123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876 |
- # Licensed Materials - Property of IBM
- # IBM Cognos Products: OQP
- # (C) Copyright IBM Corp. 2017, 2020
- # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
- #
- # Delimiters
- #
- delimiters.commentBegin=
- delimiters.commentEnd=
- delimiters.columnDelimiter=`
- # delimiters.catalogDelimiter=
- # delimiters.schemaDelimiter=
- # delimiters.tableDelimiter=
- delimiters.identifierQuoteString=`
- # delimiters.searchStringEscape=
- # delimiters.catalogSeparator=
- delimiters.literalQuoteEscape=\\'
- #
- # Limits
- #
- # Normally these values would be derived from the JDBC driver DatabaseMetadata
- # limits.maxBinaryLiteralLength=
- # limits.maxCharLiteralLength=
- # limits.maxColumnNameLength=
- # limits.maxColumnsInGroupBy=
- # limits.maxColumnsInIndex=
- # limits.maxColumnsInOrderBy=
- # limits.maxColumnsInSelect=
- # limits.maxColumnsInTable=
- # limits.maxConnections=
- # limits.maxCursorNameLength=
- # limits.maxIndexLength=
- # limits.maxSchemaNameLength=
- # limits.maxProcedureNameLength=
- # limits.maxCatalogNameLength=
- # limits.maxRowSize=
- # limits.maxStatementLength=
- # limits.maxStatements=
- limits.maxStatements=1
- # limits.maxTableNameLength=
- # limits.maxTablesInSelect=
- # limits.maxUserNameLength=
- limits.defaultTransactionIsolation=
- # limits.maxLengthInClause
- #
- # Keywords
- #
- keywords.columnAlias=AS
- #
- # General
- #
- #
- # Null ordering
- #
- general.nullsAreSortedHigh=false
- general.nullsAreSortedLow=false
- general.nullsAreSortedAtStart=false
- general.nullsAreSortedAtEnd=false
- general.nullsOrdering=true
- general.nullsOrderingInWindowSpecification=false
- # Cursor options - appended to end of generated SELECT statement.
- general.cursorOptions=
- #
- # Override sampling policy with a different one.
- # 1. tablesample accepting values such as BERNOULLI or SYSTEM
- # 2. rowsample accepting values such as NTH or RAND
- #
- sampling.tablesample=BERNOULLI
- sampling.rowsample=RANDOM
- #
- # Various
- #
- supports.duplicateColumnsInSelectList=true
- supports.columnAliasing=true
- supports.tableCorrelationNames=true
- supports.expressionsInSelectList=true
- supports.expressionsInINPredicate=true
- supports.expressionsInOrderBy=true
- supports.booleanExpressionsInSelectList=true
- supports.fieldsOfComplexTypeInSelectList=false
- supports.nestedOlap=false
- supports.orderByAlias=true
- supports.orderByName=true
- supports.orderByOrdinal=true
- supports.blobsInGroupBy=false
- supports.blobsInOrderBy=false
- # Results for other scalar, aggregate and set operations will differ from DQM/ISO-SQL.
- supports.emptyStringIsNull=false
- supports.crossProducts=true
- supports.multipleDistinctAggregates=true
- supports.rowNumberNoOrderBy=false
- supports.expressionsInSelectList=true
- supports.likeEscapeClause=true
- supports.expressionsInLikePattern=true
- supports.outerJoins=true
- supports.fullOuterJoins=true
- supports.withClauseInDerivedTable=false
- supports.derivedColumnLists=false
- supports.expressionsInINPredicate=true
- # Subqueries not supported in Having
- # Subqueries not supported in Group-by
- # Subquery column alias not supported
- supports.subqueriesInComparisons=true
- supports.subqueriesInExists=true
- supports.subqueriesInIns=true
- supports.subqueriesInQuantifieds=false
- supports.subqueriesInOnClause=false
- supports.subqueriesInCase=false
- supports.correlatedSubqueries=false
- supports.correlatedSubqueriesInSelectList=false
- supports.correlatedSubqueriesInIns=false
- supports.scalarSubqueries=false
- supports.nestedWithClause=false
- # integerDivision switched back to 'true' in order to be consistent with local processing.
