123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596 |
- # Licensed Materials - Property of IBM
- # IBM Cognos Products: OQP
- # (C) Copyright IBM Corp. 2005, 2021
- # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
- #
- # Product information.
- #
- #
- # Delimiters.
- #
- #
- # Keywords.
- #
- #
- # Various limits.
- #
- limits.castClobToVarcharMaxSize=4096
- #
- # General settings.
- #
- general.nullsAreSortedHigh=true
- general.nullsOrdering=false
- #
- # Cursor options - appended to end of generated SELECT statement.
- general.cursorOptions=FOR FETCH ONLY
- #
- # Override sampling policy with a different one.
- # 1. tablesample accepting values such as BERNOULLI or SYSTEM
- # 2. rowsample accepting values such as NTH or RANDOM
- #
- sampling.tablesample=
- sampling.rowsample=RANDOM
- #
- # Various features.
- #
- supports.subqueriesInCase=false
- supports.subqueriesInAggregate=false
- supports.withClauseInDerivedTable=false
- supports.nestedWithClause=false
- supports.expressionsInOrderBy=true
- supports.aliasInOrderByExpression=false
- supports.nestedOlap=false
- supports.blobsInGroupBy=false
- supports.blobsInOrderBy=false
- supports.stitchJoins=false
- supports.recursiveWithClause=false
- supports.booleanExpressionsInSelectList=false
- supports.callProcedureInDerivedTable=false
- supports.join.full.distinctJoins=false
- supports.join.subqueriesInOnClause=false
- #casting with formatting pattern support
- supports.formatters.string_to_date=false
- supports.formatters.string_to_time=false
- supports.formatters.string_to_time_with_time_zone=false
- supports.formatters.string_to_timestamp=false
- supports.formatters.string_to_timestamp_with_time_zone=false
- #
- # Grouping query optimization
- #
- performance.convertGroupByToDistinct=true
- #
- # Command.
- #
- #
- # Tables.
- #
- tables.lateral.derived=false
- #
- # Constructors.
- #
- constructors.table=false
- constructors.array=false
- constructors.period=false
- #
- # Constructors - context overrides.
- #
- constructors.row.between=false
- constructors.row.in=false
- constructors.row.isDistinctFrom=false
- constructors.row.simpleCase=false
- #
- # Clauses.
- #
- clauses.Window=
- clauses.WithRecursive=
- clauses.TableSampleSystem=
- clauses.TableSampleBernoulli=
- #
- # Joins.
- #
- #joins.Cross=%2$s CROSS JOIN %1$s
- joins.Cross=
- #
- # Set operators.
- #
- operators.set.Intersect=
- operators.set.Intersect.all=
- #
- # Logical operators.
- #
- operators.logical.Is=
- operators.logical.IsNot=
- #
- # Arithmetic operators.
- #
- operators.arithmetic.Subtract[any,datetime]=
- #
- # Group By Operators
- #
- operators.groupBy.Rollup=
- operators.groupBy.Cube=
- operators.groupBy.GroupingSets=
- #
- # Comparison predicates.
