123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836 |
- # Licensed Materials - Property of IBM
- # IBM Cognos Products: OQP
- # (C) Copyright IBM Corp. 2005, 2020
- # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
- #
- # Delimiters
- #
- # While a vendor may parse a statement with comments it may strip them out and the server not see them
- delimiters.commentBegin=/*
- delimiters.commentEnd=*/
- #
- # Various limits.
- #
- limits.castClobToVarcharMaxSize=5000
- #
- # Keywords
- #
- keywords.columnAlias=AS
- #
- # General
- #
- #
- # Null ordering
- #
- # No support is provided for vendors who change how nulls sort based on data type.
- general.nullsAreSortedHigh=false
- general.nullsAreSortedLow=true
- #
- # Override sampling policy with a different one.
- # 1. tablesample accepting values such as BERNOULLI or SYSTEM
- # 2. rowsample accepting values such as NTH or RANDOM
- #
- sampling.tablesample=
- sampling.rowsample=RANDOM
- #
- # Various
- #
- supports.columnAliasing=true
- supports.tableCorrelationNames=true
- supports.expressionsInOrderBy=true
- supports.aliasInOrderByExpression=true
- supports.orderByName=true
- supports.orderByOrdinal=true
- supports.expressionsInINPredicate=true
- supports.likeEscapeClause=true
- supports.fullOuterJoins=true
- supports.outerJoins=true
- # Subqueries not supported in Group-by
- # Subquery column alias not supported
- supports.subqueriesInComparisons=true
- supports.subqueriesInExists=true
- supports.subqueriesInIns=true
- supports.subqueriesInQuantifieds=true
- supports.subqueriesInCase=true
- supports.correlatedSubqueries=true
- supports.scalarSubqueries=true
- supports.withClauseInDerivedTable=false
- supports.nestedWithClause=false
- supports.recursiveWithClause=false
- # Currently, SAP hana returns 1/2 as decimal(34,0) which is same as integer. Therefore, the switch should set to "true"
- supports.integerDivision=true
- supports.nestedOlap=false
- supports.derivedColumnLists=false
- # Does not allow grouping on non project column
- supports.blobsInGroupBy=false
- supports.blobsInOrderBy=false
- supports.emptyStringIsNull=true
- supports.expressionsInGroupBy=true
- supports.constantsInWindows=false
- supports.callProcedureInDerivedTable=false
- supports.join.subqueriesInOnClause=false
- supports.hanaInputParameters=true
- #casting with formatting pattern support
- supports.formatters.string_to_date=false
- supports.formatters.string_to_time=false
- supports.formatters.string_to_time_with_time_zone=false
- supports.formatters.string_to_timestamp=false
- supports.formatters.string_to_timestamp_with_time_zone=false
- #
- # Grouping query optimization
- #
- # If the RDBMS has costing/execution issues with group by or distinct consider these transforms
- performance.convertGroupByToDistinct=false
- performance.convertDistinctToGroupBy=false
- # V5 master-detail optimization when allRows optimization is specified
- v5.master-detail.transform=false
- #
- # Commands
- #
- commands.Select=SELECT
- commands.Call=CALL
- #
- # Tables
- #
- tables.joined=true
- tables.derived=true
- tables.lateral.derived=false
- #
- # Constructors
- #
- constructors.table=false
- constructors.row=true
- constructors.array=false
- constructors.period=false
- #
- # Constructors - context overrides.
- #
- constructors.row.between=false
- constructors.row.comparison=true
- constructors.row.in=true
- constructors.row.isDistinctFrom=false
- constructors.row.simpleCase=false
- #
- # Clauses
- #
- clauses.From=FROM
- clauses.Where=WHERE
- clauses.GroupBy=GROUP BY
- clauses.Having=HAVING
- clauses.With=WITH
- clauses.WithRecursive=
- clauses.OrderBy=ORDER BY
- clauses.Distinct=DISTINCT
- clauses.Top= TOP %1$s
- clauses.Top.Position=top.distinct
- clauses.At=
- clauses.Window=
- clauses.TableSampleSystem=
- clauses.TableSampleBernoulli=
- #
- # Joins
- #
- joins.Cross=%1$s CROSS JOIN %2$s
- joins.Inner=%1$s INNER JOIN %2$s ON %3$s
- joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s
- joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s
- joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s
- #
- # Set Operators
- #
- # One or more set operations does not follow ISO data type combination rules. Can effect set operations, CASE, COALESCE...
