZONE_MINUTE[any]= # # Trim # expressions.Trim.BOTH[any]=TRIM(BOTH FROM %1$s) expressions.Trim.BOTH[any,any]=TRIM(BOTH %1$s FROM %2$s) expressions.Trim.LEADING[any]=TRIM(LEADING FROM %1$s) expressions.Trim.LEADING[any,any]=TRIM(LEADING %1$s FROM %2$s) expressions.Trim.TRAILING[any]=TRIM(TRAILING FROM %1$s) expressions.Trim.TRAILING[any,any]=TRIM(TRAILING %1$s FROM %2$s) # # Windowed aggregates (SQL/OLAP). # olap.Min[any]=MIN(%1$s) olap.Max[any]=MAX(%1$s) olap.Sum[any]=SUM(%1$s) olap.Avg[any]=AVG(%1$s) olap.Count[any]=COUNT(%1$s) olap.CountStar[]=COUNT(*) olap.StdDevSamp[any]=STDDEV_SAMP(%1$s) olap.StdDevPop[any]=STDDEV_POP(%1$s) olap.VarSamp[any]=VAR_SAMP(%1$s) olap.VarPop[any]=VAR_POP(%1$s) olap.PercentileCont[any,any]=PERCENTILE_CONT(%1$s) WITHIN GROUP (ORDER BY %2$s) olap.PercentileDisc[any,any]=PERCENTILE_DISC(%1$s) WITHIN GROUP (ORDER BY %2$s) olap.Median[any]=MEDIAN(%1$s) # Redshift forces functions which use an ORDER BY to include a frame clause olap.FirstValue[any]=FIRST_VALUE(%1$s) olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, CAST(TRUNC(%2$s) as INTEGER)) olap.Lag[any,any,any]= olap.Lag[any,any,any,any]= olap.LastValue[any]=LAST_VALUE(%1$s) olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, CAST(TRUNC(%2$s) as INTEGER)) olap.Lead[any,any,any]= olap.Lead[any,any,any,any]= olap.NthValue[any,any]=NTH_VALUE(%1$s, %2$s) olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= # Olap Ntile without an order by will sort nulls first and not last. olap.NTile[any]=NTILE(%1$s) olap.Tertile[]= olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.PercentRank[]=PERCENT_RANK() olap.CumeDist[]=CUME_DIST() olap.RatioToReport[any]= olap.RowNumber[]=ROW_NUMBER() olap.Difference[any]= olap.Collect[any]= # # Window clause # olap.Window=OVER(%1$s) olap.PartitionBy=PARTITION BY %1$s olap.OrderBy=ORDER BY %1$s # # Window specification # olap.Window.Specification[POF]=true olap.Window.Specification[PF]=false olap.Window.Specification[OF]=true olap.Window.Specification[PO]=false olap.Window.Specification[P]=true olap.Window.Specification[O]=false olap.Window.Specification[F]=false olap.Window.Specification[]=true #olap.Window.Frame.Moving=true # # Olap Distinct # olap.Min.distinct[any]= olap.Max.distinct[any]= olap.Sum.distinct[any]= olap.Avg.distinct[any]= olap.Count.distinct[any]= # # Aggregates # aggregates.Max[any]=MAX(%1$s) aggregates.Min[any]=MIN(%1$s) aggregates.Count[any]=COUNT(%1$s) aggregates.CountStar[]=COUNT(*) aggregates.Sum[any]=SUM(%1$s) # Avg may return a precise type if expression not coerced to imprecise type aggregates.Avg[any]=AVG(%1$s) aggregates.StdDevPop[any]=STDDEV_POP(%1$s) aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s) aggregates.VarPop[any]=VAR_POP(%1$s) aggregates.VarSamp[any]=VAR_SAMP(%1$s) aggregates.Rank[any,any]= aggregates.DenseRank[any,any]= aggregates.PercentRank[any,any]=PERCENT_RANK(%1$s) WITHIN GROUP (ORDER BY %2$s) aggregates.CumeDistH[any,any]= aggregates.PercentileDisc[any,any]= aggregates.PercentileCont[any,any]=PERCENTILE_CONT(%1$s) WITHIN GROUP (ORDER BY %2$s) aggregates.Median[any]=MEDIAN(%1$s) aggregates.Grouping[any]= aggregates.XMLAgg= aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[any]=APPROXIMATE COUNT(DISTINCT(%1$s)) # # Distinct aggregates # aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s) aggregates.Min.distinct[any]=MIN(DISTINCT %1$s) aggregates.Max.distinct[any]=MAX(DISTINCT %1$s) aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s) aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s) # # Linear regression aggregates # aggregates.Corr[any,any]= aggregates.CovarPop[any,any]= aggregates.CovarSamp[any,any]= aggregates.RegrAvgX[any,any]= aggregates.RegrAvgY[any,any]= aggregates.RegrCount[any,any]= aggregates.RegrIntercept[any,any]= aggregates.RegrR2[any,any]= aggregates.RegrSlope[any,any]= aggregates.RegrSXX[any,any]= aggregates.RegrSXY[any,any]= aggregates.RegrSYY[any,any]= # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions # functions.CharLength[any]=CHAR_LENGTH(%1$s) functions.OctetLength[any]= functions.BitLength[any]= functions.Upper[string]= functions.Upper[varchar]=UPPER(%1$s) functions.Lower[string]= functions.Lower[varchar]=LOWER(%1$s) functions.Substring[any,any]=SUBSTRING(%1$s FROM CAST(TRUNC(%2$s) as INTEGER)) functions.Substring[any,any,any]=SUBSTRING(%1$s FROM CAST(TRUNC(%2$s) as INTEGER) FOR CAST(TRUNC(%3$s) as INTEGER)) functions.Position[any,any]=POSITION(%1$s