db2.dsn.properties 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596
  1. # Licensed Materials - Property of IBM
  2. # IBM Cognos Products: OQP
  3. # (C) Copyright IBM Corp. 2005, 2021
  4. # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  5. #
  6. # Product information.
  7. #
  8. #
  9. # Delimiters.
  10. #
  11. #
  12. # Keywords.
  13. #
  14. #
  15. # Various limits.
  16. #
  17. limits.castClobToVarcharMaxSize=4096
  18. #
  19. # General settings.
  20. #
  21. general.nullsAreSortedHigh=true
  22. general.nullsOrdering=false
  23. #
  24. # Cursor options - appended to end of generated SELECT statement.
  25. general.cursorOptions=FOR FETCH ONLY
  26. #
  27. # Override sampling policy with a different one.
  28. # 1. tablesample accepting values such as BERNOULLI or SYSTEM
  29. # 2. rowsample accepting values such as NTH or RANDOM
  30. #
  31. sampling.tablesample=
  32. sampling.rowsample=RANDOM
  33. #
  34. # Various features.
  35. #
  36. supports.subqueriesInCase=false
  37. supports.subqueriesInAggregate=false
  38. supports.withClauseInDerivedTable=false
  39. supports.nestedWithClause=false
  40. supports.expressionsInOrderBy=true
  41. supports.aliasInOrderByExpression=false
  42. supports.nestedOlap=false
  43. supports.blobsInGroupBy=false
  44. supports.blobsInOrderBy=false
  45. supports.stitchJoins=false
  46. supports.recursiveWithClause=false
  47. supports.booleanExpressionsInSelectList=false
  48. supports.callProcedureInDerivedTable=false
  49. supports.join.full.distinctJoins=false
  50. supports.join.subqueriesInOnClause=false
  51. #casting with formatting pattern support
  52. supports.formatters.string_to_date=false
  53. supports.formatters.string_to_time=false
  54. supports.formatters.string_to_time_with_time_zone=false
  55. supports.formatters.string_to_timestamp=false
  56. supports.formatters.string_to_timestamp_with_time_zone=false
  57. #
  58. # Grouping query optimization
  59. #
  60. performance.convertGroupByToDistinct=true
  61. #
  62. # Command.
  63. #
  64. #
  65. # Tables.
  66. #
  67. tables.lateral.derived=false
  68. #
  69. # Constructors.
  70. #
  71. constructors.table=false
  72. constructors.array=false
  73. constructors.period=false
  74. #
  75. # Constructors - context overrides.
  76. #
  77. constructors.row.between=false
  78. constructors.row.in=false
  79. constructors.row.isDistinctFrom=false
  80. constructors.row.simpleCase=false
  81. #
  82. # Clauses.
  83. #
  84. clauses.Window=
  85. clauses.WithRecursive=
  86. clauses.TableSampleSystem=
  87. clauses.TableSampleBernoulli=
  88. #
  89. # Joins.
  90. #
  91. #joins.Cross=%2$s CROSS JOIN %1$s
  92. joins.Cross=
  93. #
  94. # Set operators.
  95. #
  96. operators.set.Intersect=
  97. operators.set.Intersect.all=
  98. #
  99. # Logical operators.
  100. #
  101. operators.logical.Is=
  102. operators.logical.IsNot=
  103. #
  104. # Arithmetic operators.
  105. #
  106. operators.arithmetic.Subtract[any,datetime]=
  107. #
  108. # Group By Operators
  109. #
  110. operators.groupBy.Rollup=
  111. operators.groupBy.Cube=
  112. operators.groupBy.GroupingSets=
  113. #
  114. # Comparison predicates.