- supports.integerDivision=true
- supports.expressionsInGroupBy=true
- supports.expressionsInOrderBy=true
- supports.aliasInOrderByExpression=false
- supports.orderByUnrelated=true
- supports.groupByUnrelated=false
- supports.thetaJoins=true
- supports.equiJoins=true
- supports.recursiveWithClause=false
- supports.orderByInDerivedTable=true
- supports.callProcedureInDerivedTable=false
- supports.constantsInWindows=true
- #join condition
- supports.join.betweenInOnClause=true
- supports.join.inPredicateInOnClause=true
- supports.join.isNullInOnClause=true
- supports.join.likeInOnClause=true
- supports.join.notInOnClause=true
- supports.join.orInOnClause=true
- supports.join.subqueriesInOnClause=true
- supports.join.onlyEquiWithAnd=false
- supports.join.inner.limitedThetaJoins=false
- supports.join.outer.thetaJoins=true
- supports.join.full.thetaJoins=true
- supports.join.full.distinctJoins=true
- supports.rewriteImplicitCrossJoins=true
- supports.constantsInCount=true
- supports.hanaInputParameters=false
- #casting with formatting pattern support
- supports.formatters.string_to_date=false
- supports.formatters.string_to_time=false
- supports.formatters.string_to_time_with_time_zone=false
- supports.formatters.string_to_timestamp=false
- supports.formatters.string_to_timestamp_with_time_zone=false
- #
- # Grouping query optimization
- #
- # If the RDBMS has costing/execution issues with group by or distinct consider these transforms
- performance.convertGroupByToDistinct=false
- performance.convertDistinctToGroupBy=false
- # V5 master-detail optimization when allRows optimization is specified
- v5.master-detail.transform=false
- performance.convertHavingToWhere=false
- performance.transitiveClosure=false
- performance.predicatePushdown=false
- performance.semiJoin=false
- # RTC 377496
- # Set this entry to F to avoid generation of predicates of the form
- # T1.C1 = T2.C1 OR ( T1.C1 IS NULL AND T2.C1 IS NULL ). Care must be
- # taken, however, since doing so may cause data integrity problems if
- # data contains null values.
- performance.generateEqualOrNull=true
- #
- # Commands
- #
- commands.Select=SELECT
- commands.Call=
- #
- # Tables
- #
- tables.joined=true
- tables.derived=true
- tables.lateral.derived=false
- #
- # Constructors
- #
- constructors.table=false
- constructors.row=false
- constructors.array=true
- constructors.period=false
- constructors.map=false
- #
- # Constructors - context overrides.
- #
- constructors.row.simpleCase=false
- constructors.row.between=false
- constructors.row.isDistinctFrom=false
- constructors.row.inListToTable=false
- #
- # Clauses
- #
- clauses.From=FROM
- clauses.Where=WHERE
- clauses.GroupBy=GROUP BY
- clauses.Having=HAVING
- # Does not allow column list in common table expression
- # Recursive form of common table expression not supported
- clauses.WithRecursive=
- clauses.With=WITH
- clauses.OrderBy=ORDER BY
- clauses.Distinct=DISTINCT
- clauses.Top=LIMIT %1$s
- clauses.At=
- clauses.Window=
- clauses.TableSampleSystem=TABLESAMPLE (%1$s PERCENT)
- clauses.TableSampleBernoulli=TABLESAMPLE (%1$s PERCENT)
- clauses.TableSampleBeforeAlias=true
- clauses.ForSystemTimeAsOf=
- clauses.ForSystemTimeFrom=
- clauses.ForSystemTimeBetween=
- #
- # Joins
- #
- # Does not allow on condition to use set functions
- # Does not allow join conditions to use sub-queries
- joins.Cross=%1$s CROSS JOIN %2$s
- joins.Inner=%1$s INNER JOIN %2$s ON %3$s
- joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s
- joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s
- joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s
- joins.RightNested=%1$s
- # Bracket inner join groups in order to avoid parsing error
- # A LOJ
- # B INNER JOIN C ON B.x = C.x
- # ON A.x = B.x
- # is converted to:
- # A LOJ
- # (B INNER JOIN C ON B.x = C.x)
- # ON A.x = B.x
- #
- joins.BracketInner=true
