flint.properties 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. # Licensed Materials - Property of IBM
  2. # IBM Cognos Products: OQP
  3. # (C) Copyright IBM Corp. 2017, 2020
  4. # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  5. #
  6. # Delimiters
  7. #
  8. delimiters.commentBegin=
  9. delimiters.commentEnd=
  10. delimiters.columnDelimiter=`
  11. # delimiters.catalogDelimiter=
  12. # delimiters.schemaDelimiter=
  13. # delimiters.tableDelimiter=
  14. delimiters.identifierQuoteString=`
  15. # delimiters.searchStringEscape=
  16. # delimiters.catalogSeparator=
  17. delimiters.literalQuoteEscape=\\'
  18. #
  19. # Limits
  20. #
  21. # Normally these values would be derived from the JDBC driver DatabaseMetadata
  22. # limits.maxBinaryLiteralLength=
  23. # limits.maxCharLiteralLength=
  24. # limits.maxColumnNameLength=
  25. # limits.maxColumnsInGroupBy=
  26. # limits.maxColumnsInIndex=
  27. # limits.maxColumnsInOrderBy=
  28. # limits.maxColumnsInSelect=
  29. # limits.maxColumnsInTable=
  30. # limits.maxConnections=
  31. # limits.maxCursorNameLength=
  32. # limits.maxIndexLength=
  33. # limits.maxSchemaNameLength=
  34. # limits.maxProcedureNameLength=
  35. # limits.maxCatalogNameLength=
  36. # limits.maxRowSize=
  37. # limits.maxStatementLength=
  38. # limits.maxStatements=
  39. limits.maxStatements=1
  40. # limits.maxTableNameLength=
  41. # limits.maxTablesInSelect=
  42. # limits.maxUserNameLength=
  43. limits.defaultTransactionIsolation=
  44. # limits.maxLengthInClause
  45. #
  46. # Keywords
  47. #
  48. keywords.columnAlias=AS
  49. #
  50. # General
  51. #
  52. #
  53. # Null ordering
  54. #
  55. general.nullsAreSortedHigh=false
  56. general.nullsAreSortedLow=false
  57. general.nullsAreSortedAtStart=false
  58. general.nullsAreSortedAtEnd=false
  59. general.nullsOrdering=true
  60. general.nullsOrderingInWindowSpecification=false
  61. # Cursor options - appended to end of generated SELECT statement.
  62. general.cursorOptions=
  63. #
  64. # Override sampling policy with a different one.
  65. # 1. tablesample accepting values such as BERNOULLI or SYSTEM
  66. # 2. rowsample accepting values such as NTH or RAND
  67. #
  68. sampling.tablesample=BERNOULLI
  69. sampling.rowsample=RANDOM
  70. #
  71. # Various
  72. #
  73. supports.duplicateColumnsInSelectList=true
  74. supports.columnAliasing=true
  75. supports.tableCorrelationNames=true
  76. supports.expressionsInSelectList=true
  77. supports.expressionsInINPredicate=true
  78. supports.expressionsInOrderBy=true
  79. supports.booleanExpressionsInSelectList=true
  80. supports.fieldsOfComplexTypeInSelectList=false
  81. supports.nestedOlap=false
  82. supports.orderByAlias=true
  83. supports.orderByName=true
  84. supports.orderByOrdinal=true
  85. supports.blobsInGroupBy=false
  86. supports.blobsInOrderBy=false
  87. # Results for other scalar, aggregate and set operations will differ from DQM/ISO-SQL.
  88. supports.emptyStringIsNull=false
  89. supports.crossProducts=true
  90. supports.multipleDistinctAggregates=true
  91. supports.rowNumberNoOrderBy=false
  92. supports.expressionsInSelectList=true
  93. supports.likeEscapeClause=true
  94. supports.expressionsInLikePattern=true
  95. supports.outerJoins=true
  96. supports.fullOuterJoins=true
  97. supports.withClauseInDerivedTable=false
  98. supports.derivedColumnLists=false
  99. supports.expressionsInINPredicate=true
  100. # Subqueries not supported in Having
  101. # Subqueries not supported in Group-by
  102. # Subquery column alias not supported
  103. supports.subqueriesInComparisons=true
  104. supports.subqueriesInExists=true
  105. supports.subqueriesInIns=true
  106. supports.subqueriesInQuantifieds=false
  107. supports.subqueriesInOnClause=false
  108. supports.subqueriesInCase=false
  109. supports.correlatedSubqueries=false
  110. supports.correlatedSubqueriesInSelectList=false
  111. supports.correlatedSubqueriesInIns=false
  112. supports.scalarSubqueries=false
  113. supports.nestedWithClause=false
  114. # integerDivision switched back to 'true' in order to be consistent with local processing.