  115. #
  116. predicates.comparison.LessThan[timestamp,date]=
  117. predicates.comparison.LessThan[date,timestamp]=
  118. predicates.comparison.LessThan[timestamp_with_time_zone,date]=
  119. predicates.comparison.LessThan[date,timestamp_with_time_zone]=
  120. predicates.comparison.LessThan[any,clob]=
  121. predicates.comparison.LessThan[clob,any]=
  122. predicates.comparison.LessThanOrEquals[date,timestamp]=
  123. predicates.comparison.LessThanOrEquals[timestamp,date]=
  124. predicates.comparison.LessThanOrEquals[date,timestamp_with_time_zone]=
  125. predicates.comparison.LessThanOrEquals[timestamp_with_time_zone,date]=
  126. predicates.comparison.LessThanOrEquals[any,clob]=
  127. predicates.comparison.LessThanOrEquals[clob,any]=
  128. predicates.comparison.Equals[date,timestamp]=
  129. predicates.comparison.Equals[timestamp,date]=
  130. predicates.comparison.Equals[date,timestamp_with_time_zone]=
  131. predicates.comparison.Equals[timestamp_with_time_zone,date]=
  132. predicates.comparison.Equals[any,clob]=
  133. predicates.comparison.Equals[clob,any]=
  134. predicates.comparison.NotEquals[date,timestamp]=
  135. predicates.comparison.NotEquals[timestamp,date]=
  136. predicates.comparison.NotEquals[date,timestamp_with_time_zone]=
  137. predicates.comparison.NotEquals[timestamp_with_time_zone,date]=
  138. predicates.comparison.NotEquals[any,clob]=
  139. predicates.comparison.NotEquals[clob,any]=
  140. predicates.comparison.GreaterThan[date,timestamp]=
  141. predicates.comparison.GreaterThan[timestamp,date]=
  142. predicates.comparison.GreaterThan[date,timestamp_with_time_zone]=
  143. predicates.comparison.GreaterThan[timestamp_with_time_zone,date]=
  144. predicates.comparison.GreaterThan[any,clob]=
  145. predicates.comparison.GreaterThan[clob,any]=
  146. predicates.comparison.GreaterThanOrEquals[date,timestamp]=
  147. predicates.comparison.GreaterThanOrEquals[timestamp,date]=
  148. predicates.comparison.GreaterThanOrEquals[date,timestamp_with_time_zone]=
  149. predicates.comparison.GreaterThanOrEquals[timestamp_with_time_zone,date]=
  150. predicates.comparison.GreaterThanOrEquals[any,clob]=
  151. predicates.comparison.GreaterThanOrEquals[clob,any]=
  152. #
  153. # Various predicates.
  154. #
  155. predicates.Overlaps[any,any,any,any]=
  156. predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
  157. predicates.IsDistinctFrom[blob,any]=
  158. predicates.IsDistinctFrom[any,blob]=
  159. predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
  160. predicates.IsNotDistinctFrom[any,blob]=
  161. predicates.IsNotDistinctFrom[blob,any]=
  162. predicates.LikeRegex=
  163. predicates.LikeRegex.flag=
  164. predicates.Similar=
  165. predicates.Similar.escape=
  166. predicates.Between[date,timestamp,any]=
  167. predicates.Between[date,any,timestamp]=
  168. predicates.Between[timestamp,date,any]=
  169. predicates.Between[timestamp,any,date]=
  170. predicates.Between[date,timestamp_with_time_zone,any]=
  171. predicates.Between[date,any,timestamp_with_time_zone]=
  172. predicates.Between[timestamp_with_time_zone,date,any]=
  173. predicates.Between[timestamp_with_time_zone,any,date]=
  174. predicates.In[date,timestamp]=
  175. predicates.In[date,timestamp_with_time_zone]=
  176. predicates.In[timestamp,date]=
  177. predicates.In[timestamp_with_time_zone,date]=
  178. predicates.In[any,clob]=
  179. predicates.In[clob,any]=
  180. #
  181. # Period predicates.
  182. #
  183. predicates.PeriodOverlaps[any,any]=
  184. predicates.PeriodEquals[any,any]=
  185. predicates.PeriodContains[any,any]=
  186. predicates.PeriodPrecedes[any,any]=
  187. predicates.PeriodSucceeds[any,any]=
  188. predicates.PeriodImmediatelyPrecedes[any,any]=
  189. predicates.PeriodImmediatelySucceeds[any,any]=
  190. #
  191. # Expressions.
  192. #
  193. #
  194. # Cast expression.
