#Licensed Materials - Property of IBM # #OCO Source Materials # #BI and PM: rdbmscert # #(C) Copyright IBM Corp. 2016, 2020 # #US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. #This properties file contains default configuration attributes for all # #relational data sources. Any data source that is different must override # #the value in their own properties file. # # # Delimiters # # While a vendor may parse a statement with comments it may strip them out and the server not see them delimiters.commentBegin=/* delimiters.commentEnd=*/ # delimiters.catalogDelimiter= # delimiters.schemaDelimiter= # delimiters.tableDelimiter= # delimiters.columnDelimiter= # delimiters.identifierQuoteString= # delimiters.searchStringEscape= # delimiters.catalogSeparator= # # Keywords # keywords.columnAlias=AS # # Limits # # Normally these values would be derived from the JDBC driver DatabaseMetadata # limits.maxBinaryLiteralLength= # limits.maxCharLiteralLength= # limits.maxColumnNameLength= # limits.maxColumnsInGroupBy= # limits.maxColumnsInIndex= # limits.maxColumnsInOrderBy= # limits.maxColumnsInSelect= # limits.maxColumnsInTable= # limits.maxConnections= # limits.maxCursorNameLength= # limits.maxIndexLength= # limits.maxSchemaNameLength= # limits.maxProcedureNameLength= # limits.maxCatalogNameLength= # limits.maxRowSize= # limits.maxStatementLength= limits.maxStatements=1 # limits.maxTableNameLength= # limits.maxTablesInSelect= # limits.maxUserNameLength= # limits.defaultTransactionIsolation= # limits.maxLengthInClause # # General # # # Null ordering # # No support is provided for vendors who change how nulls sort based on data type. general.nullsAreSortedHigh=true general.nullsAreSortedLow=false general.nullsAreSortedAtStart=false general.nullsAreSortedAtEnd=false general.nullsOrdering=true general.nullsOrderingInWindowSpecification=true # # Cursor options - appended to end of generated SELECT statement. general.cursorOptions= # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample=BERNOULLI sampling.rowsample=RANDOM # # Various # supports.duplicateColumnsInSelectList=true supports.columnAliasing=true supports.tableCorrelationNames=true supports.expressionsInSelectList=true supports.expressionsInINPredicate=true supports.expressionsInOrderBy=true supports.booleanExpressionsInSelectList=false supports.fieldsOfComplexTypeInSelectList=false supports.likeEscapeClause=true supports.outerJoins=true supports.fullOuterJoins=true supports.subqueriesInComparisons=false supports.subqueriesInExists=true supports.subqueriesInIns=false supports.subqueriesInQuantifieds=true supports.subqueriesInOnClause=true supports.subqueriesInCase=false supports.correlatedSubqueries=true supports.scalarSubqueries=true supports.withClauseInDerivedTable=true supports.nestedWithClause=true supports.integerDivision=true supports.nestedOlap=false supports.derivedColumnLists=false supports.orderByAlias=true supports.orderByName=true supports.orderByOrdinal=true supports.blobsInGroupBy=false supports.blobsInOrderBy=false # Results for other scalar, aggregate and set operations will differ from DQM/ISO-SQL. supports.emptyStringIsNull=false supports.expressionsInGroupBy=false # Does not allow grouping on non projected column supports.thetaJoins=true # Indicates whether inner joins require at least one equijoin predicate. # A INNER JOIN B ON A.C1 = B.C1 AND A.C2 > B.C2 is fine, but A INNER JOIN B ON A.C2 > B.C2 is not. supports.limitedThetaJoins=false supports.equiJoins=true supports.crossProducts=true supports.recursiveWithClause=false supports.constantsInWindows=false supports.constantsInCount=true supports.parameterMarkers=false #join condition supports.join.betweenInOnClause=true supports.join.inPredicateInOnClause=true supports.join.isNullInOnClause=true