  115. supports.integerDivision=true
  116. supports.expressionsInGroupBy=true
  117. supports.expressionsInOrderBy=true
  118. supports.aliasInOrderByExpression=false
  119. supports.orderByUnrelated=true
  120. supports.groupByUnrelated=false
  121. supports.thetaJoins=true
  122. supports.equiJoins=true
  123. supports.recursiveWithClause=false
  124. supports.orderByInDerivedTable=true
  125. supports.callProcedureInDerivedTable=false
  126. supports.constantsInWindows=true
  127. #join condition
  128. supports.join.betweenInOnClause=true
  129. supports.join.inPredicateInOnClause=true
  130. supports.join.isNullInOnClause=true
  131. supports.join.likeInOnClause=true
  132. supports.join.notInOnClause=true
  133. supports.join.orInOnClause=true
  134. supports.join.subqueriesInOnClause=true
  135. supports.join.onlyEquiWithAnd=false
  136. supports.join.inner.limitedThetaJoins=false
  137. supports.join.outer.thetaJoins=true
  138. supports.join.full.thetaJoins=true
  139. supports.join.full.distinctJoins=true
  140. supports.rewriteImplicitCrossJoins=true
  141. supports.constantsInCount=true
  142. supports.hanaInputParameters=false
  143. #casting with formatting pattern support
  144. supports.formatters.string_to_date=false
  145. supports.formatters.string_to_time=false
  146. supports.formatters.string_to_time_with_time_zone=false
  147. supports.formatters.string_to_timestamp=false
  148. supports.formatters.string_to_timestamp_with_time_zone=false
  149. #
  150. # Grouping query optimization
  151. #
  152. # If the RDBMS has costing/execution issues with group by or distinct consider these transforms
  153. performance.convertGroupByToDistinct=false
  154. performance.convertDistinctToGroupBy=false
  155. # V5 master-detail optimization when allRows optimization is specified
  156. v5.master-detail.transform=false
  157. performance.convertHavingToWhere=false
  158. performance.transitiveClosure=false
  159. performance.predicatePushdown=false
  160. performance.semiJoin=false
  161. # RTC 377496
  162. # Set this entry to F to avoid generation of predicates of the form
  163. # T1.C1 = T2.C1 OR ( T1.C1 IS NULL AND T2.C1 IS NULL ). Care must be
  164. # taken, however, since doing so may cause data integrity problems if
  165. # data contains null values.
  166. performance.generateEqualOrNull=true
  167. #
  168. # Commands
  169. #
  170. commands.Select=SELECT
  171. commands.Call=
  172. #
  173. # Tables
  174. #
  175. tables.joined=true
  176. tables.derived=true
  177. tables.lateral.derived=false
  178. #
  179. # Constructors
  180. #
  181. constructors.table=false
  182. constructors.row=false
  183. constructors.array=true
  184. constructors.period=false
  185. constructors.map=false
  186. #
  187. # Constructors - context overrides.
  188. #
  189. constructors.row.simpleCase=false
  190. constructors.row.between=false
  191. constructors.row.isDistinctFrom=false
  192. constructors.row.inListToTable=false
  193. #
  194. # Clauses
  195. #
  196. clauses.From=FROM
  197. clauses.Where=WHERE
  198. clauses.GroupBy=GROUP BY
  199. clauses.Having=HAVING
  200. # Does not allow column list in common table expression
  201. # Recursive form of common table expression not supported
  202. clauses.WithRecursive=
  203. clauses.With=WITH
  204. clauses.OrderBy=ORDER BY
  205. clauses.Distinct=DISTINCT
  206. clauses.Top=LIMIT %1$s
  207. clauses.At=
  208. clauses.Window=
  209. clauses.TableSampleSystem=TABLESAMPLE (%1$s PERCENT)
  210. clauses.TableSampleBernoulli=TABLESAMPLE (%1$s PERCENT)
  211. clauses.TableSampleBeforeAlias=true
  212. clauses.ForSystemTimeAsOf=
  213. clauses.ForSystemTimeFrom=
  214. clauses.ForSystemTimeBetween=
  215. #
  216. # Joins
  217. #
  218. # Does not allow on condition to use set functions
  219. # Does not allow join conditions to use sub-queries
  220. joins.Cross=%1$s CROSS JOIN %2$s
  221. joins.Inner=%1$s INNER JOIN %2$s ON %3$s
  222. joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s
  223. joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s
  224. joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s
  225. joins.RightNested=%1$s
  226. # Bracket inner join groups in order to avoid parsing error
  227. # A LOJ
  228. # B INNER JOIN C ON B.x = C.x
  229. # ON A.x = B.x
  230. # is converted to:
  231. # A LOJ
  232. # (B INNER JOIN C ON B.x = C.x)
  233. # ON A.x = B.x
  234. #