- #
- predicates.comparison.LessThan[timestamp,date]=
- predicates.comparison.LessThan[date,timestamp]=
- predicates.comparison.LessThan[timestamp_with_time_zone,date]=
- predicates.comparison.LessThan[date,timestamp_with_time_zone]=
- predicates.comparison.LessThan[any,clob]=
- predicates.comparison.LessThan[clob,any]=
- predicates.comparison.LessThanOrEquals[date,timestamp]=
- predicates.comparison.LessThanOrEquals[timestamp,date]=
- predicates.comparison.LessThanOrEquals[date,timestamp_with_time_zone]=
- predicates.comparison.LessThanOrEquals[timestamp_with_time_zone,date]=
- predicates.comparison.LessThanOrEquals[any,clob]=
- predicates.comparison.LessThanOrEquals[clob,any]=
- predicates.comparison.Equals[date,timestamp]=
- predicates.comparison.Equals[timestamp,date]=
- predicates.comparison.Equals[date,timestamp_with_time_zone]=
- predicates.comparison.Equals[timestamp_with_time_zone,date]=
- predicates.comparison.Equals[any,clob]=
- predicates.comparison.Equals[clob,any]=
- predicates.comparison.NotEquals[date,timestamp]=
- predicates.comparison.NotEquals[timestamp,date]=
- predicates.comparison.NotEquals[date,timestamp_with_time_zone]=
- predicates.comparison.NotEquals[timestamp_with_time_zone,date]=
- predicates.comparison.NotEquals[any,clob]=
- predicates.comparison.NotEquals[clob,any]=
- predicates.comparison.GreaterThan[date,timestamp]=
- predicates.comparison.GreaterThan[timestamp,date]=
- predicates.comparison.GreaterThan[date,timestamp_with_time_zone]=
- predicates.comparison.GreaterThan[timestamp_with_time_zone,date]=
- predicates.comparison.GreaterThan[any,clob]=
- predicates.comparison.GreaterThan[clob,any]=
- predicates.comparison.GreaterThanOrEquals[date,timestamp]=
- predicates.comparison.GreaterThanOrEquals[timestamp,date]=
- predicates.comparison.GreaterThanOrEquals[date,timestamp_with_time_zone]=
- predicates.comparison.GreaterThanOrEquals[timestamp_with_time_zone,date]=
- predicates.comparison.GreaterThanOrEquals[any,clob]=
- predicates.comparison.GreaterThanOrEquals[clob,any]=
- #
- # Various predicates.
- #
- predicates.Overlaps[any,any,any,any]=
- predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
- predicates.IsDistinctFrom[blob,any]=
- predicates.IsDistinctFrom[any,blob]=
- predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
- predicates.IsNotDistinctFrom[any,blob]=
- predicates.IsNotDistinctFrom[blob,any]=
- predicates.LikeRegex=
- predicates.LikeRegex.flag=
- predicates.Similar=
- predicates.Similar.escape=
- predicates.Between[date,timestamp,any]=
- predicates.Between[date,any,timestamp]=
- predicates.Between[timestamp,date,any]=
- predicates.Between[timestamp,any,date]=
- predicates.Between[date,timestamp_with_time_zone,any]=
- predicates.Between[date,any,timestamp_with_time_zone]=
- predicates.Between[timestamp_with_time_zone,date,any]=
- predicates.Between[timestamp_with_time_zone,any,date]=
- predicates.In[date,timestamp]=
- predicates.In[date,timestamp_with_time_zone]=
- predicates.In[timestamp,date]=
- predicates.In[timestamp_with_time_zone,date]=
- predicates.In[any,clob]=
- predicates.In[clob,any]=
- #
- # Period predicates.
- #
- predicates.PeriodOverlaps[any,any]=
- predicates.PeriodEquals[any,any]=
- predicates.PeriodContains[any,any]=
- predicates.PeriodPrecedes[any,any]=
- predicates.PeriodSucceeds[any,any]=
- predicates.PeriodImmediatelyPrecedes[any,any]=
- predicates.PeriodImmediatelySucceeds[any,any]=
- #
- # Expressions.
- #
- #
- # Cast expression.