supports.join.likeInOnClause=true supports.join.notInOnClause=true supports.join.orInOnClause=true supports.join.subqueriesInOnClause=true supports.join.onlyEquiWithAnd=false supports.join.inner.limitedThetaJoins=false supports.join.outer.thetaJoins=true supports.join.full.thetaJoins=true supports.join.full.distinctJoins=true #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Grouping query optimization # # If the RDBMS has costing/execution issues with group by or distinct consider these transforms performance.convertGroupByToDistinct=false performance.convertDistinctToGroupBy=false # V5 master-detail optimization when allRows optimization is specified v5.master-detail.transform=false performance.convertHavingToWhere=false performance.transitiveClosure=false performance.predicatePushdown=false performance.semiJoin=false # # Commands # commands.Select=SELECT commands.Call= # # Tables # tables.joined=true tables.derived=true tables.lateral.derived=true # # Constructors # constructors.table=false constructors.row=true constructors.array=true constructors.period=false # # Constructors - context overrides. # constructors.row.simpleCase=true constructors.row.between=true constructors.row.comparison=true constructors.row.in=false constructors.row.isDistinctFrom=false #DB2 supports table value constructor in IN clause, but not row expression list. constructors.row.inListToTable=false # # Clauses # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING # Does not allow column list in common table expression # Recursive form of common table expression not supported clauses.WithRecursive= clauses.With=WITH clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.Top=LIMIT %1$s clauses.At= clauses.Window= clauses.TableSampleSystem=TABLESAMPLE SYSTEM (%1$s)@2[ REPEATABLE (%2$s)] clauses.TableSampleBernoulli=TABLESAMPLE BERNOULLI (%1$s)@2[ REPEATABLE (%2$s)] clauses.ForSystemTimeAsOf= clauses.ForSystemTimeFrom= clauses.ForSystemTimeBetween= # # Joins # joins.Cross=%1$s CROSS JOIN %2$s joins.Inner=%1$s INNER JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s joins.RightNested=%1$s # # Set Operators # # One or more set operations does not follow ISO data type combination rules. Can effect set operations, CASE, COALESCE... operators.set.Union=%1$s UNION %2$s operators.set.Union.all=%1$s UNION ALL %2$s operators.set.Intersect=%1$s INTERSECT %2$s operators.set.Intersect.all= operators.set.Except=%1$s EXCEPT %2$s operators.set.Except.all= # # Logical Operators # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) operators.logical.Is= operators.logical.IsNot= operators.logical.IsJson=CHECK_JSON( %1$s ) IS NULL operators.logical.IsNotJson=CHECK_JSON( %1$s ) IS NOT NULL # # Arithmetic and Character operators # operators.arithmetic.Add[any,any]=%1$s + %2$s operators.arithmetic.Subtract[any,datetime]= operators.arithmetic.Subtract[any,numeric]=%1$s - %2$s operators.arithmetic.Multiply[any,any]=%1$s * %2$s operators.arithmetic.Divide[any,any]=%1$s / %2$s operators.arithmetic.UnaryPlus[any]=+%1$s operators.arithmetic.Negate[any]=-%1$s operators.arithmetic.Concat[any,any]=%1$s || %2$s # # Grouping Operators # operators.groupBy.Rollup=ROLLUP operators.groupBy.Cube=CUBE operators.groupBy.GroupingSets= GROUPING SETS # # Comparison Predicates # predicates.comparison.Equals[any,any]=%1$s = %2$s predicates.comparison.GreaterThan[any,any]=%1$s > %2$s predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s predicates.comparison.LessThan[any,any]=%1$s < %2$s predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s predicates.comparison.NotEquals[any,any]=%1$s <> %2$s # # Predicates # predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s predicates.In[any,any]=%1$s IN ( %2$s ) predicates.Overlaps[any,any,any,any]= predicates.IsNull=%1$s IS NULL predicates.IsNotNull=%1$s