#IBM Confidential # #OCO Source Materials # #BI and PM: rdbmscert # #(C) Copyright IBM Corp. 2009,2020 # #The source code for this program is not published or otherwise divested of its trade secrets, #irrespective of what has been deposited with the U.S. Copyright Office # # # Delimiters # # While a vendor may parse a statement with comments it may strip them out and the server not see them delimiters.commentBegin=/* delimiters.commentEnd=*/ # delimiters.catalogDelimiter= # delimiters.schemaDelimiter= # delimiters.tableDelimiter= # delimiters.columnDelimiter= # delimiters.identifierQuoteString= # delimiters.searchStringEscape= # delimiters.catalogSeparator= # # Keywords # keywords.columnAlias=AS # # Limits # # Normally these values would be derived from the JDBC driver DatabaseMetadata # limits.maxBinaryLiteralLength= # limits.maxCharLiteralLength= # limits.maxColumnNameLength= # limits.maxColumnsInGroupby= # limits.maxColumnsInIndex= # limits.maxColumnsInOrderBy= # limits.maxColumnsInSelect= # limits.maxColumnsInTable= # limits.maxConnections= # limits.maxCursorNameLength= # limits.maxIndexLength= # limits.maxSchemaNameLength= # limits.maxProcedureNameLength= # limits.maxCatalogNameLength= # limits.maxRowSize= # limits.maxStatementLength= # limits.maxStatements= # limits.maxTableNameLength= # limits.maxTablesInSelect= # limits.maxUserNameLength= # limits.defaultTransactionIsolation= # limits.maxLengthInClause # # General # # # Null ordering # # No support is provided for vendors who change how nulls sort based on data type. general.nullsAreSortedAtEnd=false general.nullsAreSortedAtStart=false general.nullsAreSortedHigh=false general.nullsAreSortedLow=true # Unable to specificy how nulls order on a cursor. general.nullsOrdering=false # # Various # supports.columnAliasing=true supports.tableCorrelationNames=true supports.expressionsInOrderBy=true supports.orderByAlias=true supports.orderByName=true supports.orderByOrdinal=true supports.expressionsInINPredicate=true supports.likeEscapeClause=true supports.fullOuterJoins=true supports.outerJoins=true supports.stitchJoins=false # Subqueries not supported in Group-by # Subquery column alias not supported supports.subqueriesInComparisons=true supports.subqueriesInExists=true supports.subqueriesInIns=true supports.subqueriesInQuantifieds=true supports.subqueriesInCase=false supports.correlatedSubqueries=true supports.scalarSubqueries=true supports.withClauseInDerivedTable=false supports.nestedWithClause=false supports.recursiveWithClause=false supports.integerDivision=true supports.nestedOlap=false supports.derivedColumnLists=true # Does not allow grouping on non project column supports.blobsInGroupBy=false supports.blobsInOrderBy=false supports.emptyStringIsNull=false supports.concatNullIsNull=false supports.expressionsInGroupBy=false supports.parameterMarkers=false supports.constantsInWindows=false supports.callProcedureInDerivedTable=false supports.join.subqueriesInOnClause=false supports.top.0=false #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Grouping query optimization # # If the RDBMS has costing/execution issues with group by or distinct consider these transforms performance.convertGroupByToDistinct=false performance.convertDistinctToGroupBy=false # V5 master-detail optimization when allRows optimization is specified v5.master-detail.transform=false # # Commands # commands.Select=SELECT commands.Call=CALL # # Tables # tables.joined=true tables.derived=true # Does not enforce ISO SQL lateral join exceptions tables.lateral.derived=false # # Constructors # constructors.table=false constructors.row=false constructors.array=false constructors.period=false # # Clauses # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING # Recursive form of common table expression not supported # Common table expression cannot be used within a derived table clauses.With=WITH clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.Top=TOP %1$s clauses.Top.Position=distinct.top clauses.TableSampleSystem= clauses.TableSampleBernoulli= # # Joins # # Does not allow on condition to use set functions joins.Cross=%1$s CROSS JOIN %2$s joins.Inner=%1$s INNER JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s joins.RightNested=(%1$s) # # Set Operators # # One or more set operations does not follow ISO data type combination rules. Can effect set operations, CASE, COALESCE... operators.set.Union= operators.set.Union.all= operators.set.Intersect= operators.set.Intersect.all= operators.set.Except= operators.set.Except.all= # # Logical Operators # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) operators.logical.Is= operators.logical.IsNot= # # Arithmetic and Character operators # operators.arithmetic.Add[any,any]=%1$s + %2$s operators.arithmetic.Subtract[any,any]=%1$s - %2$s operators.arithmetic.Subtract[datetime,any]= operators.arithmetic.Subtract[any,datetime]= operators.arithmetic.Multiply[any,any]=%1$s * %2$s operators.arithmetic.Divide[any,any]=%1$s / %2$s operators.arithmetic.Divide[any,integer]=%1$s / cast(%2$s as DOUBLE) operators.arithmetic.Divide[integer, any]= cast(%1$s as DOUBLE) / %2$s operators.arithmetic.UnaryPlus[any]=+%1$s operators.arithmetic.Negate[any]=-%1$s operators.arithmetic.Concat[any,any]=%1$s || %2$s operators.arithmetic.Mod[any,float]= operators.arithmetic.Mod[any,double]= operators.arithmetic.Mod[any,any]=MOD(%1$2, %2$s) # # Grouping Operators # operators.groupBy.Rollup=ROLLUP operators.groupBy.Cube=CUBE operators.groupBy.GroupingSets= # # Comparison Predicates # # # Comparisons involving floats and doubles can be inaccurate due how they are represented # on the server # predicates.comparison.Equals[any,any]=%1$s = %2$s predicates.comparison.GreaterThan[any,any]=%1$s > %2$s predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s predicates.comparison.LessThan[decimal,any]=%1$s < %2$s predicates.comparison.LessThan[any,any]=%1$s < %2$s predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s predicates.comparison.NotEquals[any,any]=%1$s <> %2$s # # Predicates # predicates.In[any,any]=%1$s IN ( %2$s ) predicates.IsNull=%1$s IS NULL predicates.IsNotNull=%1$s IS NOT NULL predicates.Like=%1$s LIKE %2$s predicates.Like.escape=%1$s LIKE %2$s ESCAPE %3$s predicates.Similar.escape= predicates.Exists=EXISTS %1$s predicates.All=ALL %1$s predicates.Some=SOME %1$s predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) predicates.LikeRegex= predicates.Overlaps[any,any,any,any]= predicates.Similar= predicates.Similar.escape= # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Conditional expressions # # One or more case operations does not follow ISO type rules. expressions.SimpleCase=CASE expressions.SearchedCase=CASE #expressions.Coalesce[timestamp,any]= expressions.Coalesce=COALESCE(%1$s) #expressions.Coalesce[numeric,timestamp]= #expressions.Coalesce[date,timestamp]= expressions.NullIf=NULLIF(%1$s, %2$s) #expressions.NullIf[timestamp,any]= #expressions.NullIf[date,timestamp]= # NULLIF(%1$s, %2$s) is equivalent to CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END # Minimum number of arguments for Coalesce function. expressions.Coalesce.minArgs=2 # # Cast # expressions.Cast[any,any]=CAST(%1$s AS %2$s) expressions.Cast[time,timestamp]= # Precision is lost, fractional seconds are not rendered expressions.Cast[time,text]= expressions.Cast[timestamp,text]= # # Extract # expressions.Extract.YEAR[any]=DATEPART(YEAR, %1$s) expressions.Extract.MONTH[any]=DATEPART(MONTH, %1$s) expressions.Extract.DAY[any]=DATEPART(DAY, %1$s) expressions.Extract.HOUR[any]=DATEPART(HOUR, %1$s) expressions.Extract.MINUTE[any]=DATEPART(MINUTE, %1$s) expressions.Extract.SECOND[timestamp]=(DATEPART(SECOND, %1$s) + (DATEPART(MILLISECOND, %1$s ) / 1000.0)) expressions.Extract.SECOND[time]=DATEPART(SECOND, %1$s) # # Trim # Only supports trimming of spaces expressions.Trim.BOTH[any]=TRIM(%1$s) expressions.Trim.LEADING[any]=LTRIM(%1$s) expressions.Trim.TRAILING[any]=RTRIM(%1$s) expressions.Trim.BOTH[any,any]= expressions.Trim.LEADING[any,any]= expressions.Trim.TRAILING[any,any]= # # Window clause # clauses.Window= olap.PartitionBy=PARTITION BY %1$s # Lack of window ordering impacts many aggregates being pushed # Unable to specify a literal in window ordering # Unable to specify ordering in a window general.nullsOrderingInWindowSpecification=false olap.OrderBy= ORDER BY %1$s # # Window specification. # Sybase IQ interprets missing frame specification with order by as a "RANGE". # olap.Window.Specification[POF]=true olap.Window.Specification[PF]=true olap.Window.Specification[OF]=true olap.Window.Specification[PO]=false olap.Window.Specification[P]=true olap.Window.Specification[O]=false olap.Window.Specification[F]=true olap.Window.Specification[]=true # # Olap Distinct # olap.Min.distinct[any]= olap.Max.distinct[any]= olap.Sum.distinct[any]= olap.Avg.distinct[any]= olap.Count.distinct[any]= # # Aggregates # aggregates.Max[timestamp]= aggregates.Max[time]=MAX(%1$s) aggregates.Max[text]=MAX(%1$s) aggregates.Max[numeric]=MAX(%1$s) aggregates.Max[date]=MAX(%1$s) aggregates.Min[timestamp]= aggregates.Min[time]=MIN(%1$s) aggregates.Min[text]=MIN(%1$s) aggregates.Min[numeric]=MIN(%1$s) aggregates.Min[date]=MIN(%1$s) aggregates.Count[any]=COUNT(%1$s) aggregates.CountStar[]=COUNT(*) aggregates.Sum[any]=SUM(%1$s) aggregates.Avg[any]=AVG(%1$s) aggregates.StdDevPop[any]=STDDEV_POP(%1$s) aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s) aggregates.VarPop[any]=VAR_POP(%1$s) aggregates.VarSamp[any]=VAR_SAMP(%1$s) aggregates.Grouping[any]= # Disabled due to XMLELEMENT being returned as long varchar and not SQLXML aggregates.XMLAgg= aggregates.CumeDistH[any,any]= aggregates.PercentileCont[any,any]=PERCENTILE_CONT(%1$s) WITHIN GROUP (ORDER BY %2$s) aggregates.PercentileDisc[any,any]=PERCENTILE_DISC(%1$s) WITHIN GROUP (ORDER BY %2$s) aggregates.Median[any]=MEDIAN(%1$s) aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[any]= # # Distinct aggregates # aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s) aggregates.Min.distinct[any]=MIN(DISTINCT %1$s) aggregates.Max.distinct[any]=MAX(DISTINCT %1$s) aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s) aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s) # # Linear regression aggregates # aggregates.Corr[any,any]=CORR(%1$s, %2$s) aggregates.CovarPop[any,any]=COVAR_POP(%1$s, %2$s) aggregates.CovarSamp[any,any]=COVAR_SAMP(%1$s, %2$s) aggregates.RegrAvgX[any,any]=REGR_AVGX(%1$s, %2$s) aggregates.RegrAvgY[any,any]=REGR_AVGY(%1$s, %2$s) aggregates.RegrCount[any,any]=REGR_COUNT(%1$s, %2$s) aggregates.RegrIntercept[any,any]=REGR_INTERCEPT(%1$s, %2$s) aggregates.RegrR2[any,any]=REGR_R2(%1$s, %2$s) aggregates.RegrSlope[any,any]=REGR_SLOPE(%1$s, %2$s) aggregates.RegrSXX[any,any]=REGR_SXX(%1$s, %2$s) aggregates.RegrSXY[any,any]=REGR_SXY(%1$s, %2$s) aggregates.RegrSYY[any,any]=REGR_SYY(%1$s, %2$s) # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions # functions.Upper[any]=UPPER(%1$s) functions.Lower[any]=LOWER(%1$s) functions.Upper[blob]= functions.Lower[blob]= # Some position cases did not pass and should be reviewed. functions.Position[any,any]= functions.Substring[any,any]=SUBSTR(%1$s, %2$s) functions.Substring[any,any,any]=SUBSTR(%1$s, %2$s, %3$s) functions.Ascii[any]= functions.CharLength[any]=CHAR_LENGTH(%1$s) functions.OctetLength[any]=OCTET_LENGTH(%1$s) functions.BitLength[any]=BIT_LENGTH(%1$s) functions.Position[any,any]= functions.Index[any,any]= functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= #Substring function to negative START value to parse the input string from its rightmost end. functions.SubstringR[any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTR( %1$s, (CHAR_LENGTH(%1$s ) - ABS(%2$s) + 1))) ELSE (SUBSTR(%1$s, %2$s)) END functions.SubstringR[any,any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTR( %1$s, (CHAR_LENGTH(%1$s ) - ABS(%2$s) + 1), %3$s)) ELSE (SUBSTR(%1$s, %2$s, %3$s)) END # # Regular expression functions. # functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Abs[interval_day_time]= functions.Abs[interval_year_month]= functions.Ceiling[any]=CEIL(%1$s) functions.Exp[any]=EXP(%1$s) functions.Floor[any]=FLOOR(%1$s) functions.Ln[any]=LN(%1$s) functions.Log10[any]=LOG10(%1$s) fumctions.Power[any,any]=POWER(%1$s, %2$s) functions.Random[]= functions.Random[any]= functions.Round[any,any]=ROUND(%1$s, %2$s) functions.Sign[any]=SIGN(%1$s) functions.Sqrt[any]=SQRT(%1$s) functions.WidthBucket[any,any,any,any]= # # Array scalar functions. # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trig Functions # functions.Cos[any]=COS(%1$s) functions.Coshyp[any]= functions.Sin[any]=SIN(%1$s) functions.Sinhyp[any]= functions.Tan[any]=TAN(%1$s) functions.Tanhyp[any]= # # Olap Functions # olap.Min[any]=MIN(%1$s) olap.Max[any]=MAX(%1$s) olap.Sum[any]=SUM(%1$s) olap.Avg[any]=AVG(%1$s) olap.Count[any]=COUNT(%1$s) olap.CountStar[]=COUNT(*) # Sybase IQ does support cume_dist but it does not support null ordering # in a window specification. Another restriction is the cume_dist can only have one # key in the 'order by' clause. This causes an issue with the transformation ConvertNullOrderingInSort, # which gets around the null ordering issue by adding a second sort key to sort nulls properly. # All that to say, we need to process this function locally. # Olap lag did not throw expected exceptions olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, %2$s) olap.Lag[any,double]= olap.Lag[any,float]= olap.Lag[any,any,any]=LAG(%1$s, %2$s, %3$s) olap.Lag[any,double,any]= olap.Lag[any,float,any]= olap.Lag[any,any,any,any]= # Olap lead did not throw expected exceptions olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, %2$s) olap.Lead[any,double]= olap.Lead[any,float]= olap.Lead[any,any,any]=LEAD(%1$s, %2$s, %3$s) olap.Lead[any,double,any]= olap.Lead[any,float,any]= olap.Lead[any,any,any,any]= olap.NthValue[any,any]= olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.NTile[any]= olap.Tertile[]= olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.PercentRank[]=PERCENT_RANK() olap.CumeDist[]= olap.RatioToReport[any]= olap.RowNumber[]= olap.Difference[any]= olap.FirstValue[any]=FIRST_VALUE(%1$s) olap.LastValue[any]=LAST_VALUE(%1$s) olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.Median[any]=MEDIAN(%1$s) olap.Collect[any]= # # Temporal value expressions # # Note: JDBC does not define fractional seconds for TIME data type. functions.CurrentDate[]=CURRENT DATE functions.CurrentTime[]=CURRENT TIME functions.CurrentTimestamp[]=CURRENT TIMESTAMP functions.CurrentTimestamp[numeric]=CURRENT TIMESTAMP functions.CurrentTime[numeric]= #Ignore the numeric value as in classic stack functions.LocalTime[]=CURRENT TIME functions.LocalTimestamp[]=CURRENT TIMESTAMP functions.LocalTime[numeric]=CURRENT TIME functions.LocalTimestamp[numeric]=CURRENT TIMESTAMP # # XML Functions # disabled until the XML support is formalized. # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business functions. # functions.AddFractionalSeconds[any,any]= functions.AddSeconds[any,any]=DATEADD( SECOND, %2$s, %1$s ) functions.AddMinutes[any,any]=DATEADD( MINUTE, %2$s, %1$s ) functions.AddHours[any,any]=DATEADD( HOUR, %2$s, %1$s ) functions.AddDays[any,any]=DATEADD( DAY, %2$s, %1$s ) functions.AddWeeks[any,any]=DATEADD( WEEK, %2$s, %1$s ) functions.AddMonths[any,any]=DATEADD( MONTH, %2$s, %1$s ) functions.AddQuarters[any,any]=DATEADD( QUARTER, %2$s, %1$s ) functions.AddYears[any,any]=DATEADD( YEAR, %2$s, %1$s ) functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]=DATEDIFF( SECOND, %2$s, %1$s ) functions.MinutesBetween[any,any]=DATEDIFF( MINUTE, %2$s, %1$s ) functions.HoursBetween[any,any]=DATEDIFF( HOUR, %2$s, %1$s ) functions.DaysBetween[any,any]=DATEDIFF( DAY, %2$s, %1$s ) functions.WeeksBetween[any,any]=DATEDIFF( WEEK, %2$s, %1$s ) functions.MonthsBetween[any,any]=DATEDIFF( MONTH, %2$s, %1$s ) functions.QuartersBetween[any,any]=DATEDIFF( QUARTER, %2$s, %1$s ) functions.YearsBetween[any,any]=DATEDIFF( YEAR, %2$s, %1$s ) functions.Age[any]= functions.WeekOfYear[any]= functions.YMDIntBetween[any,any]= functions.DayOfWeek[any,any]=(MOD(( MOD(( DATEPART( WEEKDAY, %1$s ) + 5 ), 7 ) - %2$s + 8 ), 7) + 1) functions.DayOfYear[any]=DATEPART( DAYOFYEAR, %1$s ) functions.DaysToEndOfMonth[any]=DATEDIFF( DAY, %1$s, DATEADD( DAY, -1, DATEADD( MONTH, 1, DATEADD( DAY, 1 - DATEPART( DAY, %1$s ), %1$s ) ) ) ) functions.FirstOfMonth[any]=DATEADD( DAY, -DATEPART( DAY, %1$s ) + 1, %1$s ) functions.LastOfMonth[any]=DATEADD( DAY, -1, DATEADD( MONTH, 1, DATEADD( DAY, -DAY( %1$s ) + 1, %1$s ) ) ) functions.MakeTimestamp[any,any,any]=CAST( YMD(%1$s, %2$s, %3$s ) AS TIMESTAMP ) # # Literals # literals.integer=true literals.smallint=true literals.long=true literals.decimal=true literals.float=true literals.double=true literals.char=true literals.nchar=true literals.varchar=true literals.nvarchar=false literals.clob=true literals.interval_year=false literals.interval_month=false literals.interval_year_to_month=false literals.interval_day=false literals.interval_hour=false literals.interval_minute=false literals.interval_second=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute_to_second=false literals.date=true literals.time=true literals.time_with_time_zone=false literals.timestamp=true literals.timestamp_with_time_zone=false literals.binary=true literals.boolean=true literals.xml=true # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. literals.format.boolean=TRUE:FALSE:UNKNOWN literals.format.char='%s' literals.format.clob='%s' literals.format.date=CAST ('%1$04d-%2$02d-%3$02d' as date) literals.format.nchar=N'%s' literals.format.nvarchar=N'%s' literals.format.time=cast ('%1$02d:%2$02d:%3$02d%4$.4s' as time) literals.format.timestamp=cast('%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s' as timestamp) literals.format.varchar='%s' # # DataTypes # dataType.smallint=true dataType.integer=true dataType.long=true dataType.decimal=true dataType.float=true dataType.double=true dataType.char=true dataType.nchar=false dataType.varchar=true dataType.nvarchar=false dataType.clob=false dataType.blob=true dataType.date=true dataType.time=true dataType.time_with_time_zone=false dataType.timestamp=true dataType.timestamp_with_time_zone=false dataType.interval_year=false dataType.interval_month=false dataType.interval_year_to_month=false dataType.interval_day=false dataType.interval_hour=false dataType.interval_minute=false dataType.interval_second=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute_to_second=false dataType.boolean=false dataType.binary=false dataType.xml=false dataType.period=false # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=NTH # # Sybase IQ is not case-sensitive for identifiers # supports.mixedCaseIdentifiers=false supports.mixedCaseQuotedIdentifiers=false # # Collation # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence collation.sequence.sql=SELECT default_collation, CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH FROM SYSINFO # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. database.charset.sql= # # dataType.comparable # # Used to indicate that some data types that are comparable locally may not by the database # e.g. dataType.comparable[varchar,nvarchar]=false # # dataType.promotion # # Used to indicate what direction the promotion needs to occur # -> these properties are not symetrical # e.g. dataType.promotion[char,nvarchar]=true