- #
- expressions.Cast[date,timestamp]=timestamp(%1$s, '00:00:00')
- expressions.Cast[date,timestamp_with_time_zone]=
- expressions.Cast[time,timestamp]=timestamp(CURRENT_DATE, %1$s)
- expressions.Cast[time,timestamp_with_time_zone]=
- expressions.Cast[time,char]=cast(char(%1$s, JIS) as %2$s)
- expressions.Cast[time,varchar]=cast(char(%1$s, JIS) as %2$s)
- expressions.Cast[timestamp,char]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as CHAR(%3$d))
- expressions.Cast[timestamp,varchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d))
- expressions.Cast[timestamp_with_time_zone,varchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as VARCHAR(%3$d))
- expressions.Cast[timestamp_with_time_zone,char]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as CHAR(%3$d))
- expressions.Cast[text,nchar]=
- expressions.Cast[text,nvarchar]=
- expressions.Cast[time,nchar]=cast(char(%1$s, JIS) as CHAR(%3$d))
- expressions.Cast[time,nvarchar]=cast(char(%1$s, JIS) as VARCHAR(%3$d))
- expressions.Cast[timestamp,nchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as CHAR(%3$d))
- expressions.Cast[timestamp,nvarchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d))
- expressions.Cast[timestamp_with_time_zone,nvarchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as VARCHAR(%3$d))
- expressions.Cast[timestamp_with_time_zone,nchar]=cast(TO_CHAR(%1$s, 'YYYY-MM-DD HH24:MI:SS.FF6TZH:TZM') as CHAR(%3$d))
- expressions.Cast[any,nchar]=cast((%1$s) as CHAR(%3$d))
- expressions.Cast[any,nvarchar]=cast((%1$s) as VARCHAR(%3$d))
- expressions.Cast[numeric,clob]=cast(cast(%1$s as varchar(64)) as clob)
- expressions.Cast[datetime,clob]=cast(cast(%1$s as varchar(38)) as clob)
- expressions.Cast[xml,any]=
- #DB2/zOs requires space between the precision and scale if set zparm decimal=comma
- expressions.Cast[any,decimal]=CAST(%1$s AS DECIMAL(%3$d, %4$d))
- expressions.Cast[any,xml]=
- # Minimum number of arguments for Coalesce function.
- expressions.Coalesce.minArgs=2
- #
- # Extract expression.
- #
- expressions.Extract.EPOCH[any]=
- #
- # Trim expression.
- #
- expressions.Trim.BOTH[any]=LTRIM(RTRIM(%1$s))
- expressions.Trim.LEADING[any]=LTRIM(%1$s)
- expressions.Trim.TRAILING[any]=RTRIM(%1$s)
- expressions.Trim.BOTH[any,any]=STRIP(%2$s, B, %1$s)
- expressions.Trim.LEADING[any,any]=STRIP(%2$s, L, %1$s)
- expressions.Trim.TRAILING[any,any]=STRIP(%2$s, T, %1$s)
- #
- # Windowed aggregates (SQL/OLAP).
- #
- olap.Count[any]=COUNT_BIG(%1$s)
- olap.CountStar[]=COUNT_BIG(*)
- olap.Count[clob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END)
- olap.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END)
- olap.StdDevSamp[any]=
- olap.VarSamp[any]=
- olap.VarPop[any]=VARIANCE(%1$s)
- olap.PercentRank[]=
- olap.CumeDist[]=
- olap.PercentileCont[any,any]=
- olap.PercentileDisc[any,any]=
- olap.Median[any]=
- olap.NTile[any]=
- olap.Tertile[]=
- olap.RatioToReport[any]=
- olap.Difference[any]=
- olap.FirstValue[any]=
- olap.LastValue[any]=
- olap.Lag[any]=
- olap.Lag[any,any]=
- olap.Lag[any,any,any]=
- olap.Lag[any,any,any,any]=
- olap.Lead[any]=
- olap.Lead[any,any]=
- olap.Lead[any,any,any]=
- olap.Lead[any,any,any,any]=
- olap.NthValue[any,any]=
- olap.NthValue[any,any,any]=
- olap.NthValue[any,any,any,any]=
- olap.Collect[any]=
- #
- # Window clause.
- #
- #
- # Window specification
- # A list of windows specifications that are supported by the DB
- # P = PARTITION BY
- # O = ORDER BY
- # F = FRAME
- #
- olap.Window.Specification[F]=false
- olap.Window.Specification[PF]=false
- #
- # Olap (distinct).