- operators.set.Union=%1$s UNION %2$s
- operators.set.Union.all=%1$s UNION ALL %2$s
- operators.set.Intersect=%1$s INTERSECT %2$s
- operators.set.Intersect.all=
- operators.set.Except=%1$s EXCEPT %2$s
- operators.set.Except.all=
- #
- # Logical Operators
- #
- operators.logical.And=%1$s AND %2$s
- operators.logical.Or=%1$s OR %2$s
- operators.logical.Not=NOT ( %1$s )
- operators.logical.Is=
- operators.logical.IsNot=
- #
- # Arithmetic and Character operators
- #
- #SAP HANA connot support date - date
- operators.arithmetic.Subtract[date,date]=DAYS_BETWEEN(%2$s, %1$s)
- operators.arithmetic.Subtract[date,any]=
- operators.arithmetic.Subtract[timestamp,any]=
- operators.arithmetic.Subtract[time,any]=
- #OSS 0001101325 2012
- operators.arithmetic.Divide[integer,integer]=
- operators.arithmetic.Divide[integer,smallint]=
- operators.arithmetic.Divide[integer,long]=
- operators.arithmetic.Divide[smallint,smallint]=
- operators.arithmetic.Divide[smallint,integer]=
- operators.arithmetic.Divide[smallint,long]=
- operators.arithmetic.Divide[long,smallint]=
- operators.arithmetic.Divide[long,integer]=
- operators.arithmetic.Divide[long,long]=
- #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
- operators.arithmetic.Concat[char,any]=
- operators.arithmetic.Concat[nchar,any]=
- operators.arithmetic.Concat[any,char]=
- operators.arithmetic.Concat[any,nchar]=
- operators.arithmetic.Concat[blob,any]=
- operators.arithmetic.Concat[any,blob]=
- operators.arithmetic.Concat[any,any]=%1$s || %2$s
- #
- # Grouping Operators
- #
- operators.groupBy.Rollup=ROLLUP
- operators.groupBy.Cube=CUBE
- operators.groupBy.GroupingSets=GROUPING SETS
- #
- # Comparison Predicates
- #
- predicates.comparison.Equals[clob,any]=
- predicates.comparison.Equals[any,clob]=
- predicates.comparison.Equals[blob,any]=
- predicates.comparison.Equals[any,blob]=
- predicates.comparison.GreaterThan[clob,any]=
- predicates.comparison.GreaterThan[any,clob]=
- predicates.comparison.GreaterThan[blob,any]=
- predicates.comparison.GreaterThan[any,blob]=
- predicates.comparison.GreaterThanOrEquals[clob,any]=
- predicates.comparison.GreaterThanOrEquals[any,clob]=
- predicates.comparison.GreaterThanOrEquals[blob,any]=
- predicates.comparison.GreaterThanOrEquals[any,blob]=
- predicates.comparison.LessThan[clob,any]=
- predicates.comparison.LessThan[any,clob]=
- predicates.comparison.LessThan[blob,any]=
- predicates.comparison.LessThan[any,blob]=
- predicates.comparison.LessThanOrEquals[clob,any]=
- predicates.comparison.LessThanOrEquals[any,clob]=
- predicates.comparison.LessThanOrEquals[blob,any]=
- predicates.comparison.LessThanOrEquals[any,blob]=
- predicates.comparison.NotEquals[clob,any]=
- predicates.comparison.NotEquals[any,clob]=
- predicates.comparison.NotEquals[blob,any]=
- predicates.comparison.NotEquals[any,blob]=
- #
- # Predicates
- #
- predicates.In[any,any]=%1$s IN ( %2$s )
- predicates.In[clob,any]=
- predicates.In[any,clob]=
- predicates.Overlaps[any,any,any,any]=
- predicates.LikeRegex=
- predicates.LikeRegex.flag=
- predicates.Similar.escape=
- predicates.Similar=
- predicates.Similar.escape=
- predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
- predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
- #
- # Period predicates.
