db2.sql.properties 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. # Licensed Materials - Property of IBM
  2. # IBM Cognos Products: OQP
  3. # (C) Copyright IBM Corp. 2005, 2022
  4. # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  5. #
  6. # Product information.
  7. #
  8. #
  9. # Delimiters.
  10. #
  11. #
  12. # Keywords.
  13. #
  14. #
  15. # Various limits.
  16. #
  17. limits.castClobToVarcharMaxSize=8168
  18. #
  19. # General settings.
  20. #
  21. general.nullsAreSortedHigh=true
  22. general.nullsOrdering=false
  23. #
  24. # Cursor options - appended to end of generated SELECT statement.
  25. general.cursorOptions=FOR FETCH ONLY
  26. #
  27. # Override sampling policy with a different one.
  28. # 1. tablesample accepting values such as BERNOULLI or SYSTEM
  29. # 2. rowsample accepting values such as NTH or RANDOM
  30. #
  31. sampling.tablesample=
  32. sampling.rowsample=RANDOM
  33. #
  34. # Various features.
  35. #
  36. supports.subqueriesInAggregate=true
  37. supports.withClauseInDerivedTable=false
  38. supports.nestedWithClause=false
  39. supports.nestedOlap=true
  40. supports.blobsInGroupBy=false
  41. supports.blobsInOrderBy=false
  42. supports.stitchJoins=false
  43. supports.recursiveWithClause=false
  44. supports.booleanExpressionsInSelectList=false
  45. supports.rowNumberNoOrderBy=true
  46. supports.callProcedureInDerivedTable=false
  47. supports.join.subqueriesInOnClause=false
  48. supports.castClobToVarcharWithoutSubstring=true
  49. supports.subqueriesInGroupBy=false
  50. #casting with formatting pattern support
  51. supports.formatters.string_to_date=false
  52. supports.formatters.string_to_time=false
  53. supports.formatters.string_to_time_with_time_zone=false
  54. supports.formatters.string_to_timestamp=false
  55. supports.formatters.string_to_timestamp_with_time_zone=false
  56. #
  57. # Performance properties (force certain transformations to be applied).
  58. #
  59. performance.convertGroupByToDistinct=true
  60. #
  61. # Command.
  62. #
  63. #
  64. # Tables.
  65. #
  66. #
  67. # Constructors.
  68. #
  69. constructors.array=false
  70. constructors.period=false
  71. #
  72. # Constructors - context overrides.
  73. #
  74. constructors.row.isDistinctFrom=false
  75. constructors.row.simpleCase=false
  76. #DB2 supports table value constructor in IN clause, but not row expression list.
  77. constructors.row.inListToTable=true
  78. #
  79. # Clauses.
  80. #
  81. clauses.Window=
  82. clauses.WithRecursive=
  83. #
  84. # Joins.
  85. #
  86. #
  87. # Set operators.
  88. #
  89. #
  90. # Logical operators.
  91. #
  92. operators.logical.Is=
  93. operators.logical.IsNot=
  94. #
  95. # Arithmetic operators.
  96. #
  97. operators.arithmetic.Subtract[any,datetime]=
  98. #
  99. # Group By Operators
  100. #
  101. #
  102. # Comparison predicates.
  103. #
  104. #
  105. # Various predicates.
  106. #
  107. predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
  108. predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
  109. predicates.Similar=
  110. predicates.Similar.escape=
  111. predicates.LikeRegex=REGEXP_LIKE(%1$s, %2$s)
  112. predicates.LikeRegex.flag=REGEXP_LIKE(%1$s, %2$s, %3$s)
  113. #
  114. # Period predicates.
  115. #
  116. predicates.PeriodOverlaps[any,any]=
  117. predicates.PeriodEquals[any,any]=
  118. predicates.PeriodContains[any,any]=
  119. predicates.PeriodPrecedes[any,any]=
  120. predicates.PeriodSucceeds[any,any]=
  121. predicates.PeriodImmediatelyPrecedes[any,any]=
  122. predicates.PeriodImmediatelySucceeds[any,any]=
  123. #
  124. # Expressions.
  125. #
  126. # Minimum number of arguments for Coalesce function.
  127. expressions.Coalesce.minArgs=2
  128. #
  129. # Cast expression.