IS NOT NULL predicates.Like=%1$s LIKE %2$s predicates.Like.escape=%1$s LIKE %2$s ESCAPE %3$s predicates.LikeRegex=REGEXP_LIKE(%1$s, %2$s) predicates.LikeRegex.flag=REGEXP_LIKE(%1$s, %2$s, %3$s) predicates.Similar= predicates.Similar.escape= predicates.Exists=EXISTS %1$s predicates.All= predicates.Any= predicates.Some=SOME %1$s predicates.IsDistinctFrom[any,any]=%1$s IS DISTINCT FROM %2$s predicates.IsNotDistinctFrom[any,any]=%1$s IS NOT DISTINCT FROM %2$s # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions # expressions.ArrayElementRef.zeroBased=false # # Conditional expressions # expressions.SimpleCase=CASE expressions.SearchedCase=CASE expressions.Coalesce[datetime,date]=COALESCE(%1$s) expressions.Coalesce[datetime,string]=COALESCE(%1$s) expressions.Coalesce[datetime,varchar]= expressions.Coalesce[datetime,numeric]=COALESCE(%1$s) expressions.Coalesce[datetime,time]= expressions.Coalesce[datetime,timestamp]=COALESCE(%1$s) expressions.Coalesce[string,date]=COALESCE(%1$s) expressions.Coalesce[string,string]=COALESCE(%1$s) expressions.Coalesce[string,varchar]= expressions.Coalesce[string,numeric]=COALESCE(%1$s) expressions.Coalesce[string,time]= expressions.Coalesce[string,timestamp]=COALESCE(%1$s) expressions.Coalesce[varchar,any]=COALESCE(%1$s) expressions.Coalesce[numeric,date]=COALESCE(%1$s) expressions.Coalesce[numeric,string]=COALESCE(%1$s) expressions.Coalesce[numeric,varchar]= expressions.Coalesce[numeric,numeric]=COALESCE(%1$s) expressions.Coalesce[numeric,time]= expressions.Coalesce[numeric,timestamp]=COALESCE(%1$s) expressions.Coalesce.minArgs=2 expressions.NullIf[any,any]=NULLIF(%1$s, %2$s) # # Cast # # Cannot cast from null value to TimestampWithTZ expressions.Cast[any,any]=CAST(%1$s AS %2$s) expressions.Cast[smallint,char]= expressions.Cast[integer,char]= expressions.Cast[long,char]= expressions.Cast[decimal,char]= expressions.Cast[float,text]= expressions.Cast[double,text]= expressions.Cast[char,char]= expressions.Cast[text,timestamp]=cast(%1$s as timestamp without time zone) expressions.Cast[char,timestamp_with_time_zone]= expressions.Cast[varchar,timestamp_with_time_zone]= expressions.Cast[date,timestamp_with_time_zone]= expressions.Cast[time,char]= expressions.Cast[time,varchar]= expressions.Cast[time,timestamp]= expressions.Cast[time,timestamp_with_time_zone]= expressions.Cast[timestamp,text]= expressions.Cast[timestamp,time]= expressions.Cast[timestamp,timestamp_with_time_zone]= expressions.Cast[timestamp_with_time_zone,text]= expressions.Cast[timestamp_with_time_zone,time]= expressions.Cast[timestamp_with_time_zone,timestamp_with_time_zone]= # # Extract # expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s) expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s) expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s) expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s) expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s) expressions.Extract.SECOND[any]= expressions.Extract.TIMEZONE_HOUR[any]=EXTRACT(TZH FROM %1$s) expressions.Extract.TIMEZONE_MINUTE[any]=EXTRACT(TZM FROM %1$s) expressions.Extract.EPOCH[any]= # # Trim # expressions.Trim.BOTH[any]=TRIM(%1$s) expressions.Trim.BOTH[any,any]=TRIM(%2$s, %1$s) expressions.Trim.LEADING[any]=LTRIM(%1$s) expressions.Trim.LEADING[any,any]=LTRIM(%2$s, %1$s) expressions.Trim.TRAILING[any]=RTRIM(%1$s) expressions.Trim.TRAILING[any,any]=RTRIM(%2$s, %1$s) # # Windowed aggregates (SQL/OLAP). # olap.Max[any]=MAX(%1$s) olap.Min[any]=MIN(%1$s) olap.Sum[any]=SUM(%1$s) # While Snowflake has enhanced their windowed aggregate support in 1.86.0, they impose restrictions on AVG # Cumulative window frame unsupported for function AVG # Sliding window frame unsupported for function AVG #olap.Avg[any]=AVG(%1$s) olap.Avg[any]= olap.Count[any]=COUNT(%1$s) # Snowflake