- #
- # Set Operators
- #
- operators.set.Union=%1$s UNION DISTINCT %2$s
- operators.set.Union.all=%1$s UNION ALL %2$s
- operators.set.Intersect=%1$s INTERSECT DISTINCT %2$s
- operators.set.Intersect.all=
- operators.set.Except=%1$s EXCEPT DISTINCT %2$s
- operators.set.Except.all=
- #
- # Logical Operators
- #
- operators.logical.And=%1$s AND %2$s
- operators.logical.Or=%1$s OR %2$s
- operators.logical.Not=NOT ( %1$s )
- operators.logical.Is=
- operators.logical.IsNot=
- operators.logical.IsJson=
- operators.logical.IsNotJson=
- #
- # Arithmetic and Character operators
- #
- # SPARK APACHE JIRA HIVE-9537
- operators.arithmetic.Concat[char,any]=
- operators.arithmetic.Concat[any,char]=
- operators.arithmetic.Concat[any,any]=concat(%1$s, %2$s)
- operators.arithmetic.Add[timestamp,any]=
- operators.arithmetic.Add[any,timestamp]=
- operators.arithmetic.Add[date,any]=
- operators.arithmetic.Add[any,date]=
- operators.arithmetic.Add[time,any]=
- operators.arithmetic.Add[any,time]=
- operators.arithmetic.Subtract[date,any]=
- operators.arithmetic.Subtract[any,date]=
- operators.arithmetic.Subtract[date,date]=datediff(%1$s, %2$s)
- operators.arithmetic.Subtract[timestamp,any]=
- operators.arithmetic.Subtract[any,timestamp]=
- operators.arithmetic.Subtract[time,any]=
- operators.arithmetic.Subtract[any,time]=
- operators.arithmetic.UnaryPlus[any]=+%1$s
- operators.arithmetic.Negate[any]=-%1$s
- #
- # Grouping Operators
- #
- # some cases where SPARK SQL does not support grouping set scenarios other SQL engines support
- operators.groupBy.Rollup=
- operators.groupBy.Cube=
- operators.groupBy.GroupingSets=
- #
- # Comparison Predicates
- #
- predicates.comparison.Equals[any,any]=%1$s = %2$s
- predicates.comparison.GreaterThan[any,any]=%1$s > %2$s
- predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s
- predicates.comparison.LessThan[any,any]=%1$s < %2$s
- predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s
- predicates.comparison.NotEquals[any,any]=%1$s <> %2$s
- #
- # Predicates
- #
- predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s
- predicates.In[any,any]=%1$s IN ( %2$s )
- predicates.Overlaps[any,any,any,any]=
- # Does not support value expression in Is Null
- predicates.IsNull[any]=%1$s IS NULL
- predicates.IsNotNull[any]=%1$s IS NOT NULL
- predicates.Like=%1$s LIKE %2$s
- predicates.Like.escape=%1$s LIKE %2$s ESCAPE %3$s
- predicates.LikeRegex=
- predicates.LikeRegex.flag=
- predicates.Similar=
- predicates.Similar.escape=
- predicates.Exists=
- predicates.All=
- predicates.Any=
- predicates.Some=
- predicates.IsDistinctFrom[any,any]=NOT (%1$s <=> %2$s)
- predicates.IsNotDistinctFrom[any,any]=%1$s <=> %2$s
- #
- # Period predicates.
- #
- predicates.PeriodOverlaps[any,any]=
- predicates.PeriodEquals[any,any]=
- predicates.PeriodContains[any,any]=
- predicates.PeriodPrecedes[any,any]=
- predicates.PeriodSucceeds[any,any]=
- predicates.PeriodImmediatelyPrecedes[any,any]=
- predicates.PeriodImmediatelySucceeds[any,any]=
- #
- # Expressions
- #
- expressions.ArrayElementRef.zeroBased=false
- #
- # Conditional expressions
- #
- expressions.SimpleCase=CASE
- expressions.SearchedCase=CASE
- expressions.Coalesce[any,any]=COALESCE(%1$s)
- # Due to how Hive compares varchar and char it will think that a zero length string and space are not equivalent
- # APACHE JIRA HIVE-9537, HIVE-3745 and HIVE-9745
- #expressions.NullIf=CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END
- expressions.NullIf[any,any]=NULLIF(%1$s, %2$s)
- # Minimum number of arguments for Coalesce function.
- expressions.Coalesce.minArgs=2
- #
- # Cast
- #
- expressions.Cast[any,any]=CAST(%1$s AS %2$s)
- expressions.Cast[any,double]=CAST(%1$s AS double)
- expressions.Cast[float,text]=
- expressions.Cast[double,text]=
- # Allow casting decimal values as varchar to prevent decomposition of binning queries.