IN %2$s) functions.Index[any,any]= functions.Ascii[any]= functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= # # Regular expression functions. # functions.SubstringRegex[any,any,nullArg,nullArg,nullArg]=REGEXP_SUBSTR(%2$s, %1$s) functions.SubstringRegex[any,any,any,nullArg,nullArg]=REGEXP_SUBSTR(%2$s, %1$s, %3$s) functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,nullArg,nullArg]=REGEXP_COUNT(%2$s, %1$s) functions.OccurrencesRegex[any,any,any,nullArg]=REGEXP_COUNT(%2$s, %1$s, %3$s) functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[nullArg,any,any,nullArg,nullArg,nullArg]=REGEXP_INSTR(%3$s, %2$s) functions.PositionRegex[nullArg,any,any,any,nullArg,nullArg]=REGEXP_INSTR(%3$s, %2$s, %4$s) functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Ceiling[any]=CEILING(%1$s) functions.Exp[any]=EXP(%1$s) functions.Floor[any]=FLOOR(%1$s) functions.Ln[any]=LN(%1$s) # not supported on Redshift tables functions.Ln[decimal]= functions.Log10[any]=LOG(%1$s) # not supported on Redshift tables functions.Log10[decimal]= functions.Mod[any,any]=MOD(%1$s, %2$s) functions.Mod[double,any]= functions.Mod[float,any]= functions.Mod[decimal,any]= functions.Mod[any,double]= functions.Mod[any,float]= functions.Mod[any,decimal]= functions.Power[any,any]=POWER(%1$s, %2$s) functions.Random[]=RANDOM() functions.Random[any]= functions.Round[any]=ROUND(%1$s) functions.Round[any,any]=ROUND(%1$s, %2$s) functions.Round[any,any,any]= functions.Sign[any]=SIGN(%1$s) functions.Sqrt[any]=SQRT(%1$s) functions.WidthBucket[any,any,any,any]= # # Array scalar functions # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Table functions # functions.Unnest= # # Trig Functions # functions.Arccos[any]=ACOS(%1$s) functions.Cos[any]=COS(%1$s) functions.Coshyp[any]= functions.Arcsin[any]=ASIN(%1$s) functions.Sin[any]=SIN(%1$s) functions.Sinhyp[any]= functions.Arctan[any]=ATAN(%1$s) functions.Tan[any]=TAN(%1$s) functions.Tanhyp[any]= # # Temporal value expressions # # Note: JDBC does not define fractional seconds for TIME data type. # Redshift constrains the usage of LOCAL functions to the leader node which can prevent queries from using non-leader tables # and those functions are marked for deprecation functions.CurrentDate[]=CURRENT_DATE functions.CurrentTime[]= functions.CurrentTimestamp[]= functions.CurrentTimestamp[numeric]= functions.LocalTime[]= functions.LocalTime[numeric]= functions.LocalTimestamp[]=SYSDATE functions.LocalTimestamp[numeric]= # # XML Functions # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= functions.XMLElement.ContentOption.NULL_ON_NULL=false functions.XMLElement.ContentOption.EMPTY_ON_NULL=false functions.XMLForest.ContentOption.NULL_ON_NULL=false functions.XMLForest.ContentOption.EMPTY_ON_NULL=false functions.XMLParse.DocumentOrContent.DOCUMENT=false functions.XMLParse.DocumentOrContent.CONTENT=false functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=true functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=true functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business functions. # functions.AddHours[any,any]=dateadd(hours, cast(floor(%2$s) as int), %1$s) functions.AddMinutes[any,any]=dateadd(minutes, cast(floor(%2$s) as int), %1$s) functions.AddSeconds[any,any]=dateadd(seconds, cast(floor(%2$s) as int), %1$s) functions.AddFractionalSeconds[any,any]= functions.AddDays[timestamp,any]=dateadd(days, cast(floor(%2$s) as int), %1$s) functions.AddDays[date,any]=cast(dateadd(days, cast(floor(%2$s) as int), %1$s) as date) functions.AddDays[any,any]=dateadd(days, cast(floor(%2$s) as int), %1$s) functions.AddWeeks[any,any]= functions.AddMonths[timestamp,any]=dateadd(months, cast(floor(%2$s) as int), %1$s) functions.AddMonths[date,any]=cast(dateadd(months, cast(floor(%2$s) as int), %1$s) as date) functions.AddMonths[any,any]=dateadd(months, cast(floor(%2$s) as int), %1$s) functions.AddQuarters[any,any]= functions.AddYears[timestamp,any]=dateadd(years, cast(floor(%2$s) as int), %1$s) functions.AddYears[date,any]=cast(dateadd(years, cast(floor(%2$s) as int), %1$s) as date) functions.AddYears[any,any]=dateadd(years, cast(floor(%2$s) as int), %1$s) functions.Age[any]= functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]=datediff(second, %2$s, %1$s) functions.MinutesBetween[any,any]=datediff(minute, %2$s, %1$s) functions.HoursBetween[any,any]=datediff(hour, %2$s, %1$s) functions.DaysBetween[any,any]=datediff(days, %2$s, %1$s) functions.WeeksBetween[any,any]= functions.MonthsBetween[any,any]=datediff(months, %2$s, %1$s) functions.QuartersBetween[any,any]= functions.YearsBetween[any,any]=datediff(years, %2$s, %1$s) functions.DayOfWeek[any,any]=(MOD(cast(TO_CHAR( %1$s, 