  195. #
  196. expressions.Cast[date,timestamp]=timestamp(%1$s, '00:00:00')
  197. expressions.Cast[date,timestamp_with_time_zone]=
  198. expressions.Cast[time,timestamp]=timestamp(CURRENT_DATE, %1$s)
  199. expressions.Cast[time,timestamp_with_time_zone]=
  200. expressions.Cast[time,char]=cast(char(%1$s, JIS) as %2$s)
  201. expressions.Cast[time,varchar]=cast(char(%1$s, JIS) as %2$s)
  202. expressions.Cast[timestamp,char]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as CHAR(%3$d))
  203. expressions.Cast[timestamp,varchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d))
  204. expressions.Cast[timestamp_with_time_zone,varchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as VARCHAR(%3$d))
  205. expressions.Cast[timestamp_with_time_zone,char]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as CHAR(%3$d))
  206. expressions.Cast[text,nchar]=
  207. expressions.Cast[text,nvarchar]=
  208. expressions.Cast[time,nchar]=cast(char(%1$s, JIS) as CHAR(%3$d))
  209. expressions.Cast[time,nvarchar]=cast(char(%1$s, JIS) as VARCHAR(%3$d))
  210. expressions.Cast[timestamp,nchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as CHAR(%3$d))
  211. expressions.Cast[timestamp,nvarchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d))
  212. expressions.Cast[timestamp_with_time_zone,nvarchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as VARCHAR(%3$d))
  213. expressions.Cast[timestamp_with_time_zone,nchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as CHAR(%3$d))
  214. expressions.Cast[any,nchar]=cast((%1$s) as CHAR(%3$d))
  215. expressions.Cast[any,nvarchar]=cast((%1$s) as VARCHAR(%3$d))
  216. expressions.Cast[numeric,clob]=cast(cast(%1$s as varchar(64)) as clob)
  217. expressions.Cast[datetime,clob]=cast(cast(%1$s as varchar(38)) as clob)
  218. expressions.Cast[xml,any]=
  219. #DB2/zOs requires space between the precision and scale if set zparm decimal=comma
  220. expressions.Cast[any,decimal]=CAST(%1$s AS DECIMAL(%3$d, %4$d))
  221. expressions.Cast[any,xml]=
  222. # Minimum number of arguments for Coalesce function.
  223. expressions.Coalesce.minArgs=2
  224. #
  225. # Extract expression.
  226. #
  227. expressions.Extract.EPOCH[any]=
  228. #
  229. # Trim expression.
  230. #
  231. expressions.Trim.BOTH[any]=LTRIM(RTRIM(%1$s))
  232. expressions.Trim.LEADING[any]=LTRIM(%1$s)
  233. expressions.Trim.TRAILING[any]=RTRIM(%1$s)
  234. expressions.Trim.BOTH[any,any]=STRIP(%2$s, B, %1$s)
  235. expressions.Trim.LEADING[any,any]=STRIP(%2$s, L, %1$s)
  236. expressions.Trim.TRAILING[any,any]=STRIP(%2$s, T, %1$s)
  237. #
  238. # Windowed aggregates (SQL/OLAP).
  239. #
  240. olap.Count[any]=COUNT_BIG(%1$s)
  241. olap.CountStar[]=COUNT_BIG(*)
  242. olap.Count[clob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END)
  243. olap.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END)
  244. olap.StdDevSamp[any]=
  245. olap.VarSamp[any]=
  246. olap.VarPop[any]=VARIANCE(%1$s)
  247. olap.PercentRank[]=
  248. olap.CumeDist[]=
  249. olap.PercentileCont[any,any]=
  250. olap.PercentileDisc[any,any]=
  251. olap.Median[any]=
  252. olap.NTile[any]=
  253. olap.Tertile[]=
  254. olap.RatioToReport[any]=
  255. olap.Difference[any]=
  256. olap.FirstValue[any]=
  257. olap.LastValue[any]=
  258. olap.Lag[any]=
  259. olap.Lag[any,any]=
  260. olap.Lag[any,any,any]=
  261. olap.Lag[any,any,any,any]=
  262. olap.Lead[any]=
  263. olap.Lead[any,any]=
  264. olap.Lead[any,any,any]=
  265. olap.Lead[any,any,any,any]=
  266. olap.NthValue[any,any]=
  267. olap.NthValue[any,any,any]=
  268. olap.NthValue[any,any,any,any]=
  269. olap.Collect[any]=
  270. #
  271. # Window clause.
  272. #
  273. #
  274. # Window specification
  275. # A list of windows specifications that are supported by the DB
  276. # P = PARTITION BY
  277. # O = ORDER BY
  278. # F = FRAME
  279. #
  280. olap.Window.Specification[F]=false
  281. olap.Window.Specification[PF]=false
  282. #
  283. # Olap (distinct).
