# Licensed Materials - Property of IBM # IBM Cognos Products: OQP # (C) Copyright IBM Corp. 2013, 2020 # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp. # # Delimiters # delimiters.commentBegin=/* delimiters.commentEnd=*/ # delimiters.catalogDelimiter= # delimiters.schemaDelimiter= # delimiters.tableDelimiter= # delimiters.columnDelimiter= # delimiters.identifierQuoteString= # delimiters.searchStringEscape= # delimiters.catalogSeparator= # # Keywords # keywords.columnAlias=AS # # Limits # # Normally these values would be derived from the JDBC driver DatabaseMetadata # limits.maxBinaryLiteralLength= # limits.maxCharLiteralLength= # limits.maxColumnNameLength= # limits.maxColumnsInGroupby= # limits.maxColumnsInIndex= # limits.maxColumnsInOrderBy= # limits.maxColumnsInSelect= # limits.maxColumnsInTable= # limits.maxConnections= # limits.maxCursorNameLength= # limits.maxIndexLength= # limits.maxSchemaNameLength= # limits.maxProcedureNameLength= # limits.maxCatalogNameLength= # limits.maxRowSize= # limits.maxStatementLength= limits.maxStatements=1 # limits.maxTableNameLength= # limits.maxTablesInSelect= # limits.maxUserNameLength= # limits.defaultTransactionIsolation= # limits.maxLengthInClause # # General # # # Null ordering # general.nullsAreSortedAtEnd=false general.nullsAreSortedAtStart=false general.nullsAreSortedHigh=false general.nullsAreSortedLow=true general.nullsOrdering=false general.nullsOrderingInWindowSpecification=true # # Override sampling policy with a different one. # 1. tablesample accepting values such as BERNOULLI or SYSTEM # 2. rowsample accepting values such as NTH or RANDOM # sampling.tablesample= sampling.rowsample=RANDOM # # Various # supports.columnAliasing=true supports.tableCorrelationNames=true supports.expressionsInOrderBy=true supports.orderByAlias=true supports.orderByName=true supports.orderByOrdinal=true supports.expressionsInINPredicate=true supports.likeEscapeClause=true supports.fullOuterJoins=true supports.outerJoins=true supports.subqueriesInComparisons=true supports.subqueriesInExists=true supports.subqueriesInIns=true supports.subqueriesInQuantifieds=true supports.subqueriesInCase=true supports.subqueriesInAggregate=false supports.correlatedSubqueries=true supports.scalarSubqueries=true supports.withClauseInDerivedTable=false supports.nestedWithClause=true supports.integerDivision=false supports.nestedOlap=false supports.derivedColumnLists=true supports.blobsInGroupBy=false supports.blobsInOrderBy=false supports.emptyStringIsNull=false supports.expressionsInGroupBy=true supports.duplicateColumnsInSelectList=true supports.expressionsInOrderBy=true supports.aliasInOrderByExpression=false supports.orderByUnrelated=true supports.groupByUnrelated=false supports.nonStandardDatetimeComparison=false supports.hints=false supports.callProcedureInDerivedTable=false supports.join.full.distinctJoins=true supports.join.subqueriesInOnClause=false #casting with formatting pattern support supports.formatters.string_to_date=false supports.formatters.string_to_time=false supports.formatters.string_to_time_with_time_zone=false supports.formatters.string_to_timestamp=false supports.formatters.string_to_timestamp_with_time_zone=false # # Performance properties (force certain transformations to be applied). # performance.convertGroupByToDistinct=false performance.convertDistinctToGroupBy=false performance.convertHavingToWhere=false