  235. joins.BracketInner=true
  236. #
  237. # Set Operators
  238. #
  239. operators.set.Union=%1$s UNION DISTINCT %2$s
  240. operators.set.Union.all=%1$s UNION ALL %2$s
  241. operators.set.Intersect=%1$s INTERSECT DISTINCT %2$s
  242. operators.set.Intersect.all=
  243. operators.set.Except=%1$s EXCEPT DISTINCT %2$s
  244. operators.set.Except.all=
  245. #
  246. # Logical Operators
  247. #
  248. operators.logical.And=%1$s AND %2$s
  249. operators.logical.Or=%1$s OR %2$s
  250. operators.logical.Not=NOT ( %1$s )
  251. operators.logical.Is=
  252. operators.logical.IsNot=
  253. operators.logical.IsJson=
  254. operators.logical.IsNotJson=
  255. #
  256. # Arithmetic and Character operators
  257. #
  258. # SPARK APACHE JIRA HIVE-9537
  259. operators.arithmetic.Concat[char,any]=
  260. operators.arithmetic.Concat[any,char]=
  261. operators.arithmetic.Concat[any,any]=concat(%1$s, %2$s)
  262. operators.arithmetic.Add[timestamp,any]=
  263. operators.arithmetic.Add[any,timestamp]=
  264. operators.arithmetic.Add[date,any]=
  265. operators.arithmetic.Add[any,date]=
  266. operators.arithmetic.Add[time,any]=
  267. operators.arithmetic.Add[any,time]=
  268. operators.arithmetic.Subtract[date,any]=
  269. operators.arithmetic.Subtract[any,date]=
  270. operators.arithmetic.Subtract[date,date]=datediff(%1$s, %2$s)
  271. operators.arithmetic.Subtract[timestamp,any]=
  272. operators.arithmetic.Subtract[any,timestamp]=
  273. operators.arithmetic.Subtract[time,any]=
  274. operators.arithmetic.Subtract[any,time]=
  275. operators.arithmetic.UnaryPlus[any]=+%1$s
  276. operators.arithmetic.Negate[any]=-%1$s
  277. #
  278. # Grouping Operators
  279. #
  280. # some cases where SPARK SQL does not support grouping set scenarios other SQL engines support
  281. operators.groupBy.Rollup=
  282. operators.groupBy.Cube=
  283. operators.groupBy.GroupingSets=
  284. #
  285. # Comparison Predicates
  286. #
  287. predicates.comparison.Equals[any,any]=%1$s = %2$s
  288. predicates.comparison.GreaterThan[any,any]=%1$s > %2$s
  289. predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s
  290. predicates.comparison.LessThan[any,any]=%1$s < %2$s
  291. predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s
  292. predicates.comparison.NotEquals[any,any]=%1$s <> %2$s
  293. #
  294. # Predicates
  295. #
  296. predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s
  297. predicates.In[any,any]=%1$s IN ( %2$s )
  298. predicates.Overlaps[any,any,any,any]=
  299. # Does not support value expression in Is Null
  300. predicates.IsNull[any]=%1$s IS NULL
  301. predicates.IsNotNull[any]=%1$s IS NOT NULL
  302. predicates.Like=%1$s LIKE %2$s
  303. predicates.Like.escape=%1$s LIKE %2$s ESCAPE %3$s
  304. predicates.LikeRegex=
  305. predicates.LikeRegex.flag=
  306. predicates.Similar=
  307. predicates.Similar.escape=
  308. predicates.Exists=
  309. predicates.All=
  310. predicates.Any=
  311. predicates.Some=
  312. predicates.IsDistinctFrom[any,any]=NOT (%1$s <=> %2$s)
  313. predicates.IsNotDistinctFrom[any,any]=%1$s <=> %2$s
  314. #
  315. # Period predicates.
  316. #
  317. predicates.PeriodOverlaps[any,any]=
  318. predicates.PeriodEquals[any,any]=
  319. predicates.PeriodContains[any,any]=
  320. predicates.PeriodPrecedes[any,any]=
  321. predicates.PeriodSucceeds[any,any]=
  322. predicates.PeriodImmediatelyPrecedes[any,any]=
  323. predicates.PeriodImmediatelySucceeds[any,any]=
  324. #
  325. # Expressions
  326. #
  327. expressions.ArrayElementRef.zeroBased=false
  328. #
  329. # Conditional expressions
  330. #
  331. expressions.SimpleCase=CASE
  332. expressions.SearchedCase=CASE
  333. expressions.Coalesce[any,any]=COALESCE(%1$s)
  334. # Due to how Hive compares varchar and char it will think that a zero length string and space are not equivalent
  335. # APACHE JIRA HIVE-9537, HIVE-3745 and HIVE-9745
  336. #expressions.NullIf=CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END
  337. expressions.NullIf[any,any]=NULLIF(%1$s, %2$s)
  338. # Minimum number of arguments for Coalesce function.
  339. expressions.Coalesce.minArgs=2
  340. #
  341. # Cast
  342. #
  343. expressions.Cast[any,any]=CAST(%1$s AS %2$s)
  344. expressions.Cast[any,double]=CAST(%1$s AS double)
  345. expressions.Cast[float,text]=
  346. expressions.Cast[double,text]=
  347. # Allow casting decimal values as varchar to prevent decomposition of binning queries.