  130. #
  131. expressions.Cast[date,timestamp]=timestamp(%1$s,'00:00:00')
  132. expressions.Cast[time,timestamp]=timestamp(CURRENT_DATE, %1$s)
  133. expressions.Cast[time,char]=cast(char(%1$s,JIS) as %2$s)
  134. expressions.Cast[time,varchar]=cast(char(%1$s,JIS) as %2$s)
  135. expressions.Cast[timestamp,char]=cast(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF6') as CHAR(%3$d))
  136. expressions.Cast[timestamp,varchar]=cast(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d))
  137. expressions.Cast[text,nchar]=cast((%1$s) as NCHAR(%3$d))
  138. expressions.Cast[text,nvarchar]=cast((%1$s) as NVARCHAR(%3$d))
  139. expressions.Cast[time,nchar]=cast(char(%1$s,JIS) as CHAR(%3$d))
  140. expressions.Cast[time,nvarchar]=cast(char(%1$s,JIS) as VARCHAR(%3$d))
  141. expressions.Cast[timestamp,nchar]=cast(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF6') as CHAR(%3$d))
  142. expressions.Cast[timestamp,nvarchar]=cast(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF6') as VARCHAR(%3$d))
  143. expressions.Cast[any,nchar]=cast((%1$s) as CHAR(%3$d))
  144. expressions.Cast[any,nvarchar]=cast((%1$s) as VARCHAR(%3$d))
  145. expressions.Cast[any,clob]=
  146. expressions.Cast[any,xml]=
  147. expressions.Cast[xml,any]=
  148. expressions.Cast[clob,char]=CAST(%1$s AS CHAR(%3$d))
  149. expressions.Cast[clob,varchar]=CAST(%1$s AS VARCHAR(%3$d))
  150. expressions.Cast[clob,any]=
  151. #
  152. # Extract expression.
  153. #
  154. expressions.Extract.SECOND[timestamp]=(SECOND(%1$s) + MICROSECOND(%1$s)/1000000.0)
  155. expressions.Extract.SECOND[time]=SECOND(%1$s)
  156. expressions.Extract.TIMEZONE_HOUR[any]=
  157. expressions.Extract.TIMEZONE_MINUTE[any]=
  158. expressions.Extract.EPOCH[any]=
  159. #
  160. # Trim expression.
  161. #
  162. #
  163. # Windowed aggregates (SQL/OLAP).
  164. #
  165. olap.Count[any]=COUNT_BIG(%1$s)
  166. olap.CountStar[]=COUNT_BIG(*)
  167. olap.StdDevPop[any]=
  168. olap.VarPop[any]=
  169. olap.Tertile[]=
  170. olap.RatioToReport[any]=
  171. olap.Difference[any]=
  172. olap.Lag[any,any,any,any]=LAG(%1$s, %2$s, %3$s, '%4$s')
  173. olap.Lead[any,any,any,any]=LEAD(%1$s, %2$s, %3$s, '%4$s')
  174. olap.NthValue[any,any,any]=
  175. olap.NthValue[any,any,any,any]=
  176. olap.Collect[any]=
  177. #
  178. # Window clause.
  179. #
  180. #
  181. # Window specification
  182. # A list of windows specifications that are supported by the DB
  183. # P = PARTITION BY
  184. # O = ORDER BY
  185. # F = FRAME
  186. #
  187. olap.Window.Specification[F]=false
  188. olap.Window.Specification[PF]=false
  189. #
  190. # Olap (distinct).
  191. #
  192. olap.Sum.distinct[any]=
  193. olap.Avg.distinct[any]=
  194. olap.Count.distinct[any]=
  195. #
  196. # Aggregates.
  197. #
  198. aggregates.Count[any]=COUNT_BIG(%1$s)
  199. aggregates.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END)
  200. aggregates.CountStar[]=COUNT_BIG(*)
  201. aggregates.StdDevPop[any]=
  202. aggregates.Rank[any,any]=
  203. aggregates.DenseRank[any,any]=
  204. aggregates.VarPop[any]=
  205. aggregates.ArrayAgg[any]=
  206. aggregates.ArrayAgg[any,any]=
  207. aggregates.Collect[any]=
  208. aggregates.ApproxCountDistinct[any]=
  209. #
  210. # Aggregates (distinct).
  211. #
  212. aggregates.Count.distinct[blob]=
  213. #
  214. # Linear regression aggregates.