- expressions.Cast[decimal,varchar]=CAST(%1$s AS %2$s)
- expressions.Cast[decimal,text]=
- # does not preserve trailing spaces of fixed length characters
- expressions.Cast[any,char]=
- # Spark does not have time data type, use timestamp
- expressions.Cast[any,time]=CAST(%1$s AS timestamp)
- #
- # Extract
- #
- expressions.Extract.YEAR[any]=year(%1$s)
- expressions.Extract.MONTH[any]=month(%1$s)
- expressions.Extract.DAY[any]=day(%1$s)
- expressions.Extract.HOUR[any]=hour(%1$s)
- expressions.Extract.MINUTE[any]=minute(%1$s)
- expressions.Extract.SECOND[any]=second(%1$s) + cast(%1$s as double) - cast(cast(from_unixtime(unix_timestamp(%1$s)) as timestamp) as double)
- # Flint always stores time in UTC
- expressions.Extract.TIMEZONE_HOUR[any]=
- expressions.Extract.TIMEZONE_MINUTE[any]=
- expressions.Extract.EPOCH[any]=
- #
- # Trim
- #
- expressions.Trim.BOTH[any]=trim(%1$s)
- expressions.Trim.BOTH[any,any]=trim(%1$s, %2$s)
- expressions.Trim.LEADING[any]=ltrim(%1$s)
- expressions.Trim.LEADING[any,any]=ltrim(%1$s, %2$s)
- expressions.Trim.TRAILING[any]=rtrim(%1$s)
- expressions.Trim.TRAILING[any,any]=rtrim(%1$s, %2$s)
- #
- # Windowed aggregates (SQL/OLAP).
- #
- olap.Count[any]=COUNT(%1$s)
- olap.CountStar[]=COUNT(*)
- olap.Max[any]=MAX(%1$s)
- olap.Min[any]=MIN(%1$s)
- olap.Sum[any]=SUM(%1$s)
- olap.Avg[any]=AVG(%1$s)
- olap.StdDevPop[any]=
- olap.StdDevSamp[any]=
- olap.VarPop[any]=
- olap.VarSamp[any]=
- olap.Rank[]=RANK()
- olap.DenseRank[]=DENSE_RANK()
- olap.PercentRank[]=PERCENT_RANK()
- olap.CumeDist[]=CUME_DIST()
- olap.PercentileCont[any,any]=
- olap.PercentileDisc[any,any]=
- olap.Median[any]=
- olap.RatioToReport[any]=
- olap.RowNumber[]=ROW_NUMBER()
- olap.Difference[any]=
- olap.FirstValue[any]=FIRST_VALUE(%1$s)
- olap.LastValue[any]=LAST_VALUE(%1$s)
- # Olap Ntile without an order by will sort nulls first and not last.
- olap.NTile[any]=
- olap.Tertile[]=
- # Olap lag did not throw expected exceptions
- olap.Lag[any]=LAG(%1$s)
- olap.Lag[any,any]=LAG(%1$s, %2$s)
- olap.Lag[any,any,any]=
- olap.Lag[any,any,any,any]=
- olap.Lead[any]=LEAD(%1$s)
- olap.Lead[any,any]=LEAD(%1$s, %2$s)
- olap.Lead[any,any,any]=
- olap.Lead[any,any,any,any]=
- olap.NthValue[any,any]=
- olap.NthValue[any,any,any]=
- olap.NthValue[any,any,any,any]=
- olap.Collect[any]=
- #
- # Window clause
- #
- # Olap functions cannot be used in Subquery but no method to disable it.