- #
- predicates.PeriodOverlaps[any,any]=
- predicates.PeriodEquals[any,any]=
- predicates.PeriodContains[any,any]=
- predicates.PeriodPrecedes[any,any]=
- predicates.PeriodSucceeds[any,any]=
- predicates.PeriodImmediatelyPrecedes[any,any]=
- predicates.PeriodImmediatelySucceeds[any,any]=
- #
- # Conditional expressions
- #
- # One or more case operations does not follow ISO type rules.
- expressions.SimpleCase=CASE
- #expressions.SearchedCase.compatibleResults=false
- expressions.Coalesce=COALESCE(%1$s)
- expressions.NullIf=NULLIF(%1$s, %2$s)
- #
- # Cast
- #
- # OSS: 0000491475 2012
- expressions.Cast[any,float]=TO_REAL(%1$s)
- #OSS: 0000491530 2012
- #SQL standard page 213 using respective values in an execution of CURRENT_DATE
- expressions.Cast[time,timestamp]=TO_TIMESTAMP(CONCAT(CONCAT(current_date,' '), %1$s) )
- expressions.Cast[date,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD')
- # turn off cast to char/nchar, because it return varchar/nvarchar, when concat for date+time generated from transfermation ConvertDatePlusTimeToCompatibleSQL, it will be failed
- # failed testcase testConvertDatePlusTimeToCompatibleSQL
- expressions.Cast[any,nchar]=
- expressions.Cast[any,char]=
- expressions.Cast[xml,any]=
- expressions.Cast[clob,any]=
- expressions.Cast[any,xml]=
- expressions.Cast[decimal,nvarchar]=
- expressions.Cast[decimal,varchar]=
- # Minimum number of arguments for Coalesce function.
- expressions.Coalesce.minArgs=2
- #
- # Extract
- #
- expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s)
- expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s)
- expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s)
- expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s)
- expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s)
- #OSS: 0001070313 2012
- #SAP HANA return decimal(34,0) and our RQE regard it as integer and automatically round it or cast it to integer.
- expressions.Extract.SECOND[timestamp]=TO_DECIMAL(EXTRACT(SECOND FROM %1$s),11,9)
- expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s)
- expressions.Extract.TIMEZONE_HOUR[any]=
- expressions.Extract.TIMEZONE_MINUTE[any]=
- expressions.Extract.EPOCH[any]=
- #
- # Trim
- #
- #functional support;
- expressions.Trim.BOTH[char]=
- expressions.Trim.LEADING[char]=
- expressions.Trim.TRAILING[char]=
- expressions.Trim.BOTH[any,char]=
- expressions.Trim.LEADING[any,char]=
- expressions.Trim.TRAILING[any,char]=
- xpressions.Trim.BOTH[nchar]=
- expressions.Trim.LEADING[nchar]=
- expressions.Trim.TRAILING[nchar]=
- expressions.Trim.BOTH[any,nchar]=
- expressions.Trim.LEADING[any,nchar]=
- expressions.Trim.TRAILING[any,nchar]=
- expressions.Trim.BOTH[blob]=
- expressions.Trim.LEADING[blob]=
- expressions.Trim.TRAILING[blob]=
- expressions.Trim.BOTH[any,blob]=
- expressions.Trim.LEADING[any,blob]=
- expressions.Trim.TRAILING[any,blob]=
- expressions.Trim.BOTH[any]=TRIM(%1$s)
- expressions.Trim.LEADING[any]=LTRIM(%1$s)
- expressions.Trim.TRAILING[any]=RTRIM(%1$s)
- expressions.Trim.BOTH[any,any]=RTRIM(LTRIM(%2$s,%1$s),%1$s)
- expressions.Trim.LEADING[any,any]=LTRIM(%2$s,%1$s)
- expressions.Trim.TRAILING[any,any]=RTRIM(%2$s,%1$s)
- #
- # Window clause
- #
- # Lack of window ordering impacts many aggregates being pushed
- # Unable to specify a literal in window ordering
- # Unable to specify ordering in a window
- general.nullsOrderingInWindowSpecification=true
- #
- # Window specification
- #
- olap.Window.Specification[POF]=false
- olap.Window.Specification[PF]=false
- olap.Window.Specification[OF]=true
- olap.Window.Specification[PO]=true
- olap.Window.Specification[P]=true
- olap.Window.Specification[O]=true
- olap.Window.Specification[F]=false
- olap.Window.Specification[]=true
- #
- # Olap Distinct
- #
- olap.Min.distinct[any]=
- olap.Max.distinct[any]=
- olap.Sum.distinct[any]=
- olap.Avg.distinct[any]=
- olap.Count.distinct[any]=
- #
- # Aggregates
- #
- # OSS 0000481944 AVG returns precsion=34 SCALE=0. Cast the result to double.