  215. #
  216. aggregates.CovarPop[any,any]=CORRELATION(%1$s, %2$s)
  217. aggregates.CovarSamp[any,any]=
  218. #
  219. # JSON aggregates.
  220. #
  221. aggregates.JSONArrayAgg=
  222. aggregates.JSONObjectAgg=
  223. #
  224. # Character scalar functions.
  225. #
  226. functions.CharLength[any]=LENGTH(%1$s, CODEUNITS32)
  227. functions.BitLength[any]=(OCTET_LENGTH(%1$s) * 8)
  228. functions.Substring[any,any]=SUBSTRING(%1$s, %2$s, CODEUNITS32)
  229. functions.Substring[any,any,any]=SUBSTRING(%1$s, %2$s, %3$s, CODEUNITS32)
  230. functions.Position[any,any]=POSITION(%1$s, %2$s, CODEUNITS32)
  231. functions.Position[binary,blob]=LOCATE(blob(%1$s), %2$s)
  232. functions.Index[any,any]=POSITION(%2$s, %1$s, CODEUNITS32)
  233. functions.Translate[any,any]=
  234. functions.Normalize[any]=
  235. functions.Normalize[any,any]=
  236. functions.Normalize[any,any,any]=
  237. functions.Round[any]=ROUND(%1$s)
  238. functions.Round[any,any]=ROUND(%1$s, %2$s)
  239. functions.Round[double,any]=CASE WHEN (%1$s) < 0 THEN (CAST( ( (%1$s) * POWER( 10e0, (%2$s) ) - 0.5 ) AS BIGINT ) / POWER( 10e0, (%2$s) ) ) ELSE (CAST( ( (%1$s) * POWER( 10e0, (%2$s) ) + 0.5 ) AS BIGINT ) / POWER( 10e0, (%2$s) ) ) END
  240. functions.Round[float,any]=CASE WHEN (%1$s) < 0 THEN (CAST( ( (%1$s) * POWER( 10e0, (%2$s) ) - 0.5 ) AS BIGINT ) / POWER( 10e0, (%2$s) ) ) ELSE (CAST( ( (%1$s) * POWER( 10e0, (%2$s) ) + 0.5 ) AS BIGINT ) / POWER( 10e0, (%2$s) ) ) END
  241. functions.Round[any,any,any]=
  242. #Substring function to negative START value to parse the input string from its rightmost end.
  243. functions.SubstringR[any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s, CODEUNITS32) - ABS(%2$s) + 1), CODEUNITS32)) ELSE (SUBSTRING(%1$s, %2$s, CODEUNITS32)) END
  244. functions.SubstringR[any,any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s, CODEUNITS32) - ABS(%2$s) + 1), %3$s, CODEUNITS32)) ELSE (SUBSTRING(%1$s, %2$s, %3$s, CODEUNITS32)) END
  245. #
  246. # Regular expression functions.
  247. #
  248. functions.SubstringRegex[any,any,any,any,any]=
  249. functions.OccurrencesRegex[any,any,any,any]=
  250. functions.PositionRegex[any,any,any,any,any,any]=
  251. #
  252. # FDS functions.
  253. #
  254. functions.cast_longvarchar[any]=CAST(%1$s AS LONG VARCHAR)
  255. functions.cast_longvarchar[time]=CAST(CHAR(%1$s,JIS) AS LONG VARCHAR)
  256. #
  257. # Numeric scalar functions.
  258. #
  259. functions.Abs[interval_day_time]=
  260. functions.Abs[interval_year_month]=
  261. functions.Random[]=RAND()
  262. functions.Random[any]=RAND(%1$s)
  263. #
  264. # Array scalar functions.
  265. #
  266. functions.Cardinality[any]=
  267. functions.TrimArray[any,any]=
  268. #
  269. # Datetime value functions.
  270. #
  271. functions.CurrentTime[]=
  272. functions.CurrentTimestamp[]=
  273. functions.LocalTime[]=CURRENT_TIME
  274. functions.LocalTimestamp[]=CURRENT_TIMESTAMP
  275. functions.CurrentTime[numeric]=
  276. functions.CurrentTimestamp[numeric]=
  277. functions.LocalTime[numeric]=
  278. functions.LocalTimestamp[numeric]=
  279. #
  280. # XML functions.
  281. #
  282. functions.XMLTable=
  283. functions.XMLParse.DocumentOrContent.CONTENT=false
  284. functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=false
  285. #
  286. # JSON functions.