  348. expressions.Cast[decimal,varchar]=CAST(%1$s AS %2$s)
  349. expressions.Cast[decimal,text]=
  350. # does not preserve trailing spaces of fixed length characters
  351. expressions.Cast[any,char]=
  352. # Spark does not have time data type, use timestamp
  353. expressions.Cast[any,time]=CAST(%1$s AS timestamp)
  354. #
  355. # Extract
  356. #
  357. expressions.Extract.YEAR[any]=year(%1$s)
  358. expressions.Extract.MONTH[any]=month(%1$s)
  359. expressions.Extract.DAY[any]=day(%1$s)
  360. expressions.Extract.HOUR[any]=hour(%1$s)
  361. expressions.Extract.MINUTE[any]=minute(%1$s)
  362. expressions.Extract.SECOND[any]=second(%1$s) + cast(%1$s as double) - cast(cast(from_unixtime(unix_timestamp(%1$s)) as timestamp) as double)
  363. # Flint always stores time in UTC
  364. expressions.Extract.TIMEZONE_HOUR[any]=
  365. expressions.Extract.TIMEZONE_MINUTE[any]=
  366. expressions.Extract.EPOCH[any]=
  367. #
  368. # Trim
  369. #
  370. expressions.Trim.BOTH[any]=trim(%1$s)
  371. expressions.Trim.BOTH[any,any]=trim(%1$s, %2$s)
  372. expressions.Trim.LEADING[any]=ltrim(%1$s)
  373. expressions.Trim.LEADING[any,any]=ltrim(%1$s, %2$s)
  374. expressions.Trim.TRAILING[any]=rtrim(%1$s)
  375. expressions.Trim.TRAILING[any,any]=rtrim(%1$s, %2$s)
  376. #
  377. # Windowed aggregates (SQL/OLAP).
  378. #
  379. olap.Count[any]=COUNT(%1$s)
  380. olap.CountStar[]=COUNT(*)
  381. olap.Max[any]=MAX(%1$s)
  382. olap.Min[any]=MIN(%1$s)
  383. olap.Sum[any]=SUM(%1$s)
  384. olap.Avg[any]=AVG(%1$s)
  385. olap.StdDevPop[any]=
  386. olap.StdDevSamp[any]=
  387. olap.VarPop[any]=
  388. olap.VarSamp[any]=
  389. olap.Rank[]=RANK()
  390. olap.DenseRank[]=DENSE_RANK()
  391. olap.PercentRank[]=PERCENT_RANK()
  392. olap.CumeDist[]=CUME_DIST()
  393. olap.PercentileCont[any,any]=
  394. olap.PercentileDisc[any,any]=
  395. olap.Median[any]=
  396. olap.RatioToReport[any]=
  397. olap.RowNumber[]=ROW_NUMBER()
  398. olap.Difference[any]=
  399. olap.FirstValue[any]=FIRST_VALUE(%1$s)
  400. olap.LastValue[any]=LAST_VALUE(%1$s)
  401. # Olap Ntile without an order by will sort nulls first and not last.
  402. olap.NTile[any]=
  403. olap.Tertile[]=
  404. # Olap lag did not throw expected exceptions
  405. olap.Lag[any]=LAG(%1$s)
  406. olap.Lag[any,any]=LAG(%1$s, %2$s)
  407. olap.Lag[any,any,any]=
  408. olap.Lag[any,any,any,any]=
  409. olap.Lead[any]=LEAD(%1$s)
  410. olap.Lead[any,any]=LEAD(%1$s, %2$s)
  411. olap.Lead[any,any,any]=
  412. olap.Lead[any,any,any,any]=
  413. olap.NthValue[any,any]=
  414. olap.NthValue[any,any,any]=
  415. olap.NthValue[any,any,any,any]=
  416. olap.Collect[any]=
  417. #
  418. # Window clause
  419. #
  420. # Olap functions cannot be used in Subquery but no method to disable it.