- aggregates.Avg[any]=CAST(AVG(%1$s) as DOUBLE)
- aggregates.Max[blob]=
- aggregates.Max[any]=MAX(%1$s)
- aggregates.Min[blob]=
- aggregates.Min[any]=MIN(%1$s)
- aggregates.Count[any]=COUNT(%1$s)
- aggregates.Count[clob]=sum( case when %1$s is not null then 1 else 0 end)
- aggregates.Count[blob]=sum( case when %1$s is not null then 1 else 0 end)
- aggregates.CountStar[]=COUNT(*)
- aggregates.Sum[any]=SUM(%1$s)
- aggregates.StdDevPop[any]=
- aggregates.StdDevSamp[any]=STDDEV(%1$s)
- aggregates.VarPop[any]=
- aggregates.VarSamp[any]=VAR(%1$s)
- aggregates.Grouping[any]=
- aggregates.XMLAgg[any]=
- aggregates.Rank[any,any]=
- aggregates.DenseRank[any,any]=
- aggregates.PercentRank[any,any]=
- aggregates.CumeDistH[any,any]=
- aggregates.PercentileCont[any,any]=
- aggregates.PercentileDisc[any,any]=
- aggregates.ArrayAgg[any]=
- aggregates.ArrayAgg[any,any]=
- aggregates.Collect[any]=
- aggregates.Median[any]=
- aggregates.ApproxCountDistinct[any]=
- #
- # Distinct aggregates
- #
- aggregates.Avg.distinct[any]=
- aggregates.Count.distinct[blob]=
- #
- # Linear regression aggregates
- #
- aggregates.Corr[any,any]=
- aggregates.CovarPop[any,any]=
- aggregates.CovarSamp[any,any]=
- aggregates.RegrAvgX[any,any]=
- aggregates.RegrAvgY[any,any]=
- aggregates.RegrCount[any,any]=
- aggregates.RegrIntercept[any,any]=
- aggregates.RegrR2[any,any]=
- aggregates.RegrSlope[any,any]=
- aggregates.RegrSXX[any,any]=
- aggregates.RegrSXY[any,any]=
- aggregates.RegrSYY[any,any]=
- #
- # JSON aggregates.
- #
- aggregates.JSONArrayAgg=
- aggregates.JSONObjectAgg=
- #
- # Character scalar functions
- #
- functions.CharLength[any]=LENGTH(%1$s)
- functions.BitLength[any]=
- functions.OctetLength[any]=
- #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
- # Hana 2 is returning correct precisions but return char as varchar and nchar as nvarchar
- functions.Upper[char]=
- functions.Upper[nchar]=
- functions.Upper[blob]=
- #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
- # Hana 2 is returning correct precisions but return char as varchar and nchar as nvarchar
- functions.Lower[char]=
- functions.Lower[nchar]=
- functions.Lower[blob]=
- #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
- functions.Substring[any,any]=SUBSTRING(%1$s,%2$s)
- functions.Substring[any,any,any]=SUBSTRING(%1$s, %2$s, %3$s)
- #Substring function to negative START value to parse the input string from its rightmost end.
- functions.SubstringR[any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s ) - ABS(%2$s) + 1))) ELSE (SUBSTRING(%1$s, %2$s)) END
- functions.SubstringR[any,any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s ) - ABS(%2$s) + 1), %3$s)) ELSE (SUBSTRING(%1$s, %2$s, %3$s)) END
- functions.Position[any,any]= LOCATE(%2$s,%1$s )
- functions.Index[blob,any]=
- functions.Index[any,blob]=
- functions.Index[any,any]= LOCATE(%1$s ,%2$s)
- functions.Ascii[any]=
- functions.Translate[any,any]=
- functions.Normalize[any]=
- functions.Normalize[any,any]=
- functions.Normalize[any,any,any]=
- #
- # Regular expression functions.