  287. #
  288. functions.JSONArray=
  289. functions.JSONExists=
  290. functions.JSONObject=
  291. functions.JSONQuery=
  292. functions.JSONTable=
  293. functions.JSONValue=
  294. #
  295. # Business date functions.
  296. #
  297. functions.AddFractionalSeconds[any,any]=
  298. functions.AddSeconds[interval_day_time,numeric]=((%1$s) + (%2$s) SECOND)
  299. functions.AddSeconds[time,numeric]=(TIME(%1$s) + (%2$s) SECOND)
  300. functions.AddSeconds[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) SECOND)
  301. functions.AddSeconds[time_with_time_zone,numeric]=
  302. functions.AddSeconds[timestamp_with_time_zone,numeric]=
  303. functions.AddMinutes[interval_day_time,numeric]=((%1$s) + (%2$s) MINUTE)
  304. functions.AddMinutes[time,numeric]=(TIME(%1$s) + (%2$s) MINUTE)
  305. functions.AddMinutes[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) MINUTE)
  306. functions.AddMinutes[time_with_time_zone,numeric]=
  307. functions.AddMinutes[timestamp_with_time_zone,numeric]=
  308. functions.AddHours[interval_day_time,numeric]=((%1$s) + (%2$s) HOUR)
  309. functions.AddHours[time,numeric]=(TIME(%1$s) + (%2$s) HOUR)
  310. functions.AddHours[timestamp,numeric]=(TIMESTAMP(%1$s) + (%2$s) HOUR)
  311. functions.AddHours[time_with_time_zone,numeric]=
  312. functions.AddHours[timestamp_with_time_zone,numeric]=
  313. functions.AddDays[any,any]=((%1$s) + (%2$s) DAY)
  314. functions.AddDays[timestamp_with_time_zone,numeric]=
  315. functions.AddWeeks[any,any]=
  316. functions.AddMonths[any,any]=((%1$s) + (%2$s) MONTH)
  317. functions.AddMonths[timestamp_with_time_zone,numeric]=
  318. functions.AddQuarters[any,any]=
  319. functions.AddYears[any,any]=((%1$s) + (%2$s) YEAR)
  320. functions.AddYears[timestamp_with_time_zone,numeric]=
  321. functions.FractionalSecondsBetween[any,any]=
  322. functions.SecondsBetween[time,time]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  323. functions.SecondsBetween[timestamp,timestamp]=TIMESTAMPDIFF(2, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  324. functions.MinutesBetween[time,time]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  325. functions.MinutesBetween[timestamp,timestamp]=TIMESTAMPDIFF(4, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  326. functions.HoursBetween[time,time]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  327. functions.HoursBetween[timestamp,timestamp]=TIMESTAMPDIFF(8, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  328. functions.DaysBetween[any,any]=(DAYS(%1$s) - DAYS(%2$s))
  329. functions.WeeksBetween[time,time]=TIMESTAMPDIFF(32, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  330. functions.WeeksBetween[timestamp,timestamp]=TIMESTAMPDIFF(32, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  331. functions.MonthsBetween[any,any]=
  332. functions.QuartersBetween[time,time]=TIMESTAMPDIFF(128, CHAR((TIMESTAMP(CURRENT_DATE, %1$s)-TIMESTAMP(CURRENT_DATE, %2$s))))
  333. functions.QuartersBetween[timestamp,timestamp]=TIMESTAMPDIFF(128, CHAR((TIMESTAMP(%1$s)-TIMESTAMP(%2$s))))
  334. functions.YearsBetween[any,any]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE),'00:00:00') - TIMESTAMP(cast(%2$s as DATE),'00:00:00')))
  335. functions.YearsBetween[date,timestamp]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(cast(%2$s as DATE),'00:00:00')))
  336. functions.YearsBetween[timestamp,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(cast(%1$s as DATE),'00:00:00') - TIMESTAMP(%2$s, '00:00:00')))
  337. functions.YearsBetween[date,date]=TIMESTAMPDIFF(256, char(TIMESTAMP(%1$s, '00:00:00') - TIMESTAMP(%2$s, '00:00:00')))
  338. functions.Age[any]=(CURRENT DATE - %1$s)
  339. functions.DayOfWeek[any,any]=(MOD(DAYOFWEEK(%1$s) - 1 + 7 - (%2$s), 7) + 1)
  340. functions.DayOfYear[any]=DAYOFYEAR(%1$s)
  341. functions.DaysToEndOfMonth[any]=
  342. functions.FirstOfMonth[any]=FIRST_DAY(%1$s)
  343. functions.LastOfMonth[any]=LAST_DAY(%1$s)
  344. functions.MakeTimestamp[any,any,any]=TIMESTAMP_ISO( DATE( CHAR( RIGHT( DIGITS( %1$s ), 4 ) || '-' || RIGHT( DIGITS( %2$s ), 2 ) || '-' || RIGHT( DIGITS( %3$s ), 2 ) ) ) )
  345. # Turned off _Months_Between for local processing. This aligns with a hotsite fix in UDA.