  421. olap.Window=
  422. olap.PartitionBy=PARTITION BY %1$s
  423. olap.OrderBy=ORDER BY %1$s
  424. #
  425. # Window specification
  426. #
  427. olap.Window.Specification[POF]=true
  428. olap.Window.Specification[PF]=true
  429. olap.Window.Specification[OF]=true
  430. olap.Window.Specification[PO]=true
  431. olap.Window.Specification[P]=true
  432. olap.Window.Specification[O]=true
  433. olap.Window.Specification[F]=true
  434. olap.Window.Specification[]=true
  435. olap.Window.Frame.Moving=true
  436. #
  437. # Olap Distinct
  438. #
  439. # Apache SPARK does only supports MIN/MAX scenarios
  440. olap.Min.distinct[any]=MIN(DISTINCT %1$s)
  441. olap.Max.distinct[any]=MAX(DISTINCT %1$s)
  442. olap.Sum.distinct[any]=
  443. olap.Avg.distinct[any]=
  444. olap.Count.distinct[any]=
  445. #
  446. # Aggregates
  447. #
  448. aggregates.Max[any]=MAX(%1$s)
  449. aggregates.Min[any]=MIN(%1$s)
  450. aggregates.Count[any]=COUNT(%1$s)
  451. aggregates.CountStar[]=COUNT(*)
  452. aggregates.Sum[any]=SUM(%1$s)
  453. aggregates.Avg[any]=AVG(%1$s)
  454. aggregates.StdDevPop[any]=STDDEV_POP(%1$s)
  455. aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s)
  456. aggregates.VarPop[any]=VAR_POP(%1$s)
  457. aggregates.VarSamp[any]=VAR_SAMP(%1$s)
  458. aggregates.Rank[any,any]=
  459. aggregates.DenseRank[any,any]=
  460. aggregates.PercentRank[any,any]=
  461. aggregates.CumeDistH[any,any]=
  462. aggregates.PercentileCont[any,any]=
  463. aggregates.PercentileDisc[any,any]=
  464. aggregates.Median[any]=
  465. aggregates.Grouping[any]=
  466. aggregates.XMLAgg=
  467. # Cannot have different order by clauses in array_agg
  468. aggregates.ArrayAgg[any]=
  469. aggregates.ArrayAgg[any,any]=
  470. aggregates.Collect[any]=
  471. #
  472. # Distinct aggregates
  473. #
  474. aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s)
  475. aggregates.Min.distinct[any]=MIN(DISTINCT %1$s)
  476. aggregates.Max.distinct[any]=MAX(DISTINCT %1$s)
  477. aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s)
  478. aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s)
  479. #
  480. # JSON aggregates.
  481. #
  482. aggregates.JSONArrayAgg=
  483. aggregates.JSONObjectAgg=
  484. #
  485. # Linear regression aggregates
  486. #
  487. aggregates.Corr[any,any]=corr(%1$s, %2$s)
  488. aggregates.CovarPop[any,any]=covar_pop(%1$s, %2$s)
  489. aggregates.CovarSamp[any,any]=covar_samp(%1$s, %2$s)
  490. # REGR_* functions to be implemented by JIRA SPARK-23907 (target is Spark 2.4)
  491. aggregates.RegrAvgX[any,any]=
  492. aggregates.RegrAvgY[any,any]=
  493. aggregates.RegrCount[any,any]=
  494. aggregates.RegrIntercept[any,any]=
  495. aggregates.RegrR2[any,any]=
  496. aggregates.RegrSlope[any,any]=
  497. aggregates.RegrSXX[any,any]=
  498. aggregates.RegrSXY[any,any]=
  499. aggregates.RegrSYY[any,any]=
  500. #
  501. # Character scalar functions
  502. #
  503. functions.CharLength[any]=LENGTH(%1$s)
  504. functions.CharLength[clob]=
  505. functions.OctetLength[any]=
  506. functions.BitLength[text]=
  507. functions.Upper[any]=UPPER(%1$s)
  508. functions.Lower[any]=LOWER(%1$s)
  509. functions.Substring[any,any]=substr(%1$s, cast(%2$s as int))
  510. functions.Substring[any,any,any]=substr(%1$s, cast(%2$s as int), cast(%3$s as int))
  511. functions.Position[any,any]= locate(%1$s, %2$s)
  512. functions.Index[any,any]=
  513. functions.Ascii[any]=
  514. functions.Translate[any,any]=
  515. functions.Normalize[any]=
  516. functions.Normalize[any,any]=
  517. functions.Normalize[any,any,any]=
  518. #Substring function to negative START value to parse the input string from its rightmost end.
  519. #It's not a standard SQL function, so leave the definition empty.
  520. functions.SubstringR[any,any]=
  521. functions.SubstringR[any,any,any]=
  522. #
  523. # Regular expression functions.