  284. #
  285. olap.Max.distinct[any]=
  286. olap.Min.distinct[any]=
  287. olap.Sum.distinct[any]=
  288. olap.Avg.distinct[any]=
  289. olap.Count.distinct[any]=
  290. #
  291. # Aggregates.
  292. #
  293. aggregates.Count[any]=COUNT_BIG(%1$s)
  294. aggregates.CountStar[]=COUNT_BIG(*)
  295. aggregates.Count[clob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END)
  296. aggregates.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END)
  297. aggregates.PercentRank[any,any]=
  298. aggregates.CumeDistH[any,any]=
  299. aggregates.Median[any]=
  300. aggregates.VarSamp[any]=VARIANCE_SAMP(%1$s)
  301. aggregates.VarPop[any]=VARIANCE(%1$s)
  302. aggregates.ArrayAgg[any]=
  303. aggregates.ArrayAgg[any,any]=
  304. aggregates.Collect[any]=
  305. aggregates.ApproxCountDistinct[any]=
  306. #
  307. # Aggregates (distinct).
  308. #
  309. #
  310. # Linear regression aggregates.
  311. #
  312. aggregates.Corr[any,any]=
  313. aggregates.CovarPop[any,any]=
  314. aggregates.CovarSamp[any,any]=
  315. aggregates.RegrAvgX[any,any]=
  316. aggregates.RegrAvgY[any,any]=
  317. aggregates.RegrCount[any,any]=
  318. aggregates.RegrIntercept[any,any]=
  319. aggregates.RegrR2[any,any]=
  320. aggregates.RegrSlope[any,any]=
  321. aggregates.RegrSXX[any,any]=
  322. aggregates.RegrSXY[any,any]=
  323. aggregates.RegrSYY[any,any]=
  324. #
  325. # JSON aggregates.
  326. #
  327. aggregates.JSONArrayAgg=
  328. aggregates.JSONObjectAgg=
  329. #
  330. # Character scalar functions.
  331. #
  332. functions.CharLength[any]=LENGTH(%1$s)
  333. functions.BitLength[any]=(CHARACTER_LENGTH(%1$s, OCTETS)*8)
  334. functions.OctetLength[any]=CHARACTER_LENGTH(%1$s, OCTETS)
  335. functions.Upper[clob]=
  336. functions.Lower[clob]=
  337. functions.Substring[any,any]=SUBSTR(%1$s, %2$s)
  338. functions.Substring[any,any,any]=SUBSTR(%1$s, %2$s, %3$s)
  339. functions.Position[any,any]=POSSTR(%2$s, %1$s)
  340. functions.Index[any,any]=POSSTR(%1$s, %2$s)
  341. functions.Translate[any,any]=
  342. functions.Normalize[any]=
  343. functions.Normalize[any,any]=
  344. functions.Normalize[any,any,any]=
  345. #
  346. # Regular expression functions.
  347. #
  348. functions.SubstringRegex[any,any,any,any,any]=
  349. functions.OccurrencesRegex[any,any,any,any]=
  350. functions.PositionRegex[any,any,any,any,any,any]=
  351. #
  352. # FDS functions.
  353. #
  354. functions.cast_longvarchar[any]=CAST(%1$s AS CLOB)
  355. functions.cast_longvarchar[time]=CAST(CHAR(%1$s, JIS) AS CLOB)
  356. #
  357. # Numeric scalar functions.
  358. #
  359. functions.Abs[interval_day_time]=
  360. functions.Abs[interval_year_month]=
  361. functions.WidthBucket[any,any,any,any]=
  362. functions.Mod[decimal,any]=MOD(INTEGER(%1$s), %2$s)
  363. functions.Random[]=RAND()
  364. functions.Random[any]=RAND(%1$s)
  365. #
  366. # Array scalar functions.
  367. #
  368. functions.Cardinality[any]=
  369. functions.TrimArray[any,any]=
  370. #
  371. # Datetime value functions.
  372. #
  373. functions.CurrentTime[]=
  374. functions.CurrentTimestamp[]=
  375. functions.LocalTime[]=CURRENT_TIME
  376. functions.LocalTimestamp[]=CURRENT_TIMESTAMP
  377. functions.CurrentTime[numeric]=
  378. functions.CurrentTimestamp[numeric]=
  379. functions.LocalTime[numeric]=
  380. functions.LocalTimestamp[numeric]=
  381. #
  382. # XML functions.