- #
- functions.SubstringRegex[any,any,any,any,any]=SUBSTR_REGEXPR(%1$s@5[ FLAG %5$s] IN %2$s@3[ FROM %3$s]@4[ OCCURRENCE %4$s])
- functions.OccurrencesRegex[any,any,any,any]=OCCURRENCES_REGEXPR(%1$s@4[ FLAG %4$s] IN %2$s@3[ FROM %3$s])
- functions.PositionRegex[any,any,any,any,any,any]=LOCATE_REGEXPR(@1[%1$s ]%2$s@6[ FLAG %6$s] IN %3$s@4[ FROM %4$s]@5[ OCCURRENCE %5$s])
- #
- # Numeric scalar functions
- #
- functions.Abs[interval_day_time]=
- functions.Abs[interval_year_month]=
- functions.Ceiling[any]=CEIL(%1$s)
- #EXP returns double without decimal(34,0) issue
- functions.Exp[any]=EXP(%1$s)
- # OSS 0000481944 return precsion=34
- functions.Floor[decimal]=
- functions.Floor[any]=FLOOR(%1$s)
- functions.Ln[any]=LN(%1$s)
- functions.Log10[any]= LOG(10,%1$s)
- # Mod failed exception cases
- # OSS 0000481944 return precsion=34
- functions.Mod[decimal,any]=
- functions.Mod[any,any]=MOD(%1$s, %2$s)
- functions.Sign[any]=SIGN(%1$s)
- #Sqrt returns double without decimal(34,0) issue
- functions.Sqrt[any]=SQRT(%1$s)
- functions.WidthBucket[any,any,any,any]=
- #power returns double without decimal(34,0) issue
- functions.Power[any,any]=POWER(%1$s, %2$s)
- functions.Random[]=RAND()
- functions.Random[any]=
- functions.Round[any]=ROUND(%1$s)
- #
- # Array scalar functions.
- #
- functions.Cardinality[any]=
- functions.TrimArray[any,any]=
- # OSS 0000481944 return precsion=34 without scaler
- functions.Round[decimal,any]=
- functions.Round[any,any]=ROUND(%1$s, %2$s)
- functions.Round[any,any,any]=
- #
- # Trig Functions
- #
- #
- # Windowed aggregates (SQL/OLAP).
- #
- olap.Max[any]=MAX(%1$s)
- olap.Max[blob]=
- olap.Min[any]=MIN(%1$s)
- olap.Min[blob]=
- olap.Sum[any]=SUM(%1$s)
- olap.Avg[any]=
- olap.Count[any]=COUNT(%1$s)
- olap.Count[blob]=
- olap.CountStar[]=COUNT(*)
- olap.StdDevSamp[any]=
- olap.StdDevPop[any]=
- olap.VarSamp[any]=
- olap.VarPop[any]=
- olap.Rank[]=RANK()
- olap.DenseRank[]=DENSE_RANK()
- olap.PercentRank[]=PERCENT_RANK()
- olap.CumeDist[]=CUME_DIST()
- olap.PercentileCont[any,any]=
- olap.PercentileDisc[any,any]=
- olap.Median[any]=
- olap.RowNumber[]=ROW_NUMBER()
- olap.FirstValue[any]=FIRST_VALUE(%1$s)
- olap.LastValue[any]=LAST_VALUE(%1$s)
- olap.NTile[any]=NTILE(%1$s)
- olap.Tertile[]=
- olap.RatioToReport[any]=
- olap.Difference[any]=
- olap.Lag[any]=LAG(%1$s)
- olap.Lag[any,any]=LAG(%1$s, %2$s)
- olap.Lag[any,any,any]=LAG(%1$s, %2$s, %3$s)
- olap.Lag[any,any,any,any]=
- olap.Lag[blob]=
- olap.Lag[blob,any]=
- olap.Lag[blob,any,any]=
- olap.Lead[any]=LEAD(%1$s)
- olap.Lead[any,any]=LEAD(%1$s, %2$s)
- olap.Lead[any,any,any]=LEAD(%1$s, %2$s, %3$s)
- olap.Lead[any,any,any,any]=
- olap.Lead[blob]=
- olap.Lead[blob,any]=
- olap.Lead[blob,any,any]=
- olap.NthValue[any,any]=
- olap.NthValue[any,any,any]=
- olap.NthValue[any,any,any,any]=
- olap.Collect[any]=
- #
- # Temporal value expressions
- #
- # Note: JDBC does not define fractional seconds for TIME data type.