performance.transitiveClosure=false performance.predicatePushdown=false performance.semiJoin=false # # Command. # commands.Select=SELECT commands.Call= # # Tables. # tables.joined=true tables.derived=true tables.lateral.derived=false # # Constructors. # constructors.table=false constructors.row=false constructors.array=false constructors.period=false constructors.map=false # # Constructors - context overrides. # constructors.row.simpleCase=false constructors.row.between=false # # Clauses. # clauses.From=FROM clauses.Where=WHERE clauses.GroupBy=GROUP BY clauses.Having=HAVING clauses.With=WITH clauses.WithRecursive= clauses.OrderBy=ORDER BY clauses.Distinct=DISTINCT clauses.Top=LIMIT %1$s clauses.At= clauses.Window= clauses.TableSampleSystem= clauses.TableSampleBernoulli= clauses.ForSystemTimeAsOf= clauses.ForSystemTimeFrom= clauses.ForSystemTimeBetween= # # Joins. # joins.Cross=%1$s CROSS JOIN %2$s joins.Inner=%1$s INNER JOIN %2$s ON %3$s joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s joins.RightNested=%1$s # # Set operators. # operators.set.Union=%1$s UNION %2$s operators.set.Union.all=%1$s UNION ALL %2$s operators.set.Intersect=%1$s INTERSECT %2$s operators.set.Intersect.all= operators.set.Except=%1$s EXCEPT %2$s operators.set.Except.all= # # Logical operators. # operators.logical.And=%1$s AND %2$s operators.logical.Or=%1$s OR %2$s operators.logical.Not=NOT ( %1$s ) operators.logical.Is=%1$s IS %2$s operators.logical.IsNot=%1$s IS NOT %2$s # # Arithmetic and Character operators # operators.arithmetic.Add[any,any]=%1$s + %2$s operators.arithmetic.Subtract[any,any]=%1$s - %2$s operators.arithmetic.Subtract[any,datetime]= operators.arithmetic.Multiply[any,any]=%1$s * %2$s operators.arithmetic.Divide[any,any]=%1$s / %2$s operators.arithmetic.UnaryPlus[any]=+%1$s operators.arithmetic.UnaryPlus[interval_day_time]= operators.arithmetic.UnaryPlus[interval_year_month]= operators.arithmetic.Negate[any]=-%1$s operators.arithmetic.Concat[any,any]=(%1$s || %2$s) # # Group By Operators # operators.groupBy.Rollup= operators.groupBy.Cube= operators.groupBy.GroupingSets= # # Comparison predicates. # predicates.comparison.Equals[any,any]=%1$s = %2$s predicates.comparison.Equals[time_with_time_zone,time_with_time_zone]= predicates.comparison.Equals[timestamp_with_time_zone,timestamp_with_time_zone]= predicates.comparison.GreaterThan[any,any]=%1$s > %2$s predicates.comparison.GreaterThan[time_with_time_zone,time_with_time_zone]= predicates.comparison.GreaterThan[timestamp_with_time_zone,timestamp_with_time_zone]= predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s predicates.comparison.GreaterThanOrEquals[time_with_time_zone,time_with_time_zone]= predicates.comparison.GreaterThanOrEquals[timestamp_with_time_zone,timestamp_with_time_zone]= predicates.comparison.LessThan[any,any]=%1$s < %2$s predicates.comparison.LessThan[time_with_time_zone,time_with_time_zone]= predicates.comparison.LessThan[timestamp_with_time_zone,timestamp_with_time_zone]= predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s predicates.comparison.LessThanOrEquals[time_with_time_zone,time_with_time_zone]= predicates.comparison.LessThanOrEquals[timestamp_with_time_zone,timestamp_with_time_zone]= predicates.comparison.NotEquals[any,any]=%1$s <> %2$s predicates.comparison.NotEquals[time_with_time_zone,time_with_time_zone]= predicates.comparison.NotEquals[timestamp_with_time_zone,timestamp_with_time_zone]= # # Various