aggregate support added in 1.86.0 refuses count(*) but accepts count (1) which is used as a workarond olap.CountStar[]=COUNT(1) #olap.CountStar[]=COUNT(*) olap.StdDevPop[any]= olap.StdDevSamp[any]= olap.VarPop[any]= olap.VarSamp[any]= olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.PercentRank[]=PERCENT_RANK() olap.CumeDist[]=CUME_DIST() olap.PercentileCont[any,any]= olap.PercentileDisc[any,any]= olap.RatioToReport[any]= olap.Median[any]=MEDIAN(%1$s) olap.RowNumber[]=ROW_NUMBER() olap.Difference[any]= olap.FirstValue[any]=FIRST_VALUE(%1$s) olap.LastValue[any]=LAST_VALUE(%1$s) # Olap Ntile without an order by will sort nulls first and not last. olap.NTile[any]=NTILE(%1$s) olap.Tertile[]= olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, %2$s) olap.Lag[any,any,any]=LAG(%1$s, %2$s, %3$s) olap.Lag[any,any,any,any]= olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, %2$s) olap.Lead[any,any,any]=LEAD(%1$s, %2$s, %3$s) olap.Lead[any,any,any,any]=LEAD(%1$s, %2$s, %3$s) %4$s olap.NthValue[any]= olap.NthValue[any,any]= olap.NthValue[any,any,any]=NTH_VALUE(%1$s, %2$s) %3$s olap.NthValue[any,any,any,any]= olap.Collect[any]= # # Window clause # olap.Window=OVER(%1$s) olap.PartitionBy=PARTITION BY %1$s olap.OrderBy=ORDER BY %1$s # # Window specification # olap.Window.Specification[POF]=true olap.Window.Specification[PF]=false olap.Window.Specification[OF]=true olap.Window.Specification[PO]=true olap.Window.Specification[P]=true olap.Window.Specification[O]=true olap.Window.Specification[F]=false olap.Window.Specification[]=true olap.Window.Frame.Moving=true # # Olap Distinct # olap.Min.distinct[any]=MIN(DISTINCT %1$s) olap.Max.distinct[any]=MAX(DISTINCT %1$s) olap.Sum.distinct[any]=SUM(DISTINCT %1$s) olap.Avg.distinct[any]=AVG(DISTINCT %1$s) olap.Count.distinct[any]=COUNT(DISTINCT %1$s) # # Aggregates # aggregates.Min[any]=MIN(%1$s) aggregates.Min[timestamp_with_time_zone]= aggregates.Min[time]= aggregates.Max[any]=MAX(%1$s) aggregates.Max[timestamp_with_time_zone]= aggregates.Max[time]= aggregates.Sum[any]=SUM(%1$s) aggregates.Avg[any]=AVG(%1$s) aggregates.Count[any]=COUNT(%1$s) aggregates.CountStar[]=COUNT(*) aggregates.StdDevPop[any]=STDDEV_POP(%1$s) aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s) aggregates.VarPop[any]=VAR_POP(%1$s) aggregates.VarSamp[any]=VAR_SAMP(%1$s) aggregates.Rank[any,any]= aggregates.DenseRank[any,any]= aggregates.PercentRank[any,any]= aggregates.CumeDistH[any,any]= aggregates.PercentileDisc[any,any]=PERCENTILE_DISC(%1$s) WITHIN GROUP (ORDER BY %2$s) aggregates.PercentileCont[any,any]=PERCENTILE_CONT(%1$s) WITHIN GROUP (ORDER BY %2$s) aggregates.Median[any]=MEDIAN(%1$s) aggregates.Grouping[any]= aggregates.XMLAgg[any]= aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= # # Distinct aggregates # aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s) aggregates.Min.distinct[any]=MIN(DISTINCT %1$s) aggregates.Max.distinct[any]=MAX(DISTINCT %1$s) aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s) aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s) # # Linear regression aggregates # aggregates.Corr[any,any]=CORR(%1$s, %2$s) aggregates.CovarPop[any,any]=COVAR_POP(%1$s, %2$s) aggregates.CovarSamp[any,any]=COVAR_SAMP(%1$s, %2$s) aggregates.RegrAvgX[any,any]=REGR_AVGX(%1$s, %2$s) aggregates.RegrAvgY[any,any]=REGR_AVGY(%1$s, %2$s) aggregates.RegrCount[any,any]=REGR_COUNT(%1$s, %2$s) aggregates.RegrIntercept[any,any]=REGR_INTERCEPT(%1$s, %2$s) aggregates.RegrR2[any,any]=REGR_R2(%1$s, %2$s) aggregates.RegrSlope[any,any]=REGR_SLOPE(%1$s, %2$s) aggregates.RegrSXX[any,any]=REGR_SXX(%1$s, %2$s) aggregates.RegrSXY[any,any]=REGR_SXY(%1$s, %2$s) aggregates.RegrSYY[any,any]=REGR_SYY(%1$s, %2$s) # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Character scalar functions # functions.CharLength[any]=LENGTH(%1$s) functions.OctetLength[any]=OCTET_LENGTH(%1$s) functions.BitLength[any]=BIT_LENGTH(%1$s) functions.Upper[any]=UPPER(%1$s) functions.Lower[any]=LOWER(%1$s) functions.Substring[any,any]=SUBSTRING(%1$s, TRUNC(%2$s)) functions.Substring[any,any,any]=SUBSTRING(%1$s, TRUNC(%2$s), TRUNC(%3$s)) functions.Position[any,any]=POSITION(%1$s IN %2$s) functions.Index[any,any]= functions.Ascii[any]= functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= #Substring function to negative START value to parse the input string from its rightmost end. #It's not a standard SQL function, so leave the definition empty. functions.SubstringR[any,any]= functions.SubstringR[any,any,any]= # # Regular expression functions. # functions.SubstringRegex[any,any,nullArg,nullArg,nullArg]=REGEXP_SUBSTR(%2$s,%1$s) functions.SubstringRegex[any,any,any,nullArg,nullArg]=REGEXP_SUBSTR(%2$s,%1$s,%3$s) functions.SubstringRegex[any,any,any,any,nullArg]=REGEXP_SUBSTR(%2$s,%1$s,%3$s,%4$s) functions.SubstringRegex[any,any,any,any,any]=REGEXP_SUBSTR(%2$s,%1$s,%3$s,%4$s,%5$s) functions.SubstringRegex[any,any,any,nullArg,any]= functions.SubstringRegex[any,any,nullArg,any,any]= functions.SubstringRegex[any,any,nullArg,any,nullArg]= functions.SubstringRegex[any,any,nullArg,nullArg,any]= functions.OccurrencesRegex[any,any,nullArg,nullArg]=REGEXP_COUNT(%2$s,%1$s) functions.OccurrencesRegex[any,any,any,nullArg]=REGEXP_COUNT(%2$s,%1$s,%3$s) functions.OccurrencesRegex[any,any,any,any]=REGEXP_COUNT(%2$s,%1$s,%3$s,%4$s) functions.OccurrencesRegex[any,any,nullArg,any]= functions.PositionRegex[null,any,any,nullArg,nullArg,nullArg]=REGEXP_INSTR(%3$s,%2$s) functions.PositionRegex[null,any,any,any,nullArg,nullArg]=REGEXP_INSTR(%3$s,%2$s,%4$s) functions.PositionRegex[null,any,any,any,any,nullArg]=REGEXP_INSTR(%3$s,%2$s,%4$s,%5$s) functions.PositionRegex[any,any,any,any,any,any]=REGEXP_INSTR(%3$s,%2$s,%4$s,%5$s,%6$s,%1$s) # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Ceiling[any]=CEIL(%1$s) functions.Exp[any]=EXP(%1$s) functions.Floor[any]=FLOOR(%1$s) functions.Ln[any]=LN(%1$s) functions.Log10[any]= functions.Mod[any,any]=MOD(%1$s, %2$s) functions.Power[any,any]=POWER(%1$s, %2$s) functions.Random[]=CAST((RANDOM() + 9223372036854775807) AS DOUBLE PRECISION) / 18446744073709551615 functions.Random[any]=CAST((RANDOM(%1$s) + 9223372036854775807) AS DOUBLE PRECISION) / 18446744073709551615 functions.Round[any]=ROUND(%1$s) functions.Round[any,any]=ROUND(%1$s, %2$s) functions.Round[any,any,any]= functions.Sign[any]=SIGN(%1$s) functions.Sqrt[any]=SQRT(%1$s) functions.WidthBucket[any,any,any,any]=WIDTH_BUCKET(%1$s, %2$s, %3$s, %4$s) # # Array scalar functions # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trig Functions # functions.Arccos[any]=ACOS(%1$s) functions.Cos[any]=COS(%1$s) functions.Coshyp[any]=COSH(%1$s) functions.Arcsin[any]=ASIN(%1$s) functions.Sin[any]=SIN(%1$s) functions.Sinhyp[any]=SINH(%1$s) functions.Arctan[any]=ATAN(%1$s) functions.Tan[any]=TAN(%1$s) functions.Tanhyp[any]=TANH(%1$s) # # Temporal value expressions # # Note: JDBC does not define fractional seconds for TIME data type. functions.CurrentDate[]=CURRENT_DATE functions.CurrentTime[]= functions.CurrentTime[numeric]= functions.CurrentTimestamp[]=CURRENT_TIMESTAMP functions.CurrentTimestamp[numeric]= functions.LocalTime[]=LOCALTIME functions.LocalTime[numeric]= functions.LocalTimestamp[]=LOCALTIMESTAMP functions.LocalTimestamp[numeric]=LOCALTIMESTAMP(%1$s) # # XML Functions # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= functions.XMLElement.ContentOption.NULL_ON_NULL=false functions.XMLElement.ContentOption.EMPTY_ON_NULL=false functions.XMLForest.ContentOption.NULL_ON_NULL=false functions.XMLForest.ContentOption.EMPTY_ON_NULL=false functions.XMLParse.DocumentOrContent.DOCUMENT=false