- olap.Window=
- olap.PartitionBy=PARTITION BY %1$s
- olap.OrderBy=ORDER BY %1$s
- #
- # Window specification
- #
- olap.Window.Specification[POF]=true
- olap.Window.Specification[PF]=true
- olap.Window.Specification[OF]=true
- olap.Window.Specification[PO]=true
- olap.Window.Specification[P]=true
- olap.Window.Specification[O]=true
- olap.Window.Specification[F]=true
- olap.Window.Specification[]=true
- olap.Window.Frame.Moving=true
- #
- # Olap Distinct
- #
- # Apache SPARK does only supports MIN/MAX scenarios
- olap.Min.distinct[any]=MIN(DISTINCT %1$s)
- olap.Max.distinct[any]=MAX(DISTINCT %1$s)
- olap.Sum.distinct[any]=
- olap.Avg.distinct[any]=
- olap.Count.distinct[any]=
- #
- # Aggregates
- #
- aggregates.Max[any]=MAX(%1$s)
- aggregates.Min[any]=MIN(%1$s)
- aggregates.Count[any]=COUNT(%1$s)
- aggregates.CountStar[]=COUNT(*)
- aggregates.Sum[any]=SUM(%1$s)
- aggregates.Avg[any]=AVG(%1$s)
- aggregates.StdDevPop[any]=STDDEV_POP(%1$s)
- aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s)
- aggregates.VarPop[any]=VAR_POP(%1$s)
- aggregates.VarSamp[any]=VAR_SAMP(%1$s)
- aggregates.Rank[any,any]=
- aggregates.DenseRank[any,any]=
- aggregates.PercentRank[any,any]=
- aggregates.CumeDistH[any,any]=
- aggregates.PercentileCont[any,any]=
- aggregates.PercentileDisc[any,any]=
- aggregates.Median[any]=
- aggregates.Grouping[any]=
- aggregates.XMLAgg=
- # Cannot have different order by clauses in array_agg
- aggregates.ArrayAgg[any]=
- aggregates.ArrayAgg[any,any]=
- aggregates.Collect[any]=
- #
- # Distinct aggregates
- #
- aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s)
- aggregates.Min.distinct[any]=MIN(DISTINCT %1$s)
- aggregates.Max.distinct[any]=MAX(DISTINCT %1$s)
- aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s)
- aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s)
- #
- # JSON aggregates.
- #
- aggregates.JSONArrayAgg=
- aggregates.JSONObjectAgg=
- #
- # Linear regression aggregates
- #
- aggregates.Corr[any,any]=corr(%1$s, %2$s)
- aggregates.CovarPop[any,any]=covar_pop(%1$s, %2$s)
- aggregates.CovarSamp[any,any]=covar_samp(%1$s, %2$s)
- # REGR_* functions to be implemented by JIRA SPARK-23907 (target is Spark 2.4)
- aggregates.RegrAvgX[any,any]=
- aggregates.RegrAvgY[any,any]=
- aggregates.RegrCount[any,any]=
- aggregates.RegrIntercept[any,any]=
- aggregates.RegrR2[any,any]=
- aggregates.RegrSlope[any,any]=
- aggregates.RegrSXX[any,any]=
- aggregates.RegrSXY[any,any]=
- aggregates.RegrSYY[any,any]=
- #
- # Character scalar functions
- #
- functions.CharLength[any]=LENGTH(%1$s)
- functions.CharLength[clob]=
- functions.OctetLength[any]=
- functions.BitLength[text]=
- functions.Upper[any]=UPPER(%1$s)
- functions.Lower[any]=LOWER(%1$s)
- functions.Substring[any,any]=substr(%1$s, cast(%2$s as int))
- functions.Substring[any,any,any]=substr(%1$s, cast(%2$s as int), cast(%3$s as int))
- functions.Position[any,any]= locate(%1$s, %2$s)
- functions.Index[any,any]=
- functions.Ascii[any]=
- functions.Translate[any,any]=
- functions.Normalize[any]=
- functions.Normalize[any,any]=
- functions.Normalize[any,any,any]=
- #Substring function to negative START value to parse the input string from its rightmost end.
- #It's not a standard SQL function, so leave the definition empty.
- functions.SubstringR[any,any]=
- functions.SubstringR[any,any,any]=
- #
- # Regular expression functions.
- #
- functions.SubstringRegex[any,any,any,any,any]=
- functions.OccurrencesRegex[any,any,any,any]=
- functions.PositionRegex[any,any,any,any,any,any]=
- #
- # Numeric scalar functions
- #
- functions.Abs[any]=ABS(%1$s)
- functions.Ceiling[any]=CEILING(%1$s)
- functions.Exp[any]=EXP(%1$s)
- functions.Floor[any]=FLOOR(%1$s)
- # Ln failed exception cases
- functions.Ln[any]=LN(%1$s)
- functions.Log10[any]=LOG10(%1$s)
- functions.Mod[any,any]=PMOD(%1$s, %2$s)
- # Power failed exception cases
- functions.Power[any,any]=POWER(%1$s, %2$s)
- functions.Random[]=RAND()
- functions.Random[any]=RAND(%1$s)
- functions.Round[any]=ROUND(%1$s)
- functions.Round[any,any]=ROUND(%1$s, %2$s)
- functions.Round[any,any,any]=
- functions.Sign[any]=SIGN(%1$s)
- # Sqrt failed exception cases
- functions.Sqrt[any]=SQRT(%1$s)
- functions.WidthBucket[any,any,any,any]=WIDTH_BUCKET(%1$s, %2$s, %3$s, %4$s)
- #
- # Array scalar functions
- #
- functions.Cardinality[any]=
- functions.TrimArray[any,any]=
- #
- # Trig Functions
- #
- functions.Arccos[any]=ACOS(%1$s)
- functions.Cos[any]=COS(%1$s)
- functions.Coshyp[any]=COSH(%1$s)
- functions.Arcsin[any]=ASIN(%1$s)
- functions.Sin[any]=SIN(%1$s)
- functions.Sinhyp[any]=SINH(%1$s)
- functions.Arctan[any]=ATAN(%1$s)
- functions.Tan[any]=TAN(%1$s)
- functions.Tanhyp[any]=TANH(%1$s)
- #
- # Temporal value expressions
- #
- # Note: JDBC does not define fractional seconds for TIME data type.