  346. functions.WeekOfYear[any]=WEEK_ISO(%1$s)
  347. functions.YMDIntBetween[any,any]=
  348. #
  349. # Table functions.
  350. #
  351. #
  352. # Spatial functions (OpenGIS, SQL/MM).
  353. #
  354. functions.ST_Area[any]=DB2GSE.ST_Area(%1$s)
  355. functions.ST_AsBinary[any]=DB2GSE.ST_AsBinary(%1$s)
  356. functions.ST_AsText[any]=DB2GSE.ST_AsText(%1$s)
  357. functions.ST_Boundary[any]=DB2GSE.ST_Boundary(%1$s)
  358. functions.ST_Buffer[any,any]=DB2GSE.ST_Buffer(%1$s, %2$s)
  359. functions.ST_Centroid[any]=DB2GSE.ST_Centroid(%1$s)
  360. functions.ST_Contains[any,any]=DB2GSE.ST_Contains(%1$s, %2$s)
  361. functions.ST_ConvexHull[any]=DB2GSE.ST_ConvexHull(%1$s)
  362. functions.ST_Crosses[any,any]=DB2GSE.ST_Crosses(%1$s, %2$s)
  363. functions.ST_Dimension[any]=DB2GSE.ST_Dimension(%1$s)
  364. functions.ST_Difference[any,any]=DB2GSE.ST_Difference(%1$s, %2$s)
  365. functions.ST_Disjoint[any,any]=DB2GSE.ST_Disjoint(%1$s, %2$s)
  366. functions.ST_Distance[any,any]=DB2GSE.ST_Distance(%1$s, %2$s)
  367. functions.ST_EndPoint[any]=DB2GSE.ST_EndPoint(%1$s)
  368. functions.ST_Envelope[any]=DB2GSE.ST_Envelope(%1$s)
  369. functions.ST_Equals[any,any]=DB2GSE.ST_Equals(%1$s, %2$s)
  370. functions.ST_ExteriorRing[any]=DB2GSE.ST_ExteriorRing(%1$s)
  371. functions.ST_GeometryN[any,any]=DB2GSE.ST_GeometryN(%1$s, %2$s)
  372. functions.ST_GeometryType[any]=DB2GSE.ST_GeometryType(%1$s)
  373. functions.ST_GeomFromText[any]=DB2GSE.ST_GeomFromText(%1$s)
  374. functions.ST_GeomFromText[any,any]=DB2GSE.ST_GeomFromText(%1$s, %2$s)
  375. functions.ST_InteriorRingN[any,any]=DB2GSE.ST_InteriorRingN(%1$s, %2$s)
  376. functions.ST_Intersection[any,any]=DB2GSE.ST_Intersection(%1$s, %2$s)
  377. functions.ST_Intersects[any,any]=DB2GSE.ST_Intersects(%1$s, %2$s)
  378. functions.ST_IsClosed[any]=DB2GSE.ST_IsClosed(%1$s)
  379. functions.ST_IsEmpty[any]=DB2GSE.ST_IsEmpty(%1$s)
  380. functions.ST_IsRing[any]=DB2GSE.ST_IsRing(%1$s)
  381. functions.ST_IsSimple[any]=DB2GSE.ST_IsSimple(%1$s)
  382. functions.ST_IsValid[any]=DB2GSE.ST_IsSimple(%1$s)
  383. functions.ST_Length[any]=DB2GSE.ST_Length(%1$s)
  384. functions.ST_LineFromText[any]=DB2GSE.ST_LineFromText(%1$s)
  385. functions.ST_LineFromText[any,any]=DB2GSE.ST_LineFromText(%1$s, %2$s)
  386. functions.ST_LineFromWKB[any]=DB2GSE.ST_LineFromWKB(%1$s)
  387. functions.ST_LineFromWKB[any,any]=DB2GSE.ST_LineFromWKB(%1$s, %2$s)