- #
- olap.Max.distinct[any]=
- olap.Min.distinct[any]=
- olap.Sum.distinct[any]=
- olap.Avg.distinct[any]=
- olap.Count.distinct[any]=
- #
- # Aggregates.
- #
- aggregates.Count[any]=COUNT_BIG(%1$s)
- aggregates.CountStar[]=COUNT_BIG(*)
- aggregates.Count[clob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END)
- aggregates.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END)
- aggregates.PercentRank[any,any]=
- aggregates.CumeDistH[any,any]=
- aggregates.Median[any]=
- aggregates.VarSamp[any]=VARIANCE_SAMP(%1$s)
- aggregates.VarPop[any]=VARIANCE(%1$s)
- aggregates.ArrayAgg[any]=
- aggregates.ArrayAgg[any,any]=
- aggregates.Collect[any]=
- aggregates.ApproxCountDistinct[any]=
- #
- # Aggregates (distinct).
- #
- #
- # Linear regression aggregates.
- #
- aggregates.Corr[any,any]=
- aggregates.CovarPop[any,any]=
- aggregates.CovarSamp[any,any]=
- aggregates.RegrAvgX[any,any]=
- aggregates.RegrAvgY[any,any]=
- aggregates.RegrCount[any,any]=
- aggregates.RegrIntercept[any,any]=
- aggregates.RegrR2[any,any]=
- aggregates.RegrSlope[any,any]=
- aggregates.RegrSXX[any,any]=
- aggregates.RegrSXY[any,any]=
- aggregates.RegrSYY[any,any]=
- #
- # JSON aggregates.
- #
- aggregates.JSONArrayAgg=
- aggregates.JSONObjectAgg=
- #
- # Character scalar functions.
- #
- functions.CharLength[any]=LENGTH(%1$s)
- functions.BitLength[any]=(CHARACTER_LENGTH(%1$s, OCTETS)*8)
- functions.OctetLength[any]=CHARACTER_LENGTH(%1$s, OCTETS)
- functions.Upper[clob]=
- functions.Lower[clob]=
- functions.Substring[any,any]=SUBSTR(%1$s, %2$s)
- functions.Substring[any,any,any]=SUBSTR(%1$s, %2$s, %3$s)
- functions.Position[any,any]=POSSTR(%2$s, %1$s)
- functions.Index[any,any]=POSSTR(%1$s, %2$s)
- functions.Translate[any,any]=
- functions.Normalize[any]=
- functions.Normalize[any,any]=
- functions.Normalize[any,any,any]=
- #
- # Regular expression functions.
- #
- functions.SubstringRegex[any,any,any,any,any]=
- functions.OccurrencesRegex[any,any,any,any]=
- functions.PositionRegex[any,any,any,any,any,any]=
- #
- # FDS functions.
- #
- functions.cast_longvarchar[any]=CAST(%1$s AS CLOB)
- functions.cast_longvarchar[time]=CAST(CHAR(%1$s, JIS) AS CLOB)
- #
- # Numeric scalar functions.
- #
- functions.Abs[interval_day_time]=
- functions.Abs[interval_year_month]=
- functions.WidthBucket[any,any,any,any]=
- functions.Mod[decimal,any]=MOD(INTEGER(%1$s), %2$s)
- functions.Random[]=RAND()
- functions.Random[any]=RAND(%1$s)
- #
- # Array scalar functions.
- #
- functions.Cardinality[any]=
- functions.TrimArray[any,any]=
- #
- # Datetime value functions.
- #
- functions.CurrentTime[]=
- functions.CurrentTimestamp[]=
- functions.LocalTime[]=CURRENT_TIME
- functions.LocalTimestamp[]=CURRENT_TIMESTAMP
- functions.CurrentTime[numeric]=
- functions.CurrentTimestamp[numeric]=
- functions.LocalTime[numeric]=
- functions.LocalTimestamp[numeric]=
- #
- # XML functions.