'D' ) as integer ) + 6 - %2$s, 7 ) + 1) functions.DayOfYear[any]=DATE_PART('doy', %1$s) functions.DaysToEndOfMonth[any]=datediff(days, %1$s, cast(dateadd(months, 1, %1$s - (cast(extract( day from %1$s) as integer))) as timestamp)) functions.FirstOfMonth[timestamp]=(%1$s - (EXTRACT( DAY FROM %1$s )-1) * INTERVAL '1 DAY') functions.FirstOfMonth[date]=cast((%1$s - (EXTRACT( DAY FROM %1$s )-1) * INTERVAL '1 DAY') as date) functions.FirstOfMonth[any]=(%1$s - (EXTRACT( DAY FROM %1$s )-1) * INTERVAL '1 DAY') functions.LastOfMonth[timestamp]=dateadd(days, -1, dateadd(months, 1, (%1$s - (extract(day from %1$s) - 1)))) functions.LastOfMonth[date]=cast(dateadd(days, -1, dateadd(months, 1, (%1$s - (extract(day from %1$s) - 1)))) as date) functions.LastOfMonth[any]=dateadd(days, -1, dateadd(months, 1, (%1$s - (extract(day from %1$s) - 1)))) functions.MakeTimestamp[any,any,any]= functions.WeekOfYear[any]= functions.YMDIntBetween[any,any]= # # Literals # literals.smallint=true literals.decimal=true literals.float=false literals.char=true literals.nchar=false literals.varchar=true literals.nvarchar=false literals.blob=false literals.clob=false literals.nclob=false literals.date=true literals.time=false literals.time_with_time_zone=false literals.timestamp=true literals.timestamp_with_time_zone=false literals.interval_year=false literals.interval_month=false literals.interval_year_to_month=false literals.interval_day=false literals.interval_hour=false literals.interval_minute=false literals.interval_second=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute_to_second=false literals.date=true literals.time=false literals.time_with_time_zone=false literals.timestamp=true literals.timestamp_with_time_zone=false literals.binary=false literals.boolean=false literals.xml=false literals.array=false literals.perioddate=false # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. literals.format.boolean=TRUE:FALSE:UNKNOWN literals.format.char='%s' literals.format.clob='%s' literals.format.date=DATE '%1$04d-%2$02d-%3$02d' literals.format.interval_day= literals.format.interval_day_to_hour= literals.format.interval_day_to_minute= literals.format.interval_day_to_second= literals.format.interval_hour= literals.format.interval_hour_to_minute= literals.format.interval_hour_to_second= literals.format.interval_minute= literals.format.interval_minute_to_second= literals.format.interval_month= literals.format.interval_second= literals.format.interval_year= literals.format.interval_year_to_month= literals.format.nchar='%s' literals.format.nvarchar='%s' literals.format.time= literals.format.time_with_time_zone= literals.format.timestamp=timestamp '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.4s' literals.format.timestamp_with_time_zone= literals.format.varchar='%s' literals.format.double=cast(%s as double precision) # # DataTypes # dataType.smallint=true dataType.integer=true dataType.long=true dataType.decimal=true dataType.float=false dataType.double=true dataType.char=true dataType.nchar=false dataType.varchar=true dataType.nvarchar=false dataType.clob=false dataType.blob=false dataType.date=true dataType.time=false dataType.time_with_time_zone=false dataType.timestamp=true dataType.timestamp_with_time_zone=false dataType.interval_year=false dataType.interval_month=false dataType.interval_year_to_month=false dataType.interval_day=false dataType.interval_hour=false dataType.interval_minute=false dataType.interval_second=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute_to_second=false dataType.boolean=false dataType.binary=false dataType.xml=false dataType.perioddate=false dataType.array=false dataType.struct=false dataType.map=false dataType.json=false # # Collation # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence collation.sequence.sql= # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. database.charset.sql= # # dataType.comparable # # Used to indicate that some data types that are comparable locally may not by the database # e.g. dataType.comparable[varchar,nvarchar]=false # # dataType.promotion # # Used to indicate what direction the promotion needs to occur # -> these properties are not symetrical # e.g. dataType.promotion[char,nvarchar]=true