- functions.CurrentDate[]=CURRENT_DATE
- functions.CurrentTime[]=
- functions.CurrentTime[numeric]=
- functions.CurrentTimestamp[]=
- functions.CurrentTimestamp[numeric]=
- functions.LocalTime[]=
- functions.LocalTime[numeric]=
- functions.LocalTimestamp[]=cast(from_unixtime( unix_timestamp()) as timestamp)
- functions.LocalTimestamp[numeric]=
- #
- # XML Functions
- #
- functions.XMLAttributes=
- functions.XMLComment=
- functions.XMLConcat=
- functions.XMLDocument=
- functions.XMLElement=
- functions.XMLExists=
- functions.XMLForest=
- functions.XMLParse=
- functions.XMLPI=
- functions.XMLNamespaces=
- functions.XMLQuery=
- functions.XMLSerialize=
- functions.XMLTable=
- functions.XMLText=
- functions.XMLTransform=
- functions.XMLValidate=
- functions.XMLElement.ContentOption.NULL_ON_NULL=false
- functions.XMLElement.ContentOption.EMPTY_ON_NULL=false
- functions.XMLForest.ContentOption.NULL_ON_NULL=false
- functions.XMLForest.ContentOption.EMPTY_ON_NULL=false
- functions.XMLParse.DocumentOrContent.DOCUMENT=false
- functions.XMLParse.DocumentOrContent.CONTENT=false
- functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false
- functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false
- functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=true
- functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=true
- functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false
- functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false
- #
- # JSON functions.
- #
- functions.JSONArray=
- functions.JSONExists=
- functions.JSONObject=
- functions.JSONQuery=
- functions.JSONTable=
- functions.JSONValue=
- #
- # Business date functions.
- #
- # cast timestamp to double to preserve fractional seconds versus unix_timestamp which is only to seconds
- functions.AddFractionalSeconds[any,any]=add_nanos_ts(%1$s, %2$s)
- #functions.AddFractionalSeconds[any,any]=cast(cast(%1$s as double) + %2$s as timestamp)
- functions.AddSeconds[date,any]=
- functions.AddSeconds[any,any]=add_seconds_ts(%1$s, %2$s)
- #functions.AddSeconds[any,any]=cast(cast(%1$s as double) + cast(%2$s as int) as timestamp)
- functions.AddMinutes[date,any]=
- functions.AddMinutes[any,any]=add_minutes_ts(%1$s, %2$s)
- #functions.AddMinutes[any,any]=cast(cast(%1$s as double) + (60 * cast(%2$s as int)) as timestamp)
- functions.AddHours[date,any]=
- functions.AddHours[any,any]=add_hours_ts(%1$s, %2$s)
- #functions.AddHours[any,any]=cast(cast(%1$s as double) + (3600 * cast(%2$s as int)) as timestamp)
- functions.AddDays[interval_day_time,numeric]=
- functions.AddDays[date,numeric]=cast(date_add(%1$s, cast(%2$s as int)) as date)
- functions.AddDays[timestamp,numeric]=add_days_ts(%1$s, %2$s)
- functions.AddDays[timestamp_with_time_zone,numeric]=add_days_ts(%1$s, %2$s)
- #functions.AddDays[timestamp,numeric]=cast(cast(%1$s as double) + (86400 * cast(%2$s as int)) as timestamp)
- functions.AddWeeks[date,numeric]=add_weeks(%1$s, %2$s)
- functions.AddWeeks[timestamp,numeric]=add_weeks_ts(%1$s, %2$s)
- functions.AddWeeks[timestamp_with_time_zone,numeric]=add_weeks_ts(%1$s, %2$s)
- #functions.AddWeeks[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 7) as date)
- #functions.AddWeeks[timestamp,numeric]=cast(cast(%1$s as double) + (604800 * cast(%2$s as int)) as timestamp)
- # Using Spark's builtin add_months(date, int)
- functions.AddMonths[date,numeric]=add_months(%1$s, cast(%2$s as int))