  388. functions.ST_MLineFromText[any]=DB2GSE.ST_MultiLineString(%1$s)
  389. functions.ST_MLineFromText[any,any]=DB2GSE.ST_MultiLineString(%1$s, %2$s)
  390. functions.ST_MLineFromWKB[any]=DB2GSE.ST_MLineFromWKB(%1$s)
  391. functions.ST_MLineFromWKB[any,any]=DB2GSE.ST_MLineFromWKB(%1$s, %2$s)
  392. functions.ST_MPointFromText[any]=DB2GSE.ST_MultiPoint(%1$s)
  393. functions.ST_MPointFromText[any,any]=DB2GSE.ST_MultiPoint(%1$s, %2$s)
  394. functions.ST_MPointFromWKB[any]=DB2GSE.ST_MPointFromWKB(%1$s)
  395. functions.ST_MPointFromWKB[any,any]=DB2GSE.ST_MPointFromWKB(%1$s, %2$s)
  396. functions.ST_MPolyFromText[any]=DB2GSE.ST_MultiPolygon(%1$s)
  397. functions.ST_MPolyFromText[any,any]=DB2GSE.ST_MultiPolygon(%1$s, %2$s)
  398. functions.ST_MPolyFromWKB[any]=DB2GSE.ST_MPolyFromWKB(%1$s)
  399. functions.ST_MPolyFromWKB[any,any]=DB2GSE.ST_MPolyFromWKB(%1$s, %2$s)
  400. functions.ST_NumGeometries[any]=DB2GSE.ST_NumGeometries(%1$s)
  401. functions.ST_NumInteriorRing[any]=DB2GSE.ST_NumInteriorRing(%1$s)
  402. functions.ST_NumPoints[any]=DB2GSE.ST_NumPoints(%1$s)
  403. functions.ST_Overlaps[any,any]=DB2GSE.ST_Overlaps(%1$s, %2$s)
  404. functions.ST_PointFromText[any]=DB2GSE.ST_Point(%1$s)
  405. functions.ST_PointFromText[any,any]=DB2GSE.ST_Point(%1$s, %2$s)
  406. functions.ST_PointFromWKB[any]=DB2GSE.ST_PointFromWKB(%1$s)
  407. functions.ST_PointFromWKB[any,any]=DB2GSE.ST_PointFromWKB(%1$s, %2$s)
  408. functions.ST_PointN[any,any]=DB2GSE.ST_PointN(%1$s, %2$s)
  409. functions.ST_PointOnSurface[any,any]=DB2GSE.ST_PointOnSurface(%1$s)
  410. functions.ST_PolyFromText[any]=DB2GSE.ST_Polygon(%1$s)
  411. functions.ST_PolyFromText[any,any]=DB2GSE.ST_Polygon(%1$s, %2$s)
  412. functions.ST_PolyFromWKB[any]=DB2GSE.ST_PolyFromWKB(%1$s)
  413. functions.ST_PolyFromWKB[any,any]=DB2GSE.ST_PolyFromWKB(%1$s, %2$s)
  414. functions.ST_Relate[any,any]=DB2GSE.ST_Relate(%1$s, %2$s, %3$s)
  415. functions.ST_SRID[any]=DB2GSE.ST_SRID(%1$s)
  416. functions.ST_StartPoint[any]=DB2GSE.ST_StartPoint(%1$s)
  417. functions.ST_SymDifference[any,any]=DB2GSE.ST_SymDifference(%1$s, %2$s)
  418. functions.ST_Touches[any,any]=DB2GSE.ST_Touches(%1$s, %2$s)
  419. functions.ST_Union[any,any]=DB2GSE.ST_Union(%1$s, %2$s)
  420. functions.ST_Within[any,any]=DB2GSE.ST_Within(%1$s, %2$s)
  421. functions.ST_X[any]=DB2GSE.ST_X(%1$s)
  422. functions.ST_Y[any]=DB2GSE.ST_Y(%1$s)
  423. #
  424. # Literals.
  425. # Use datatypes only, not domains.