  524. #
  525. functions.SubstringRegex[any,any,any,any,any]=
  526. functions.OccurrencesRegex[any,any,any,any]=
  527. functions.PositionRegex[any,any,any,any,any,any]=
  528. #
  529. # Numeric scalar functions
  530. #
  531. functions.Abs[any]=ABS(%1$s)
  532. functions.Ceiling[any]=CEILING(%1$s)
  533. functions.Exp[any]=EXP(%1$s)
  534. functions.Floor[any]=FLOOR(%1$s)
  535. # Ln failed exception cases
  536. functions.Ln[any]=LN(%1$s)
  537. functions.Log10[any]=LOG10(%1$s)
  538. functions.Mod[any,any]=PMOD(%1$s, %2$s)
  539. # Power failed exception cases
  540. functions.Power[any,any]=POWER(%1$s, %2$s)
  541. functions.Random[]=RAND()
  542. functions.Random[any]=RAND(%1$s)
  543. functions.Round[any]=ROUND(%1$s)
  544. functions.Round[any,any]=ROUND(%1$s, %2$s)
  545. functions.Round[any,any,any]=
  546. functions.Sign[any]=SIGN(%1$s)
  547. # Sqrt failed exception cases
  548. functions.Sqrt[any]=SQRT(%1$s)
  549. functions.WidthBucket[any,any,any,any]=WIDTH_BUCKET(%1$s, %2$s, %3$s, %4$s)
  550. #
  551. # Array scalar functions
  552. #
  553. functions.Cardinality[any]=
  554. functions.TrimArray[any,any]=
  555. #
  556. # Trig Functions
  557. #
  558. functions.Arccos[any]=ACOS(%1$s)
  559. functions.Cos[any]=COS(%1$s)
  560. functions.Coshyp[any]=COSH(%1$s)
  561. functions.Arcsin[any]=ASIN(%1$s)
  562. functions.Sin[any]=SIN(%1$s)
  563. functions.Sinhyp[any]=SINH(%1$s)
  564. functions.Arctan[any]=ATAN(%1$s)
  565. functions.Tan[any]=TAN(%1$s)
  566. functions.Tanhyp[any]=TANH(%1$s)
  567. #
  568. # Temporal value expressions
  569. #
  570. # Note: JDBC does not define fractional seconds for TIME data type.
  571. functions.CurrentDate[]=CURRENT_DATE
  572. functions.CurrentTime[]=
  573. functions.CurrentTime[numeric]=
  574. functions.CurrentTimestamp[]=
  575. functions.CurrentTimestamp[numeric]=
  576. functions.LocalTime[]=
  577. functions.LocalTime[numeric]=
  578. functions.LocalTimestamp[]=cast(from_unixtime( unix_timestamp()) as timestamp)
  579. functions.LocalTimestamp[numeric]=
  580. #
  581. # XML Functions
  582. #
  583. functions.XMLAttributes=
  584. functions.XMLComment=
  585. functions.XMLConcat=
  586. functions.XMLDocument=
  587. functions.XMLElement=
  588. functions.XMLExists=
  589. functions.XMLForest=
  590. functions.XMLParse=
  591. functions.XMLPI=
  592. functions.XMLNamespaces=
  593. functions.XMLQuery=
  594. functions.XMLSerialize=
  595. functions.XMLTable=
  596. functions.XMLText=
  597. functions.XMLTransform=
  598. functions.XMLValidate=
  599. functions.XMLElement.ContentOption.NULL_ON_NULL=false
  600. functions.XMLElement.ContentOption.EMPTY_ON_NULL=false
  601. functions.XMLForest.ContentOption.NULL_ON_NULL=false
  602. functions.XMLForest.ContentOption.EMPTY_ON_NULL=false
  603. functions.XMLParse.DocumentOrContent.DOCUMENT=false
  604. functions.XMLParse.DocumentOrContent.CONTENT=false
  605. functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false
  606. functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false
  607. functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=true
  608. functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=true
  609. functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false
  610. functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false
  611. #
  612. # JSON functions.
  613. #
  614. functions.JSONArray=
  615. functions.JSONExists=
  616. functions.JSONObject=
  617. functions.JSONQuery=
  618. functions.JSONTable=
  619. functions.JSONValue=
  620. #
  621. # Business date functions.
  622. #
  623. # cast timestamp to double to preserve fractional seconds versus unix_timestamp which is only to seconds
  624. functions.AddFractionalSeconds[any,any]=add_nanos_ts(%1$s, %2$s)
  625. #functions.AddFractionalSeconds[any,any]=cast(cast(%1$s as double) + %2$s as timestamp)
  626. functions.AddSeconds[date,any]=
  627. functions.AddSeconds[any,any]=add_seconds_ts(%1$s, %2$s)
  628. #functions.AddSeconds[any,any]=cast(cast(%1$s as double) + cast(%2$s as int) as timestamp)
  629. functions.AddMinutes[date,any]=
  630. functions.AddMinutes[any,any]=add_minutes_ts(%1$s, %2$s)
  631. #functions.AddMinutes[any,any]=cast(cast(%1$s as double) + (60 * cast(%2$s as int)) as timestamp)
  632. functions.AddHours[date,any]=
  633. functions.AddHours[any,any]=add_hours_ts(%1$s, %2$s)
  634. #functions.AddHours[any,any]=cast(cast(%1$s as double) + (3600 * cast(%2$s as int)) as timestamp)
  635. functions.AddDays[interval_day_time,numeric]=
  636. functions.AddDays[date,numeric]=cast(date_add(%1$s, cast(%2$s as int)) as date)