  383. #
  384. functions.XMLTable=
  385. functions.XMLParse.DocumentOrContent.CONTENT=false
  386. functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=false
  387. #
  388. # JSON functions.
  389. #
  390. functions.JSONArray=
  391. functions.JSONExists=
  392. functions.JSONObject=
  393. functions.JSONQuery=
  394. functions.JSONTable=
  395. functions.JSONValue=
  396. #
  397. # Business date functions.
  398. #
  399. functions.AddFractionalSeconds[any,any]=
  400. functions.AddSeconds[any,any]=
  401. functions.AddHours[interval_day_time,numeric]=((%1$s) + (%2$s) HOUR)
  402. functions.AddHours[time,numeric]=((%1$s) + (%2$s) HOUR)
  403. functions.AddHours[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) HOUR)
  404. functions.AddHours[time_with_time_zone,numeric]=((%1$s) + (%2$s) HOUR)
  405. functions.AddHours[timestamp_with_time_zone,numeric]=((%1$s) + (%2$s) HOUR)
  406. functions.AddMinutes[interval_day_time,numeric]=((%1$s) + (%2$s) MINUTE)
  407. functions.AddMinutes[time,numeric]=((%1$s) + (%2$s) MINUTE)
  408. functions.AddMinutes[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) MINUTE)
  409. functions.AddMinutes[time_with_time_zone,numeric]=((%1$s) + (%2$s) MINUTE)
  410. functions.AddMinutes[timestamp_with_time_zone,numeric]=((%1$s) + (%2$s) MINUTE)
  411. functions.AddDays[numeric,any]=
  412. functions.AddDays[datetime,any]=((%1$s) + (%2$s) DAY)
  413. functions.AddWeeks[any,any]=
  414. functions.AddMonths[numeric,any]=
  415. functions.AddMonths[datetime,any]=((%1$s) + (%2$s) MONTH)
  416. functions.AddQuarters[any,any]=
  417. functions.AddYears[numeric,any]=
  418. functions.AddYears[datetime,any]=((%1$s) + (%2$s) YEAR)
  419. functions.FractionalSecondsBetween[any,any]=
  420. functions.SecondsBetween[time,time]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  421. functions.SecondsBetween[timestamp,timestamp]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  422. functions.MinutesBetween[time,time]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  423. functions.MinutesBetween[timestamp,timestamp]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  424. functions.HoursBetween[time,time]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  425. functions.HoursBetween[timestamp,timestamp]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  426. functions.DaysBetween[any,any]=DAYS(%1$s) - DAYS(%2$s)
  427. functions.WeeksBetween[time,time]=TIMESTAMPDIFF(32, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  428. functions.WeeksBetween[timestamp,timestamp]=TIMESTAMPDIFF(32, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  429. # Turned off _Months_Between for local processing. This alignes with a hotsite fix in UDA.
  430. functions.MonthsBetween[any,any]=
  431. functions.QuartersBetween[time,time]=TIMESTAMPDIFF(128, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  432. functions.QuartersBetween[timestamp,timestamp]=TIMESTAMPDIFF(128, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  433. functions.YearsBetween[any,any]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE), '00:00:00') - TIMESTAMP(cast(%2$s as DATE), '00:00:00')))
  434. functions.YearsBetween[date,timestamp]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(cast(%2$s as DATE), '00:00:00')))
  435. functions.YearsBetween[timestamp,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE), '00:00:00') - TIMESTAMP(%2$s, '00:00:00')))
  436. functions.YearsBetween[date,timestamp_with_time_zone]=
  437. functions.YearsBetween[timestamp_with_time_zone,date]=
  438. functions.YearsBetween[date,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(%2$s, '00:00:00')))
  439. functions.Age[timestamp]=(CURRENT DATE - DATE(%1$s))
  440. functions.Age[timestamp_with_time_zone]=(CURRENT DATE - DATE(%1$s))
  441. functions.Age[any]=(CURRENT DATE - %1$s)
  442. functions.DayOfWeek[any,any]=(MOD(DAYOFWEEK(%1$s) - 1 + 7 - (%2$s), 7) + 1)
  443. functions.DayOfYear[any]=DAYOFYEAR(%1$s)
  444. functions.DaysToEndOfMonth[any]=
  445. functions.FirstOfMonth[any]=(%1$s - (DAY(%1$s)-1) DAY)
  446. functions.LastOfMonth[any]=(%1$s - (DAY(%1$s)-1) DAY + 1 MONTH - 1 DAY)
  447. functions.MakeTimestamp[any,any,any]=TIMESTAMP_ISO(DATE(CHAR(RIGHT(DIGITS(%1$s), 4) || '-' || RIGHT(DIGITS(%2$s), 2) || '-' || RIGHT(DIGITS(%3$s), 2))))
  448. functions.WeekOfYear[any]=WEEK_ISO(%1$s)
  449. functions.YMDIntBetween[any,any]=
  450. #
  451. # Table functions.