- functions.CurrentDate[]=CURRENT_DATE
- functions.CurrentTime[]=
- functions.CurrentTime[numeric]=
- functions.CurrentTimestamp[]=
- functions.CurrentTimestamp[numeric]=
- functions.LocalTime[]=CURRENT_TIME
- functions.LocalTimestamp[]=CURRENT_TIMESTAMP
- functions.LocalTime[numeric]=
- functions.LocalTimestamp[numeric]=
- #
- # XML Functions
- #
- functions.XMLAttributes=
- functions.XMLComment=
- functions.XMLConcat=
- functions.XMLDocument=
- functions.XMLElement=
- functions.XMLExists=
- functions.XMLForest=
- functions.XMLParse=
- functions.XMLPI=
- functions.XMLNamespaces=
- functions.XMLQuery=
- functions.XMLSerialize=
- functions.XMLTable=
- functions.XMLText=
- functions.XMLTransform=
- functions.XMLValidate=
- #
- # JSON functions.
- #
- functions.JSONArray=
- functions.JSONExists=
- functions.JSONObject=
- functions.JSONQuery=
- functions.JSONTable=
- functions.JSONValue=
- #
- # Business functions.
- #
- functions.AddFractionalSeconds[any,any]=
- functions.AddSeconds[time,any]=
- functions.AddSeconds[any,any]=add_seconds(%1$s,%2$s)
- functions.AddMinutes[time,any]=
- functions.AddMinutes[any,any]=add_seconds(%1$s,floor(%2$s) * 60)
- functions.AddHours[time,any]=
- functions.AddHours[any,any]=add_seconds(%1$s,floor(%2$s) * 3600)
- functions.AddDays[timestamp,any]=(add_days(%1$s, FLOOR(%2$s)))
- functions.AddDays[date,any]=(add_days(%1$s, FLOOR(%2$s)))
- functions.AddDays[any,any]=
- functions.AddWeeks[timestamp,any]=(add_days(%1$s, FLOOR(%2$s * 7)))
- functions.AddWeeks[date,any]=(add_days(%1$s, FLOOR(%2$s * 7)))
- functions.AddWeeks[any,any]=
- functions.AddMonths[timestamp,any]=(add_months(%1$s, FLOOR(%2$s)))
- functions.AddMonths[date,any]=(add_months(%1$s , floor(%2$s)))
- functions.AddMonths[any,any]=
- functions.AddQuarters[timestamp,any]=(add_months(%1$s, FLOOR(%2$s * 3)))
- functions.AddQuarters[date,any]=(add_months(%1$s , floor(%2$s * 3)))
- functions.AddQuarters[any,any]=
- functions.AddYears[timestamp,any]=(add_years(%1$s , floor(%2$s)))
- functions.AddYears[date,any]=(add_years(%1$s , floor(%2$s)))
- functions.AddYears[any,any]=
- functions.FractionalSecondsBetween[any,any]=
- functions.SecondsBetween[any,any]=
- functions.SecondsBetween[date,date]=SECONDS_BETWEEN(%1$s,%2$s)
- functions.MinutesBetween[any,any]=
- functions.HoursBetween[any,any]=
- functions.DaysBetween[timestamp,timestamp]=DAYS_BETWEEN(TO_DATE(%2$s),TO_DATE(%1$s))
- functions.DaysBetween[date,timestamp]=DAYS_BETWEEN(TO_DATE(%2$s),%1$s)
- functions.DaysBetween[timestamp,date]=DAYS_BETWEEN(%2$s,TO_DATE(%1$s))
- functions.DaysBetween[date,date]=DAYS_BETWEEN(%2$s,%1$s)
- functions.DaysBetween[any,any]=
- functions.WeeksBetween[any,any]=
- functions.MonthsBetween[any,any]=
- functions.QuartersBetween[any,any]=
- functions.YearsBetween[any,any]=
- functions.Age[any]=
- functions.DayOfWeek[any,any]=
- functions.DayOfYear[date]=DAYOFYEAR(%1$s)
- functions.DayOfYear[timestamp]=DAYOFYEAR(%1$s)
- functions.DayOfYear[any]=
- functions.DaysToEndOfMonth[date]=DAYS_BETWEEN(%1$s,LAST_DAY(%1$s))
- functions.DaysToEndOfMonth[any]=
- functions.FirstOfMonth[any]=add_days(%1$s, -dayofmonth(%1$s)+1)
- functions.LastOfMonth[timestamp]=CONCAT(CONCAT(LAST_DAY(%1$s),' '), TO_TIME(%1$s))
- functions.LastOfMonth[any]=LAST_DAY(%1$s)
- functions.MakeTimestamp[any,any,any]=TO_TIMESTAMP( ( LPAD( %1$d, 4, '0' ) || '-' || LPAD( %2$d, 2, '0' ) || '-' || LPAD( %3$d, 2, '0' ) ), 'YYYY-MM-DD' )