  637. functions.AddDays[timestamp,numeric]=add_days_ts(%1$s, %2$s)
  638. functions.AddDays[timestamp_with_time_zone,numeric]=add_days_ts(%1$s, %2$s)
  639. #functions.AddDays[timestamp,numeric]=cast(cast(%1$s as double) + (86400 * cast(%2$s as int)) as timestamp)
  640. functions.AddWeeks[date,numeric]=add_weeks(%1$s, %2$s)
  641. functions.AddWeeks[timestamp,numeric]=add_weeks_ts(%1$s, %2$s)
  642. functions.AddWeeks[timestamp_with_time_zone,numeric]=add_weeks_ts(%1$s, %2$s)
  643. #functions.AddWeeks[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 7) as date)
  644. #functions.AddWeeks[timestamp,numeric]=cast(cast(%1$s as double) + (604800 * cast(%2$s as int)) as timestamp)
  645. # Using Spark's builtin add_months(date, int)
  646. functions.AddMonths[date,numeric]=add_months(%1$s, cast(%2$s as int))
  647. functions.AddMonths[timestamp,numeric]=add_months_ts(%1$s, %2$s)
  648. functions.AddMonths[timestamp_with_time_zone,numeric]=add_months_ts(%1$s, %2$s)
  649. functions.AddQuarters[date,numeric]=add_quarters(%1$s, %2$s)
  650. functions.AddQuarters[timestamp,numeric]=add_quarters_ts(%1$s, %2$s)
  651. functions.AddQuarters[timestamp_with_time_zone,numeric]=add_quarters_ts(%1$s, %2$s)
  652. functions.AddYears[date,numeric]=add_years(%1$s, %2$s)
  653. functions.AddYears[timestamp,numeric]=add_years_ts(%1$s, %2$s)
  654. functions.AddYears[timestamp_with_time_zone,numeric]=add_years_ts(%1$s, %2$s)
  655. #functions.AddYears[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 365) as date)
  656. functions.FractionalSecondsBetween[any,any]=fractional_seconds_between(%1$s, %2$s)
  657. functions.SecondsBetween[any,any]=seconds_between(%1$s, %2$s)
  658. #functions.SecondsBetween[any,any]=(unix_timestamp(%1$s) - unix_timestamp(%2$s))
  659. functions.MinutesBetween[any,any]=minutes_between(%1$s, %2$s)
  660. #functions.MinutesBetween[any,any]=cast((unix_timestamp(%1$s) - unix_timestamp(%2$s)) / 60 as bigint)
  661. functions.HoursBetween[any,any]=hours_between(%1$s, %2$s)
  662. #functions.HoursBetween[any,any]=cast((unix_timestamp(%1$s) - unix_timestamp(%2$s)) / 3600 as bigint)
  663. functions.DaysBetween[any,any]=datediff(%1$s, %2$s)
  664. functions.WeeksBetween[any,any]=weeks_between(%1$s, %2$s)
  665. functions.MonthsBetween[any,any]=months_between(%1$s, %2$s)
  666. functions.QuartersBetween[any,any]=quarters_between(%1$s, %2$s)
  667. functions.YearsBetween[any,any]=years_between(%1$s, %2$s)
  668. functions.DaysToEndOfMonth[any]=days_to_end_of_month(%1$s)
  669. functions.Age[any]=ymdint_between(current_date, %1$s)
  670. functions.FirstOfMonth[any]=
  671. functions.FirstOfMonth[date]=first_of_month(%1$s)
  672. functions.FirstOfMonth[timestamp]=first_of_month_ts(%1$s)
  673. functions.FirstOfMonth[timestamp_with_time_zone]=first_of_month_ts(%1$s)
  674. functions.LastOfMonth[any]=
  675. functions.LastOfMonth[date]=last_of_month(%1$s)
  676. functions.LastOfMonth[timestamp]=last_of_month_ts(%1$s)
  677. functions.LastOfMonth[timestamp_with_time_zone]=last_of_month_ts(%1$s)
  678. functions.MakeTimestamp[any,any,any]=make_timestamp(%1$s, %2$s, %3$s)
  679. functions.DayOfYear[any]=day_of_year(%1$s)
  680. functions.DayOfWeek[any,any]=day_of_week(%1$s, %2$s)
  681. functions.WeekOfYear[any]=weekofyear(%1$s)
  682. functions.YMDIntBetween[any,any]=ymdint_between(%1$s, %2$s)
  683. #
  684. # Table functions
  685. #
  686. functions.Unnest=
  687. #
  688. # Literals
  689. #
  690. literals.smallint=true
  691. literals.decimal=true
  692. literals.float=true
  693. literals.char=false
  694. literals.nchar=false
  695. literals.varchar=true
  696. literals.nvarchar=true
  697. literals.blob=false
  698. literals.clob=false
  699. literals.nclob=false
  700. literals.date=true
  701. literals.time=true
  702. literals.time_with_time_zone=false
  703. literals.timestamp=true
  704. literals.timestamp_with_time_zone=false
  705. literals.interval_year=false
  706. literals.interval_month=false
  707. literals.interval_year_to_month=false
  708. literals.interval_day=false
  709. literals.interval_hour=false
  710. literals.interval_minute=false
  711. literals.interval_second=false
  712. literals.interval_day_to_hour=false
  713. literals.interval_day_to_minute=false
  714. literals.interval_day_to_second=false
  715. literals.interval_hour_to_minute=false
  716. literals.interval_hour_to_second=false
  717. literals.interval_minute_to_second=false
  718. literals.binary=false
  719. literals.boolean=false
  720. literals.xml=false
  721. literals.array=false
  722. literals.perioddate=false
  723. # Literal format specifications. Formats are compatible with String.format().