- #
- functions.XMLTable=
- functions.XMLParse.DocumentOrContent.CONTENT=false
- functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=false
- #
- # JSON functions.
- #
- functions.JSONArray=
- functions.JSONExists=
- functions.JSONObject=
- functions.JSONQuery=
- functions.JSONTable=
- functions.JSONValue=
- #
- # Business date functions.
- #
- functions.AddFractionalSeconds[any,any]=
- functions.AddSeconds[any,any]=
- functions.AddHours[interval_day_time,numeric]=((%1$s) + (%2$s) HOUR)
- functions.AddHours[time,numeric]=((%1$s) + (%2$s) HOUR)
- functions.AddHours[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) HOUR)
- functions.AddHours[time_with_time_zone,numeric]=((%1$s) + (%2$s) HOUR)
- functions.AddHours[timestamp_with_time_zone,numeric]=((%1$s) + (%2$s) HOUR)
- functions.AddMinutes[interval_day_time,numeric]=((%1$s) + (%2$s) MINUTE)
- functions.AddMinutes[time,numeric]=((%1$s) + (%2$s) MINUTE)
- functions.AddMinutes[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) MINUTE)
- functions.AddMinutes[time_with_time_zone,numeric]=((%1$s) + (%2$s) MINUTE)
- functions.AddMinutes[timestamp_with_time_zone,numeric]=((%1$s) + (%2$s) MINUTE)
- functions.AddDays[numeric,any]=
- functions.AddDays[datetime,any]=((%1$s) + (%2$s) DAY)
- functions.AddWeeks[any,any]=
- functions.AddMonths[numeric,any]=
- functions.AddMonths[datetime,any]=((%1$s) + (%2$s) MONTH)
- functions.AddQuarters[any,any]=
- functions.AddYears[numeric,any]=
- functions.AddYears[datetime,any]=((%1$s) + (%2$s) YEAR)
- functions.FractionalSecondsBetween[any,any]=
- functions.SecondsBetween[time,time]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
- functions.SecondsBetween[timestamp,timestamp]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
- functions.MinutesBetween[time,time]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
- functions.MinutesBetween[timestamp,timestamp]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
- functions.HoursBetween[time,time]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
- functions.HoursBetween[timestamp,timestamp]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
- functions.DaysBetween[any,any]=DAYS(%1$s) - DAYS(%2$s)
- functions.WeeksBetween[time,time]=TIMESTAMPDIFF(32, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
- functions.WeeksBetween[timestamp,timestamp]=TIMESTAMPDIFF(32, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
- # Turned off _Months_Between for local processing. This alignes with a hotsite fix in UDA.
- functions.MonthsBetween[any,any]=
- functions.QuartersBetween[time,time]=TIMESTAMPDIFF(128, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
- functions.QuartersBetween[timestamp,timestamp]=TIMESTAMPDIFF(128, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
- functions.YearsBetween[any,any]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE), '00:00:00') - TIMESTAMP(cast(%2$s as DATE), '00:00:00')))
- functions.YearsBetween[date,timestamp]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(cast(%2$s as DATE), '00:00:00')))
- functions.YearsBetween[timestamp,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE), '00:00:00') - TIMESTAMP(%2$s, '00:00:00')))
- functions.YearsBetween[date,timestamp_with_time_zone]=
- functions.YearsBetween[timestamp_with_time_zone,date]=
- functions.YearsBetween[date,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(%2$s, '00:00:00')))
- functions.Age[timestamp]=(CURRENT DATE - DATE(%1$s))
- functions.Age[timestamp_with_time_zone]=(CURRENT DATE - DATE(%1$s))
- functions.Age[any]=(CURRENT DATE - %1$s)
- functions.DayOfWeek[any,any]=(MOD(DAYOFWEEK(%1$s) - 1 + 7 - (%2$s), 7) + 1)
- functions.DayOfYear[any]=DAYOFYEAR(%1$s)
- functions.DaysToEndOfMonth[any]=
- functions.FirstOfMonth[any]=(%1$s - (DAY(%1$s)-1) DAY)
- functions.LastOfMonth[any]=(%1$s - (DAY(%1$s)-1) DAY + 1 MONTH - 1 DAY)
- functions.MakeTimestamp[any,any,any]=TIMESTAMP_ISO(DATE(CHAR(RIGHT(DIGITS(%1$s), 4) || '-' || RIGHT(DIGITS(%2$s), 2) || '-' || RIGHT(DIGITS(%3$s), 2))))
- functions.WeekOfYear[any]=WEEK_ISO(%1$s)
- functions.YMDIntBetween[any,any]=
- #
- # Table functions.