- functions.YMDIntBetween[any,any]=
- functions.WeekOfYear[date]=TO_INT(SUBSTRING(ISOWEEK(%1$s),7,2))
- functions.WeekOfYear[timestamp]=TO_INT(SUBSTRING(ISOWEEK(%1$s),7,2))
- functions.WeekOfYear[time]=TO_INT(SUBSTRING(ISOWEEK(CURRENT_DATE),7,2))
- functions.WeekOfYear[any]=
- # Multiple 'vendor' mappings were found first found is active. Select the preferred entry and delete the others.
- # functions.AddDays[any,any]=(add_days(%1s, FLOOR(%2s)))
- # functions.AddMonths[timestamp,any]=(add_months(%1s, FLOOR(%2s)))
- # functions.AddMonths[date,double]=(add_months(%1s , floor(%2s)))
- # functions.AddMonths[date,decimal]=(add_months(%1s, FLOOR(%2s)))
- # functions.AddMonths[date,smallint]=(add_months(%1s , floor(%2s)))
- # functions.AddMonths[date,long]=(add_months(%1s , floor(%2s)))
- # functions.AddMonths[date,float]=(add_months(%1s, FLOOR(%2s)))
- # functions.AddMonths[date,integer]=(add_months(%1s , floor(%2s)))
- # functions.AddYears[timestamp,decimal]=(add_months(%1s , floor(%2s) * 12))
- # functions.AddYears[timestamp,double]=(add_months(%1s , floor(%2s) * 12))
- # functions.AddYears[timestamp,smallint]=(add_months(%1s , floor(%2s) * 12))
- # functions.AddYears[timestamp,long]=(add_months(%1s , floor(%2s) * 12))
- # functions.AddYears[timestamp,float]=(add_years(%1s, FLOOR(%2s)))
- # functions.AddYears[timestamp,integer]=(add_months(%1s , floor(%2s) * 12))
- # functions.AddYears[date,double]=(add_months(%1s , floor(%2s) * 12))
- # functions.AddYears[date,decimal]=(add_years(%1s, FLOOR(%2s)))
- # functions.AddYears[date,smallint]=(add_months(%1s , floor(%2s) * 12))
- # functions.AddYears[date,long]=(add_months(%1s , floor(%2s) * 12))
- # functions.AddYears[date,float]=(add_years(%1s, FLOOR(%2s)))
- # functions.AddYears[date,integer]=(add_months(%1s , floor(%2s) * 12))
- # functions.FirstOfMonth[any,any]=(add_days(add_days(%1s, - dayofmonth(%1s)),1))
- # functions.LastOfMonth[any,any]=(add_days(add_days(%1s, - dayofmonth(%1s)),1))
- # functions.MakeTimestamp[any,any,any]=cast(TO_TIMESTAMP('%1s-%2s-%3s','YYYY-MM-DD') as timestamp)
- # functions.AddHours[any,any]=add_seconds(%1s,floor(%2s) * 3600)
- # functions.AddMinutes[any,any]=add_seconds(%1s,floor(%2s) * 60)
- # functions.AddSeconds[any,any]=add_seconds(%1s,floor(%2s))
- #
- # Literals
- #
- literals.integer=true
- literals.smallint=true
- literals.long=true
- literals.decimal=true
- literals.float=true
- literals.double=true
- literals.char=true
- literals.nchar=true
- literals.varchar=true
- literals.nvarchar=true
- literals.clob=true
- literals.date=true
- literals.time=true
- literals.time_with_time_zone=false
- literals.timestamp=true
- literals.timestamp_with_time_zone=false
- literals.interval_year=false
- literals.interval_month=false
- literals.interval_year_to_month=false
- literals.interval_day=false
- literals.interval_hour=false
- literals.interval_minute=false
- literals.interval_second=false
- literals.interval_day_to_hour=false
- literals.interval_day_to_minute=false
- literals.interval_day_to_second=false
- literals.interval_hour_to_minute=false
- literals.interval_hour_to_second=false
- literals.interval_minute_to_second=false
- literals.binary=true
- literals.boolean=true
- literals.xml=false
- # Literal format specifications. Formats are compatible with String.format().