predicates. # predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s predicates.In[any,any]=%1$s IN ( %2$s ) predicates.Overlaps[any,any,any,any]=(%1$s, %2$s) OVERLAPS (%3$s, %4$s) predicates.IsNull=%1$s IS NULL predicates.IsNotNull=%1$s IS NOT NULL predicates.Like=%1$s LIKE %2$s predicates.Like.escape=%1$s LIKE %2$s ESCAPE %3$s predicates.LikeRegex= predicates.LikeRegex.flag= predicates.Similar= predicates.Similar.escape= predicates.Exists=EXISTS %1$s predicates.All=ALL %1$s predicates.Any=ANY %1$s predicates.Some=SOME %1$s predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL) # # Period predicates. # predicates.PeriodOverlaps[any,any]= predicates.PeriodEquals[any,any]= predicates.PeriodContains[any,any]= predicates.PeriodPrecedes[any,any]= predicates.PeriodSucceeds[any,any]= predicates.PeriodImmediatelyPrecedes[any,any]= predicates.PeriodImmediatelySucceeds[any,any]= # # Expressions. # expressions.SimpleCase=CASE expressions.SearchedCase=CASE expressions.NullIf=NULLIF(%1$s, %2$s) expressions.Coalesce=COALESCE(%1$s) # # Cast expression. # expressions.Cast[any,any]=CAST(%1$s AS %2$s) expressions.Cast[any,time_with_time_zone]= expressions.Cast[any,timestamp_with_time_zone]= expressions.Cast[any,interval_year_month]= expressions.Cast[any,interval_day_time]= expressions.Cast[integer,interval_year_month]=CAST(%1$s AS %2$s) expressions.Cast[integer,interval_day_time]=CAST(%1$s AS %2$s) # ensure they do not round up to next highest value on cast expressions.Cast[decimal,integer]=CAST(FLOOR(%1$s) AS INTEGER) expressions.Cast[double,integer]=CAST(FLOOR(%1$s) AS INTEGER) expressions.Cast[float,integer]=CAST(FLOOR(%1$s) AS INTEGER) # # Extract expression. # expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s) expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s) expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s) expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s) expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s) expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s) expressions.Extract.TIMEZONE_HOUR[any]=EXTRACT(TIMEZONE_HOUR FROM %1$s) expressions.Extract.TIMEZONE_MINUTE[any]=EXTRACT(TIMEZONE_MINUTE FROM %1$s) # # Trim expression. # expressions.Trim.BOTH[any]=TRIM(BOTH FROM %1$s) expressions.Trim.BOTH[any,any]=TRIM(BOTH %1$s FROM %2$s) expressions.Trim.LEADING[any]=TRIM(LEADING FROM %1$s) expressions.Trim.LEADING[any,any]=TRIM(LEADING %1$s FROM %2$s) expressions.Trim.TRAILING[any]=TRIM(TRAILING FROM %1$s) expressions.Trim.TRAILING[any,any]=TRIM(TRAILING %1$s FROM %2$s) # # Window clause. # olap.Window=OVER(%1$s) olap.PartitionBy=PARTITION BY %1$s olap.OrderBy=ORDER BY %1$s # # Window specification # olap.Window.Specification[POF]=true olap.Window.Specification[PF]=false olap.Window.Specification[OF]=true olap.Window.Specification[PO]=true olap.Window.Specification[P]=true olap.Window.Specification[O]=true olap.Window.Specification[F]=false olap.Window.Specification[]=true # # Olap Distinct # olap.Min.distinct[any]=MIN(DISTINCT %1$s) olap.Max.distinct[any]=MAX(DISTINCT %1$s) olap.Sum.distinct[any]= olap.Avg.distinct[any]= olap.Count.distinct[any]= # # Aggregates. # aggregates.Max[any]=MAX(%1$s) aggregates.Max[time_with_time_zone]= aggregates.Max[boolean]= aggregates.Max[timestamp_with_time_zone]= aggregates.Min[any]=MIN(%1$s) aggregates.Min[time_with_time_zone]= aggregates.Min[boolean]= aggregates.Min[timestamp_with_time_zone]= aggregates.Count[any]=COUNT(%1$s) aggregates.CountStar[]=COUNT(*) aggregates.Sum[any]=SUM(%1$s) aggregates.Avg[any]=AVG(%1$s) aggregates.StdDevPop[any]=STDDEV_POP(%1$s) aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s) aggregates.VarPop[any]=VAR_POP(%1$s) aggregates.VarSamp[any]=VAR_SAMP(%1$s) aggregates.Rank[any,any]= aggregates.DenseRank[any,any]= aggregates.PercentRank[any,any]= aggregates.CumeDistH[any,any]= aggregates.PercentileCont[any,any]= aggregates.PercentileDisc[any,any]= aggregates.Median[any]= aggregates.Grouping[any]= aggregates.XMLAgg= aggregates.ArrayAgg[any]= aggregates.ArrayAgg[any,any]= aggregates.Collect[any]= aggregates.ApproxCountDistinct[any]=APPROXIMATE_COUNT_DISTINCT(%1$s) # # Distinct aggregates # aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s) aggregates.Min.distinct[any]=MIN(DISTINCT %1$s) aggregates.Max.distinct[any]=MAX(DISTINCT %1$s) aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s) aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s) # # Linear regression aggregates # aggregates.Corr[any,any]=CORR(%1$s, %2$s) aggregates.CovarPop[any,any]=COVAR_POP(%1$s, %2$s) aggregates.CovarSamp[any,any]=COVAR_SAMP(%1$s, %2$s) aggregates.RegrAvgX[any,any]=REGR_AVGX(%1$s, %2$s) aggregates.RegrAvgY[any,any]=REGR_AVGY(%1$s, %2$s) aggregates.RegrCount[any,any]=REGR_COUNT(%1$s, %2$s) aggregates.RegrIntercept[any,any]=REGR_INTERCEPT(%1$s, %2$s) aggregates.RegrR2[any,any]=REGR_R2(%1$s, %2$s) aggregates.RegrSlope[any,any]=REGR_SLOPE(%1$s, %2$s) aggregates.RegrSXX[any,any]=REGR_SXX(%1$s, %2$s) aggregates.RegrSXY[any,any]=REGR_SXY(%1$s, %2$s) aggregates.RegrSYY[any,any]=REGR_SYY(%1$s, %2$s) # # JSON aggregates. # aggregates.JSONArrayAgg= aggregates.JSONObjectAgg= # # Table functions # functions.Unnest= # # Character scalar functions # functions.CharLength[any]=CHAR_LENGTH(%1$s) functions.OctetLength[any]=OCTET_LENGTH(%1$s) functions.BitLength[any]=BIT_LENGTH(%1$s) functions.Upper[any]=UPPER(%1$s) functions.Lower[any]=LOWER(%1$s) functions.Substring[any,any]=SUBSTRING(%1$s FROM %2$s) functions.Substring[any,any,any]=SUBSTRING(%1$s FROM %2$s FOR %3$s) functions.Position[any,any]=POSITION(%1$s IN %2$s) functions.Index[any,any]= functions.Ascii[any]= functions.Translate[any,any]= functions.Normalize[any]= functions.Normalize[any,any]= functions.Normalize[any,any,any]= # # Regular expression functions. # functions.SubstringRegex[any,any,nullArg,nullArg,nullArg]=REGEXP_SUBSTR(%2$s,%1$s) functions.SubstringRegex[any,any,any,nullArg,nullArg]=REGEXP_SUBSTR(%2$s,%1$s,%3$s) functions.SubstringRegex[any,any,any,any,nullArg]=REGEXP_SUBSTR(%2$s,%1$s,%3$s,%4$s) functions.SubstringRegex[any,any,nullArg,any,nullArg]= functions.SubstringRegex[any,any,any,any,any]= functions.OccurrencesRegex[any,any,nullArg,nullArg]=REGEXP_COUNT(%2$s,%1$s) functions.OccurrencesRegex[any,any,any,nullArg]=REGEXP_COUNT(%2$s,%1$s,%3$s) functions.OccurrencesRegex[any,any,any,any]= functions.PositionRegex[nullArg,any,any,nullArg,nullArg,nullArg]=REGEXP_INSTR(%3$s,%2$s) functions.PositionRegex[nullArg,any,any,any,nullArg,nullArg]=REGEXP_INSTR(%3$s,%2$s,%4$s) functions.PositionRegex[nullArg,any,any,any,any,nullArg]=REGEXP_INSTR(%3$s,%2$s,%4$s,%5$s) functions.PositionRegex[any,any,any,any,any,any]= # # Numeric scalar functions # functions.Abs[any]=ABS(%1$s) functions.Ceiling[any]=CEILING(%1$s) functions.Exp[any]=EXP(%1$s) functions.Floor[any]=FLOOR(%1$s) functions.Ln[any]=LN(%1$s) functions.Log10[any]=LOG(%1$s) functions.Mod[any,any]=MOD(%1$s, %2$s) functions.Power[any,any]=POWER(%1$s, %2$s) functions.Random[]=RANDOM() functions.Random[any]= functions.Round[any]=ROUND(%1$s) functions.Round[any,any]=ROUND(%1$s, %2$s) functions.Round[any,any,any]= functions.Sign[any]=SIGN(%1$s) functions.Sqrt[any]=SQRT(%1$s) functions.WidthBucket[any,any,any,any]=WIDTH_BUCKET(%1$s, %2$s, %3$s, %4$s) # # Array scalar functions # functions.Cardinality[any]= functions.TrimArray[any,any]= # # Trig Functions # functions.Arccos[any]=ACOS(%1$s) functions.Cos[any]=COS(%1$s) functions.Coshyp[any]= functions.Arcsin[any]=ASIN(%1$s) functions.Sin[any]=SIN(%1$s) functions.Sinhyp[any]= functions.Arctan[any]=ATAN(%1$s) functions.Tan[any]=TAN(%1$s) functions.Tanhyp[any]= # # Olap Functions # olap.Min[any]=MIN(%1$s) olap.Max[any]=MAX(%1$s) olap.Sum[any]=SUM(%1$s) olap.Avg[any]=AVG(%1$s) olap.Count[any]=COUNT(%1$s) olap.CountStar[]=COUNT(*) olap.StdDevSamp[any]=STDDEV_SAMP(%1$s) olap.StdDevPop[any]=STDDEV_POP(%1$s) olap.VarSamp[any]=VAR_SAMP(%1$s) olap.VarPop[any]=VAR_POP(%1$s) olap.Rank[]=RANK() olap.DenseRank[]=DENSE_RANK() olap.PercentRank[]=PERCENT_RANK() olap.CumeDist[]=CUME_DIST() olap.PercentileCont[any,any]=PERCENTILE_CONT(%1$s) WITHIN GROUP (ORDER BY %2$s) olap.PercentileDisc[any,any]=PERCENTILE_DISC(%1$s) WITHIN GROUP (ORDER BY %2$s) olap.Median[any]=MEDIAN(%1$s) olap.RowNumber[]=ROW_NUMBER() olap.FirstValue[any]=FIRST_VALUE(%1$s) olap.LastValue[any]=LAST_VALUE(%1$s) olap.NTile[any]=NTILE(%1$s) olap.Tertile[]= olap.RatioToReport[any]= olap.Difference[any]= olap.Lag[any]=LAG(%1$s) olap.Lag[any,any]=LAG(%1$s, CAST(TRUNC(%2$s) as INTEGER)) olap.Lag[any,any,any]=LAG(%1$s, CAST(TRUNC(%2$s) as INTEGER), %3$s) olap.Lag[any,any,any,any]= olap.Lead[any]=LEAD(%1$s) olap.Lead[any,any]=LEAD(%1$s, CAST(TRUNC(%2$s) as INTEGER)) olap.Lead[any,any,any]=LEAD(%1$s, CAST(TRUNC(%2$s) as INTEGER), %3$s) olap.Lead[any,any,any,any]= olap.NthValue[any,any]=NTH_VALUE(%1$s, %2$s) olap.NthValue[any,any,any]= olap.NthValue[any,any,any,any]= olap.Collect[any]= # # Temporal value expressions # functions.CurrentDate[]=CURRENT_DATE functions.CurrentTime[]= functions.CurrentTime[numeric]= functions.CurrentTimestamp[]=CURRENT_TIMESTAMP functions.CurrentTimestamp[numeric]= functions.LocalTime[]=LOCALTIME functions.LocalTime[numeric]=LOCALTIME(%1$s) functions.LocalTimestamp[]=LOCALTIMESTAMP functions.LocalTimestamp[numeric]=LOCALTIMESTAMP(%1$s) # # XML functions. # functions.XMLAttributes= functions.XMLComment= functions.XMLConcat= functions.XMLDocument= functions.XMLElement= functions.XMLExists= functions.XMLForest= functions.XMLParse= functions.XMLPI= functions.XMLNamespaces= functions.XMLQuery= functions.XMLSerialize= functions.XMLTable= functions.XMLText= functions.XMLTransform= functions.XMLValidate= # # JSON functions. # functions.JSONArray= functions.JSONExists= functions.JSONObject= functions.JSONQuery= functions.JSONTable= functions.JSONValue= # # Business functions. # functions.AddFractionalSeconds[any,any]= functions.AddQuarters[any,any]= functions.AddWeeks[any,any]= functions.AddDays[date,any]=cast(%1$s + (interval '1' day * floor(%2$s)) as date) functions.AddDays[any,any]=(%1$s + (interval '1' day * floor(%2$s))) functions.AddMonths[date,any]=cast(%1$s + (interval '1' month * floor(%2$s)) as date) functions.AddMonths[any,any]=(%1$s + (interval '1' month * floor(%2$s))) functions.AddYears[date,any]=cast(%1$s + (interval '1' year * floor(%2$s)) as date) functions.AddYears[any,any]=(%1$s + (interval '1' year * floor(%2$s))) functions.AddHours[any,any]=(%1$s + (interval '1' hour * floor(%2$s))) functions.AddMinutes[any,any]=(%1$s + (interval '1' minute * floor(%2$s))) functions.AddSeconds[any,any]=(%1$s + (interval '1' second * floor(%2$s))) functions.Age[any]=cast((age_in_years(current_date, %1$s)*10000 + age_in_months(current_date, %1$s) % 12 * 100 + (current_date - (%1$s + age_in_months(current_date, %1$s) * interval '1' month)::date)) as int) functions.DayOfWeek[any,any]=(mod(cast(to_char(%1$s, 'd') as integer) + 6 - %2$s, 7) + 1) functions.DayOfYear[any]=extract('doy' from %1$s) functions.DaysBetween[any,any]=datediff(day, %2$s, %1$s) functions.DaysToEndOfMonth[any]=datediff('dy', %1$s, (%1$s - (extract(day from %1$s) * interval '1' day) + interval '1' month)) functions.FirstOfMonth[timestamp]=(%1$s - (extract(day from %1$s)-1) * interval '1' day) functions.FirstOfMonth[date]=cast((%1$s - (extract(day from %1$s)-1) * interval '1' day) as date) functions.FirstOfMonth[any]= functions.LastOfMonth[timestamp]=(%1$s - (extract(day from %1$s)-1) * interval '1' day + interval '1' month - interval '1' day) functions.LastOfMonth[date]=cast((%1$s - (extract(day from %1$s)-1) * interval '1' day + interval '1' month - interval '1' day) as date) functions.LastOfMonth[any]= functions.MakeTimestamp[any,any,any]=cast(to_timestamp(%1$s || '-' || %2$s || '-' || %3$s,'yyyy-mm-dd') as timestamp without time zone) functions.MonthsBetween[any,any]=datediff(month, %2$s, %1$s) functions.WeekOfYear[any]=extract(week from %1$s) functions.YMDIntBetween[any,any]= functions.YearsBetween[any,any]=age_in_years(%1$s, %2$s) functions.HoursBetween[any,any]=datediff('hour', %1$s, %2$s) functions.MinutesBetween[any,any]=datediff('minute', %1$s, %2$s) functions.SecondsBetween[any,any]=datediff('second', %1$s, %2$s) functions.FractionalSecondsBetween[any,any]= # # Literals # literals.integer=true literals.smallint=true literals.long=true literals.decimal=true literals.float=true literals.double=true literals.char=true literals.nchar=true literals.varchar=true literals.nvarchar=true literals.blob=false literals.clob=false literals.nclob=false literals.date=true literals.time=true literals.timestamp=true # due to issues in Vertica 6.x intervals are disabled literals.interval_day=false literals.interval_day_to_hour=false literals.interval_day_to_minute=false literals.interval_day_to_second=false literals.interval_hour=false literals.interval_hour_to_minute=false literals.interval_hour_to_second=false literals.interval_minute=false literals.interval_minute_to_second=false literals.interval_second=false literals.interval_year=false literals.interval_year_to_month=false literals.interval_month=false literals.time_with_time_zone=false literals.timestamp_with_time_zone=false literals.binary=false literals.boolean=false literals.xml=false literals.distinct=false literals.array=false literals.perioddate=false # Literal format specifications. Formats are compatible with String.format(). # Values for default behaviour are listed. # Only char, temporal and string types can be overridden. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character # 0-padded string representing nanoseconds or empty. literals.format.boolean=TRUE:FALSE:UNKNOWN literals.format.char='%s' literals.format.clob= literals.format.date=DATE '%1$04d-%2$02d-%3$02d' literals.format.interval_day=INTERVAL %3$s'%1$d' DAY literals.format.interval_day_to_hour=INTERVAL %4$s'%1$d %2$d' DAY TO HOUR literals.format.interval_day_to_minute=INTERVAL %5$s'%1$d %2$02d:%3$02d' DAY TO MINUTE literals.format.interval_day_to_second=INTERVAL %8$s'%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY TO SECOND literals.format.interval_hour=INTERVAL %3$s'%1$d' HOUR literals.format.interval_hour_to_minute=INTERVAL %4$s'%1$02d:%2$02d' HOUR TO MINUTE literals.format.interval_hour_to_second=INTERVAL %7$s'%1$02d:%2$02d:%3$02d%4$.10s' HOUR TO SECOND literals.format.interval_minute=INTERVAL %3$s'%1$d' MINUTE literals.format.interval_minute_to_second=INTERVAL %6$s'%1$02d:%2$02d%3$.10s' MINUTE TO SECOND literals.format.interval_month=INTERVAL %3$s'%1$d' MONTH literals.format.interval_second=INTERVAL %5$s'%1$d%2$.10s' SECOND literals.format.interval_year=INTERVAL %3$s'%1$d' YEAR literals.format.interval_year_to_month=INTERVAL %4$s'%1$d-%2$d' YEAR TO MONTH literals.format.nchar='%s' literals.format.nvarchar='%s' literals.format.time=time '%1$02d:%2$02d:%3$02d%4$.10s' literals.format.time_with_time_zone=time '%1$02d:%2$02d:%2$02d%4$.4s%7$c%5$02d:%6$02d' literals.format.timestamp=timestamp '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.4s' literals.format.timestamp_with_time_zone=timestamp '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.4s%10$c%8$02d:%9$02d' literals.format.varchar='%s' # # DataTypes # dataType.smallint=true dataType.integer=true dataType.long=true dataType.decimal=true dataType.float=true dataType.double=true dataType.char=true dataType.nchar=false dataType.varchar=true dataType.nvarchar=false dataType.clob=false dataType.blob=false dataType.date=true dataType.time=true dataType.time_with_time_zone=false dataType.timestamp=true dataType.timestamp_with_time_zone=false #due to Vertica 6.x issues support for intervals will be disabled dataType.interval_year=false dataType.interval_month=false dataType.interval_year_to_month=false dataType.interval_day=false dataType.interval_hour=false dataType.interval_minute=false dataType.interval_second=false dataType.interval_day_to_hour=false dataType.interval_day_to_minute=false dataType.interval_day_to_second=false dataType.interval_hour_to_minute=false dataType.interval_hour_to_second=false dataType.interval_minute_to_second=false dataType.boolean=true dataType.binary=false dataType.xml=false dataType.period=false dataType.array=false dataType.struct=false dataType.map=false dataType.json=false # # Collation # # Collation Sequence SQL (SQL statement for retrieving the collation sequence) # This statement returns a single row and single column containing the collation sequence collation.sequence.sql= # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder. database.charset.sql= # # dataType.comparable # # Used to indicate that some data types that are comparable locally may not by the database # e.g. dataType.comparable[varchar,nvarchar]=false # # dataType.promotion # # Used to indicate what direction the promotion needs to occur # -> these properties are not symetrical # e.g. dataType.promotion[char,nvarchar]=true