  724. # Values for default behaviour are listed.
  725. # Only char, temporal and string types can be overridden.
  726. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
  727. # 0-padded string representing nanoseconds or empty.
  728. literals.format.time=cast( '1970-01-01 %1$02d:%2$02d:%3$02d%4$.10s' as timestamp )
  729. literals.format.time_with_time_zone=TIME '%1$02d:%2$02d:%3$02d%4$.10s%7$c%5$02d:%6$02d'
  730. literals.format.timestamp=cast( '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s' as timestamp )
  731. literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'
  732. literals.format.interval_day=INTERVAL %3$s'%1$d' DAY
  733. literals.format.interval_day_to_hour=INTERVAL %4$s'%1$d %2$d' DAY TO HOUR
  734. literals.format.interval_day_to_minute=INTERVAL %5$s'%1$d %2$02d:%3$02d' DAY TO MINUTE
  735. literals.format.interval_day_to_second=INTERVAL %8$s'%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY TO SECOND
  736. literals.format.interval_hour=INTERVAL %3$s'%1$d' HOUR
  737. literals.format.interval_hour_to_minute=INTERVAL %4$s'%1$02d:%2$02d' HOUR TO MINUTE
  738. literals.format.interval_hour_to_second=INTERVAL %7$s'%1$02d:%2$02d:%3$02d%4$.10s' HOUR TO SECOND
  739. literals.format.interval_minute=INTERVAL %3$s'%1$d' MINUTE
  740. literals.format.interval_minute_to_second=INTERVAL %6$s'%1$02d:%2$02d%3$.10s' MINUTE TO SECOND
  741. literals.format.interval_second=INTERVAL %3$s'%1$d%2$.10s' SECOND
  742. literals.format.interval_year=INTERVAL %3$s'%1$d' YEAR
  743. literals.format.interval_year_to_month=INTERVAL %4$s'%1$d-%2$d' YEAR TO MONTH
  744. literals.format.interval_month=INTERVAL %3$s'%1$d' MONTH
  745. # 1 parameter (string)
  746. literals.format.nchar='%s'
  747. # 1 parameter (string)
  748. literals.format.varchar='%s'
  749. # 1 parameter (string)
  750. literals.format.nvarchar='%s'
  751. # DataTypes
  752. #
  753. dataType.binary=true
  754. dataType.blob=false
  755. dataType.clob=false
  756. dataType.date=true
  757. dataType.time=true
  758. dataType.time_with_time_zone=false
  759. dataType.timestamp=true
  760. dataType.timestamp_with_time_zone=false
  761. dataType.interval_day=false
  762. dataType.interval_day_to_hour=false
  763. dataType.interval_day_to_minute=false
  764. dataType.interval_day_to_second=false
  765. dataType.interval_hour=false
  766. dataType.interval_hour_to_minute=false
  767. dataType.interval_hour_to_second=false
  768. dataType.interval_minute=false
  769. dataType.interval_minute_to_second=false
  770. dataType.interval_second=false
  771. dataType.interval_year=false
  772. dataType.interval_year_to_month=false
  773. dataType.interval_month=false
  774. dataType.decimal=true
  775. dataType.char=true
  776. dataType.nchar=false
  777. dataType.nvarchar=true
  778. dataType.xml=false
  779. dataType.period=false
  780. dataType.array=false
  781. dataType.struct=false
  782. dataType.map=false
  783. dataType.json=false
  784. #
  785. # Collation
  786. #
  787. # Collation Sequence SQL (SQL statement for retrieving the collation sequence)
  788. # This statement returns a single row and single column containing the collation sequence
  789. collation.sequence.sql=SELECT 'FLINT' , CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH FROM ( values ( 1 ) ) T
  790. # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data.
  791. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder.
  792. database.charset.sql=
  793. #
  794. # Collation sequence mappings
  795. # collation.sequence.mapping.<sql_result>=<collation_name>,<collation_weight>
  796. #
  797. # NOTE: These mappings are case sensitive
  798. #
  799. collation.sequence.mapping.FLINT=UnicodeCodepoint,IDENTICAL
  800. #
  801. # dataType.comparable
  802. #
  803. # Used to indicate that some data types that are comparable locally may not by the database
  804. # e.g. dataType.comparable[varchar,nvarchar]=false
  805. #
  806. # dataType.promotion
  807. #
  808. # Used to indicate what direction the promotion needs to occur
  809. # <lhs> -> <rhs> these properties are not symetrical
  810. # e.g. dataType.promotion[char,nvarchar]=true