- #
- #
- # Spatial functions (OpenGIS, SQL/MM).
- #
- #
- # Literals.
- #
- literals.binary=true
- literals.blob=false
- literals.clob=false
- literals.boolean=false
- literals.date=true
- literals.time=true
- literals.time_with_time_zone=false
- literals.timestamp=true
- literals.timestamp_with_time_zone=true
- literals.interval_day=false
- literals.interval_day_to_hour=false
- literals.interval_day_to_minute=false
- literals.interval_day_to_second=false
- literals.interval_hour=false
- literals.interval_hour_to_minute=false
- literals.interval_hour_to_second=false
- literals.interval_minute=false
- literals.interval_minute_to_second=false
- literals.interval_second=false
- literals.interval_year=false
- literals.interval_year_to_month=false
- literals.interval_month=false
- literals.smallint=true
- literals.integer=true
- literals.long=true
- literals.float=true
- literals.double=true
- literals.decimal=true
- literals.char=true
- literals.nchar=true
- literals.varchar=true
- literals.nvarchar=true
- literals.xml=false
- #
- # Literal constraints.
- #
- #
- # Literal format specifications. Formats are compatible with String.format().
- # Values for default behaviour are listed.
- # Only char, temporal and string types can be overridden.
- # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
- # 0-padded string representing nanoseconds or empty.
- #
- literals.format.binary=BINARY(X'%1$s')
- literals.format.date=DATE('%1$04d-%2$02d-%3$02d')
- literals.format.interval_day=%3$s%1$d DAY
- literals.format.interval_month=%3$s%1$d MONTH
- literals.format.interval_year=%3$s%1$d YEAR
- literals.format.time=TIME('%1$02d:%2$02d:%3$02d')
- literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'}
- literals.format.timestamp=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s'
- literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s%10$c%8$02d:%9$02d'
- literals.format.nchar='%s'
- literals.format.nvarchar='%s'
- #
- # Data types.
- #
- dataType.boolean=false
- dataType.time_with_time_zone=false
- dataType.timestamp_with_time_zone=true
- dataType.interval_day=false
- dataType.interval_day_to_hour=false
- dataType.interval_day_to_minute=false
- dataType.interval_day_to_second=false
- dataType.interval_hour=false
- dataType.interval_hour_to_minute=false
- dataType.interval_hour_to_second=false
- dataType.interval_minute=false
- dataType.interval_minute_to_second=false
- dataType.interval_second=false
- dataType.interval_year=false
- dataType.interval_year_to_month=false
- dataType.interval_month=false
- dataType.period=false
- #datasource.type.TIMESTAMP_WITH_TIME_ZONE=timestamp with time zone
- #datasource.type.timestamp_with_time_zone.separator=\\b
- #datasource.type.timestamp_with_time_zone.mapping=%1$s%2$s%3$s%4$s%5$s%6$s %8$s:%10$s:%12$s%13$s%14$s%15$s%16$s%17$s%18$s
- #datasource.type.REAL=double
|