functions.XMLParse.DocumentOrContent.CONTENT=false functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=false functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=false functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false # # JSON functions. # functions.JSONObject= functions.JSONArray= functions.JSONExists= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business date functions. # functions.AddHours[any,any]=DATEADD(HOURS, TRUNC(%2$s), %1$s) functions.AddMinutes[any,any]=DATEADD(MINUTES, TRUNC(%2$s), %1$s) functions.AddSeconds[any,any]=DATEADD(SECONDS, %2$s, %1$s) functions.AddFractionalSeconds[any,any]= functions.AddDays[any,any]=DATEADD(DAYS, TRUNC(%2$s), %1$s) functions.AddWeeks[any,any]=DATEADD(WEEK, TRUNC(%2$s), %1$s) functions.AddMonths[any,any]=DATEADD(MONTH, TRUNC(%2$s), %1$s) functions.AddQuarters[any,any]=DATEADD(QUARTERS, TRUNC(%2$s), %1$s) functions.AddYears[any,any]=DATEADD(YEARS, TRUNC(%2$s), %1$s) functions.Age[any]= functions.FractionalSecondsBetween[any,any]= functions.SecondsBetween[any,any]=DATEDIFF(SECONDS, %1$s, %2$s) functions.MinutesBetween[any,any]=DATEDIFF(MINUTES, %1$s, %2$s) functions.HoursBetween[any,any]=DATEDIFF(HOURS, %1$s, %2$s) functions.DaysBetween[any,any]=DATEDIFF(DAYS, %1$s, %2$s) functions.WeeksBetween[any,any]=DATEDIFF(WEEK, %1$s, %2$s) functions.MonthsBetween[any,any]=DATEDIFF(MONTHS,%1$s, %2$s) functions.QuartersBetween[any,any]=DATEDIFF(QUARTERS,%1$s, %2$s) functions.YearsBetween[any,any]=DATEDIFF(YEARS, %1$s, %2$s) functions.DayOfWeek[any,any]= functions.DayOfYear[any]=EXTRACT(DAYOFYEAR, %1$s) # do not push to snowflake - functions.DaysToEndOfMonth[any] # error from snowflake : not enough arguments for function [DATEDIFF(CAST(TTS.CTS AS DATE), LASTDAYOFMONTH(CAST(TTS.CTS AS DATE)))], expected 3, got 2 SQLState: 22023 ErrorCode: 938 functions.DaysToEndOfMonth[any]= functions.FirstOfMonth[any]=DATEADD( DAY, -(EXTRACT (DAY, %1$s) - 1), %1$s) functions.LastOfMonth[any]=LAST_DAY(%1$s) functions.MakeTimestamp[any,any,any]= functions.WeekOfYear[any]=EXTRACT(WEEK, %1$s) functions.YMDIntBetween[any,any]= # # Table functions. # functions.Unnest= # # Literals. # literals.binary=false literals.blob=false literals.clob=false literals.boolean=true literals.date=true literals.time=true literals.time_with_time_zone=false literals.timestamp=true literals.timestamp_with_time_zone=true literals.interval_day=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute=false literals.interval_minute_to_second=false literals.interval_second=false literals.interval_year=false literals.interval_year_to_month=false literals.interval_month=false literals.smallint=true literals.integer=true literals.long=true literals.float=true literals.double=true literals.decimal=true literals.char=true literals.nchar=true literals.varchar=true literals.nvarchar=true literals.xml=false literals.datalink=false # # Literal constraints. # literals.time.fractional_seconds=true # # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. # Literal format in specific context: literals.format.. # Currently only 'procedure' is supported and denotes stored procedure parameter. # ex. literals.format.date.procedure={d '%1$04d-%2$02d-%3$02d'} # 1 parameter (string) literals.format.binary= # 1 parameter (string) literals.format.clob='%s' # colon separated values for TRUE, FALSE and UNKNOWN literals.format.boolean=TRUE:FALSE:NULL # 3 parameters (int year, int month, int day) literals.format.date=to_date ('%1$04d-%2$02d-%3$02d', 'YYYY-MM-DD') # 4 parameters (int hour, int minute, int seconds, string fractional seconds) literals.format.time=to_time ( '%1$02d:%2$02d:%3$02d%4$.10s', 'HH:MI:SS.FF9' ) # 7 parameters (int hour, int minute, int seconds, string fractional seconds, int tz hour, int tz minute, char