  452. #
  453. #
  454. # Spatial functions (OpenGIS, SQL/MM).
  455. #
  456. #
  457. # Literals.
  458. #
  459. literals.binary=true
  460. literals.blob=false
  461. literals.clob=false
  462. literals.boolean=false
  463. literals.date=true
  464. literals.time=true
  465. literals.time_with_time_zone=false
  466. literals.timestamp=true
  467. literals.timestamp_with_time_zone=true
  468. literals.interval_day=false
  469. literals.interval_day_to_hour=false
  470. literals.interval_day_to_minute=false
  471. literals.interval_day_to_second=false
  472. literals.interval_hour=false
  473. literals.interval_hour_to_minute=false
  474. literals.interval_hour_to_second=false
  475. literals.interval_minute=false
  476. literals.interval_minute_to_second=false
  477. literals.interval_second=false
  478. literals.interval_year=false
  479. literals.interval_year_to_month=false
  480. literals.interval_month=false
  481. literals.smallint=true
  482. literals.integer=true
  483. literals.long=true
  484. literals.float=true
  485. literals.double=true
  486. literals.decimal=true
  487. literals.char=true
  488. literals.nchar=true
  489. literals.varchar=true
  490. literals.nvarchar=true
  491. literals.xml=false
  492. #
  493. # Literal constraints.
  494. #
  495. #
  496. # Literal format specifications. Formats are compatible with String.format().
  497. # Values for default behaviour are listed.
  498. # Only char, temporal and string types can be overridden.
  499. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
  500. # 0-padded string representing nanoseconds or empty.
  501. #
  502. literals.format.binary=BINARY(X'%1$s')
  503. literals.format.date=DATE('%1$04d-%2$02d-%3$02d')
  504. literals.format.interval_day=%3$s%1$d DAY
  505. literals.format.interval_month=%3$s%1$d MONTH
  506. literals.format.interval_year=%3$s%1$d YEAR
  507. literals.format.time=TIME('%1$02d:%2$02d:%3$02d')
  508. literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'}
  509. literals.format.timestamp=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s'
  510. literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s%10$c%8$02d:%9$02d'
  511. literals.format.nchar='%s'
  512. literals.format.nvarchar='%s'
  513. #
  514. # Data types.
  515. #
  516. dataType.boolean=false
  517. dataType.time_with_time_zone=false
  518. dataType.timestamp_with_time_zone=true
  519. dataType.interval_day=false
  520. dataType.interval_day_to_hour=false
  521. dataType.interval_day_to_minute=false
  522. dataType.interval_day_to_second=false
  523. dataType.interval_hour=false
  524. dataType.interval_hour_to_minute=false
  525. dataType.interval_hour_to_second=false
  526. dataType.interval_minute=false
  527. dataType.interval_minute_to_second=false
  528. dataType.interval_second=false
  529. dataType.interval_year=false
  530. dataType.interval_year_to_month=false
  531. dataType.interval_month=false
  532. dataType.period=false
  533. #datasource.type.TIMESTAMP_WITH_TIME_ZONE=timestamp with time zone
  534. #datasource.type.timestamp_with_time_zone.separator=\\b
  535. #datasource.type.timestamp_with_time_zone.mapping=%1$s%2$s%3$s%4$s%5$s%6$s %8$s:%10$s:%12$s%13$s%14$s%15$s%16$s%17$s%18$s
  536. #datasource.type.REAL=double