- # Values for default behaviour are listed.
- # Only char, temporal and string types can be overridden.
- # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
- # 0-padded string representing nanoseconds or empty.
- literals.format.boolean=TRUE:FALSE:UNKNOWN
- literals.format.char='%s'
- literals.format.clob='%s'
- #cannot use this date format, because when running add_days(DATE '2000-12-31', 1), SAP HANA throws Error: SAP DBTech JDBC: [266] (at 7): inconsistent datatype: line 1 col 8 (at pos 7)
- #SQLState: 07006
- #ErrorCode: 266
- #DATE '%1$04d-%2$02d-%3$02d'
- literals.format.date=TO_DATE('%1$04d-%2$02d-%3$02d','YYYY-MM-DD')
- literals.format.interval_day=
- literals.format.interval_day_to_hour=
- literals.format.interval_day_to_minute=
- literals.format.interval_day_to_second=
- literals.format.interval_hour=
- literals.format.interval_hour_to_minute=
- literals.format.interval_hour_to_second=
- literals.format.interval_minute=
- literals.format.interval_minute_to_second=
- literals.format.interval_month=
- literals.format.interval_second=
- literals.format.interval_year=
- literals.format.interval_year_to_month=
- literals.format.nchar=TO_NCHAR('%s')
- literals.format.nvarchar=TO_NVARCHAR('%s')
- literals.format.time=TO_TIME('%1$02d:%2$02d:%3$02d','HH:MI:SS')
- literals.format.time_with_time_zone=
- literals.format.timestamp=TO_TIMESTAMP('%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.4s')
- literals.format.timestamp_with_time_zone=
- literals.format.varchar='%s'
- literals.format.double=TO_DOUBLE('%s')
- #
- # DataTypes
- #
- dataType.smallint=true
- dataType.integer=true
- dataType.long=true
- dataType.decimal=true
- dataType.float=true
- dataType.double=true
- dataType.char=false
- dataType.nchar=false
- dataType.varchar=true
- dataType.nvarchar=true
- dataType.clob=true
- dataType.blob=true
- dataType.date=true
- dataType.time=true
- dataType.time_with_time_zone=false
- dataType.timestamp=true
- dataType.timestamp_with_time_zone=false
- dataType.interval_year=false
- dataType.interval_month=false
- dataType.interval_year_to_month=false
- dataType.interval_day=false
- dataType.interval_hour=false
- dataType.interval_minute=false
- dataType.interval_second=false
- dataType.interval_day_to_hour=false
- dataType.interval_day_to_minute=false
- dataType.interval_day_to_second=false
- dataType.interval_hour_to_minute=false
- dataType.interval_hour_to_second=false
- dataType.interval_minute_to_second=false
- dataType.boolean=false
- dataType.binary=false
- dataType.xml=true
- dataType.period=false
- #
- # Collation
- #
- # Collation Sequence SQL (SQL statement for retrieving the collation sequence)
- # This statement returns a single row and single column containing the collation sequence
- collation.sequence.sql=
- # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data.
- # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder.
- database.charset.sql=
- #
- # dataType.comparable
- #
- # Used to indicate that some data types that are comparable locally may not by the database
- # e.g. dataType.comparable[varchar,nvarchar]=false
- #
- # dataType.promotion
- #
- # Used to indicate what direction the promotion needs to occur
- # <lhs> -> <rhs> these properties are not symetrical
- # e.g. dataType.promotion[char,nvarchar]=true
|