tz sign) literals.format.time_with_time_zone= # 7 parameters (int year, int month, int day, int hours, int minute, int seconds, string fractional seconds) literals.format.timestamp=to_timestamp( '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s', 'YYYY-MM-DD HH:MI:SS.FF' ) # 10 parameters (int year, int month, int day, int hours, int minute, int seconds, string fractional seconds, int tz hour, int tz minute, char tz sign) literals.format.timestamp_with_time_zone=to_timestamp_tz( '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d', 'YYYY-MM-DD HH:MI:SS.FF9TZH:TZM') # 3 parameters (int day, int leading precision, char sign) literals.format.interval_day= # 4 parameters (int day, int hour, int leading precision, char sign) literals.format.interval_day_to_hour= # 5 parameters (int day, int hour, int minute, int leading precision, char sign) literals.format.interval_day_to_minute= # 8 parameters (int day, int hour, int minute, int seconds, string fractional seconds, int leading precision, int fractional precision, char sign) literals.format.interval_day_to_second= # 3 parameters (int hour, int leading precision, char sign) literals.format.interval_hour= # 4 parameters (int hour, int minute, int leading precision, char sign) literals.format.interval_hour_to_minute= # 7 parameters (int hour, int minute, int seconds, string fractional seconds, int leading precision, int fractional precision, char sign) literals.format.interval_hour_to_second= # 3 parameters (int minute, int leading precision, char sign) literals.format.interval_minute= # 6 parameters (int minute, int seconds, string fractional seconds, int leading precision, int fractional precision, char sign) literals.format.interval_minute_to_second= # 5 parameters (int seconds, string fractional seconds, int leading precision, int fractional precision, char sign) literals.format.interval_second= # 3 parameters (int year, int leading precision, char sign) literals.format.interval_year= # 4 parameters (int year, int month, int leading precision, char sign) literals.format.interval_year_to_month= # 3 parameters (int month, int leading precision, char sign) literals.format.interval_month= # 1 parameter (string) literals.format.decimal=%s # 1 parameter (string) literals.format.char='%s' # 1 parameter (string) literals.format.nchar= # 1 parameter (string) literals.format.varchar='%s' # 1 parameter (string) literals.format.nvarchar= # # Data types. # dataType.binary=false dataType.blob=false dataType.clob=false dataType.boolean=true dataType.date=true dataType.time=true dataType.time_with_time_zone=true dataType.timestamp=true dataType.timestamp_with_time_zone=true dataType.interval_day=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute=false dataType.interval_minute_to_second=false dataType.interval_second=false dataType.interval_year=false dataType.interval_year_to_month=false dataType.interval_month=false dataType.smallint=false dataType.integer=false dataType.long=false dataType.float=true dataType.double=true dataType.decimal=true dataType.char=false dataType.nchar=false dataType.varchar=true dataType.nvarchar=false dataType.xml=false dataType.period=false dataType.array=false dataType.struct=false dataType.map=false dataType.json=false dataType.datalink=false # # dataType.comparable # Used to indicate that some data types that are comparable locally may not # be supported by the DB. # #e.g. dataType.comparable[varchar,nvarchar]=false # # dataType.promotion # Used to indicate what direction the promotion needs to occur # -> these properties are not symetrical # #e.g. dataType.promotion[char,nvarchar]=true # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence # collation.sequence.sql= # # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. # database.charset.sql=