- functions.AddMonths[timestamp,numeric]=add_months_ts(%1$s, %2$s)
- functions.AddMonths[timestamp_with_time_zone,numeric]=add_months_ts(%1$s, %2$s)
- functions.AddQuarters[date,numeric]=add_quarters(%1$s, %2$s)
- functions.AddQuarters[timestamp,numeric]=add_quarters_ts(%1$s, %2$s)
- functions.AddQuarters[timestamp_with_time_zone,numeric]=add_quarters_ts(%1$s, %2$s)
- functions.AddYears[date,numeric]=add_years(%1$s, %2$s)
- functions.AddYears[timestamp,numeric]=add_years_ts(%1$s, %2$s)
- functions.AddYears[timestamp_with_time_zone,numeric]=add_years_ts(%1$s, %2$s)
- #functions.AddYears[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 365) as date)
- functions.FractionalSecondsBetween[any,any]=fractional_seconds_between(%1$s, %2$s)
- functions.SecondsBetween[any,any]=seconds_between(%1$s, %2$s)
- #functions.SecondsBetween[any,any]=(unix_timestamp(%1$s) - unix_timestamp(%2$s))
- functions.MinutesBetween[any,any]=minutes_between(%1$s, %2$s)
- #functions.MinutesBetween[any,any]=cast((unix_timestamp(%1$s) - unix_timestamp(%2$s)) / 60 as bigint)
- functions.HoursBetween[any,any]=hours_between(%1$s, %2$s)
- #functions.HoursBetween[any,any]=cast((unix_timestamp(%1$s) - unix_timestamp(%2$s)) / 3600 as bigint)
- functions.DaysBetween[any,any]=datediff(%1$s, %2$s)
- functions.WeeksBetween[any,any]=weeks_between(%1$s, %2$s)
- functions.MonthsBetween[any,any]=months_between(%1$s, %2$s)
- functions.QuartersBetween[any,any]=quarters_between(%1$s, %2$s)
- functions.YearsBetween[any,any]=years_between(%1$s, %2$s)
- functions.DaysToEndOfMonth[any]=days_to_end_of_month(%1$s)
- functions.Age[any]=ymdint_between(current_date, %1$s)
- functions.FirstOfMonth[any]=
- functions.FirstOfMonth[date]=first_of_month(%1$s)
- functions.FirstOfMonth[timestamp]=first_of_month_ts(%1$s)
- functions.FirstOfMonth[timestamp_with_time_zone]=first_of_month_ts(%1$s)
- functions.LastOfMonth[any]=
- functions.LastOfMonth[date]=last_of_month(%1$s)
- functions.LastOfMonth[timestamp]=last_of_month_ts(%1$s)
- functions.LastOfMonth[timestamp_with_time_zone]=last_of_month_ts(%1$s)
- functions.MakeTimestamp[any,any,any]=make_timestamp(%1$s, %2$s, %3$s)
- functions.DayOfYear[any]=day_of_year(%1$s)
- functions.DayOfWeek[any,any]=day_of_week(%1$s, %2$s)
- functions.WeekOfYear[any]=weekofyear(%1$s)
- functions.YMDIntBetween[any,any]=ymdint_between(%1$s, %2$s)
- #
- # Table functions
- #
- functions.Unnest=
- #
- # Literals
- #
- literals.smallint=true
- literals.decimal=true
- literals.float=true
- literals.char=false
- literals.nchar=false
- literals.varchar=true
- literals.nvarchar=true
- literals.blob=false
- literals.clob=false
- literals.nclob=false
- literals.date=true
- literals.time=true
- literals.time_with_time_zone=false
- literals.timestamp=true
- literals.timestamp_with_time_zone=false
- literals.interval_year=false
- literals.interval_month=false
- literals.interval_year_to_month=false
- literals.interval_day=false
- literals.interval_hour=false
- literals.interval_minute=false
- literals.interval_second=false
- literals.interval_day_to_hour=false
- literals.interval_day_to_minute=false
- literals.interval_day_to_second=false
- literals.interval_hour_to_minute=false
- literals.interval_hour_to_second=false
- literals.interval_minute_to_second=false
- literals.binary=false
- literals.boolean=false
- literals.xml=false
- literals.array=false
- literals.perioddate=false
- # Literal format specifications. Formats are compatible with String.format().