  426. #
  427. literals.binary=false
  428. literals.boolean=false
  429. literals.time_with_time_zone=false
  430. literals.timestamp_with_time_zone=false
  431. literals.interval_day=false
  432. literals.interval_day_to_hour=false
  433. literals.interval_day_to_minute=false
  434. literals.interval_day_to_second=false
  435. literals.interval_hour=false
  436. literals.interval_hour_to_minute=false
  437. literals.interval_hour_to_second=false
  438. literals.interval_minute=false
  439. literals.interval_minute_to_second=false
  440. literals.interval_second=false
  441. literals.interval_year=false
  442. literals.interval_year_to_month=false
  443. literals.interval_month=false
  444. literals.xml=false
  445. #
  446. # Literal constraints.
  447. #
  448. literals.time.fractional_seconds=false
  449. #
  450. # Literal format specifications. Formats are compatible with String.format().
  451. # Values for default behaviour are listed.
  452. # Only char, temporal and string types can be overridden.
  453. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
  454. # 0-padded string representing nanoseconds or empty.
  455. #
  456. literals.format.date=DATE('%1$04d-%2$02d-%3$02d')
  457. literals.format.interval_day=%3$s%1$d DAY
  458. literals.format.interval_month=%3$s%1$d MONTH
  459. literals.format.interval_year=%3$s%1$d YEAR
  460. literals.format.time=TIME('%1$02d:%2$02d:%3$02d')
  461. literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'}
  462. literals.format.timestamp=TIMESTAMP('%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s')
  463. literals.format.timestamp_with_time_zone={ts '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'}
  464. literals.format.nchar='%s'
  465. literals.format.nvarchar='%s'
  466. #
  467. # Data types.
  468. #
  469. dataType.time_with_time_zone=false
  470. dataType.timestamp_with_time_zone=false
  471. dataType.interval_day=false
  472. dataType.interval_day_to_hour=false
  473. dataType.interval_day_to_minute=false
  474. dataType.interval_day_to_second=false
  475. dataType.interval_hour=false
  476. dataType.interval_hour_to_minute=false
  477. dataType.interval_hour_to_second=false
  478. dataType.interval_minute=false
  479. dataType.interval_minute_to_second=false
  480. dataType.interval_second=false
  481. dataType.interval_year=false
  482. dataType.interval_year_to_month=false
  483. dataType.interval_month=false
  484. #
  485. # Collation sequence query
  486. # collation.sequence.sql=<sql_statement> The query can return only a single result
  487. #
  488. # NOTE:
  489. # The query to db_collname will return one of the following values.
  490. # UNIQUE
  491. # NON_UNIQUE
  492. # The data is ordered using the 256 byte weight table
  493. #
  494. # IDENTITY
  495. # The data is ordered in binary.
  496. #
  497. # IDENTITY_16BIT
  498. # UTF-16 data is ordered in binary. UTF-8 is ordered as if it had been converted to UTF-16
  499. # and then binary sorted. (IDENTITY and IDENTITY_16BIT are identical except for how supplementary characters in UTF-8 are handled.)
  500. #
  501. # UCA...
  502. # Collations implemented with ICU.
  503. #
  504. # SYSTEM...
  505. # The data is ordered using a 256 character weight table. The specific ordering is detailed in out documentation (search on the collation name).
  506. #
  507. collation.sequence.sql=SELECT CODEPAGE.VALUE || '.' || COLLNAME.VALUE, CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH FROM (SELECT VALUE FROM SYSIBMADM.DBCFG WHERE NAME = 'codepage') CODEPAGE, (SELECT VALUE FROM SYSIBMADM.DBCFG WHERE NAME = 'db_collname') COLLNAME
  508. #
  509. # Collation sequence mappings
  510. # collation.sequence.mapping.<sql_result>=<collation_name>,<collation_weight>
  511. #
  512. # NOTE: These mappings are case sensitive
  513. #
  514. collation.sequence.mapping.1252.UNIQUE=IbmDb2Udb1252Unique,TERTIARY
  515. collation.sequence.mapping.1252.IDENTITY=IbmDb2Udb1252Identity,TERTIARY
  516. collation.sequence.mapping.1208.IDENTITY=UnicodeCodepoint,IDENTICAL
  517. #
  518. # DB2-specific data types that are not defined in the JDBC 3.0 standard
  519. # datasource.type.<datasource specific name>=XQE data type specification
  520. # all spaces need to be replaced with an underscore (_)
  521. #
  522. #datasource.type.DECFLOAT=double
  523. #datasource.type.XML=xml