- # Values for default behaviour are listed.
- # Only char, temporal and string types can be overridden.
- # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
- # 0-padded string representing nanoseconds or empty.
- literals.format.time=cast( '1970-01-01 %1$02d:%2$02d:%3$02d%4$.10s' as timestamp )
- literals.format.time_with_time_zone=TIME '%1$02d:%2$02d:%3$02d%4$.10s%7$c%5$02d:%6$02d'
- literals.format.timestamp=cast( '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s' as timestamp )
- literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'
- literals.format.interval_day=INTERVAL %3$s'%1$d' DAY
- literals.format.interval_day_to_hour=INTERVAL %4$s'%1$d %2$d' DAY TO HOUR
- literals.format.interval_day_to_minute=INTERVAL %5$s'%1$d %2$02d:%3$02d' DAY TO MINUTE
- literals.format.interval_day_to_second=INTERVAL %8$s'%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY TO SECOND
- literals.format.interval_hour=INTERVAL %3$s'%1$d' HOUR
- literals.format.interval_hour_to_minute=INTERVAL %4$s'%1$02d:%2$02d' HOUR TO MINUTE
- literals.format.interval_hour_to_second=INTERVAL %7$s'%1$02d:%2$02d:%3$02d%4$.10s' HOUR TO SECOND
- literals.format.interval_minute=INTERVAL %3$s'%1$d' MINUTE
- literals.format.interval_minute_to_second=INTERVAL %6$s'%1$02d:%2$02d%3$.10s' MINUTE TO SECOND
- literals.format.interval_second=INTERVAL %3$s'%1$d%2$.10s' SECOND
- literals.format.interval_year=INTERVAL %3$s'%1$d' YEAR
- literals.format.interval_year_to_month=INTERVAL %4$s'%1$d-%2$d' YEAR TO MONTH
- literals.format.interval_month=INTERVAL %3$s'%1$d' MONTH
- # 1 parameter (string)
- literals.format.nchar='%s'
- # 1 parameter (string)
- literals.format.varchar='%s'
- # 1 parameter (string)
- literals.format.nvarchar='%s'
- # DataTypes
- #
- dataType.binary=true
- dataType.blob=false
- dataType.clob=false
- dataType.date=true
- dataType.time=true
- dataType.time_with_time_zone=false
- dataType.timestamp=true
- dataType.timestamp_with_time_zone=false
- dataType.interval_day=false
- dataType.interval_day_to_hour=false
- dataType.interval_day_to_minute=false
- dataType.interval_day_to_second=false
- dataType.interval_hour=false
- dataType.interval_hour_to_minute=false
- dataType.interval_hour_to_second=false
- dataType.interval_minute=false
- dataType.interval_minute_to_second=false
- dataType.interval_second=false
- dataType.interval_year=false
- dataType.interval_year_to_month=false
- dataType.interval_month=false
- dataType.decimal=true
- dataType.char=true
- dataType.nchar=false
- dataType.nvarchar=true
- dataType.xml=false
- dataType.period=false
- dataType.array=false
- dataType.struct=false
- dataType.map=false
- dataType.json=false
- #
- # Collation
- #
- # Collation Sequence SQL (SQL statement for retrieving the collation sequence)
- # This statement returns a single row and single column containing the collation sequence
- collation.sequence.sql=SELECT 'FLINT' , CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH FROM ( values ( 1 ) ) T
- # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data.
- # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder.
- database.charset.sql=
- #
- # Collation sequence mappings
- # collation.sequence.mapping.<sql_result>=<collation_name>,<collation_weight>
- #
- # NOTE: These mappings are case sensitive
- #
- collation.sequence.mapping.FLINT=UnicodeCodepoint,IDENTICAL
- #
- # dataType.comparable
- #
- # Used to indicate that some data types that are comparable locally may not by the database
- # e.g. dataType.comparable[varchar,nvarchar]=false
- #
- # dataType.promotion
- #
- # Used to indicate what direction the promotion needs to occur
- # <lhs> -> <rhs> these properties are not symetrical
- # e.g. dataType.promotion[char,nvarchar]=true
|