google_bigquery.properties 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. #Licensed Materials - Property of IBM
  2. #
  3. #OCO Source Materials
  4. #
  5. #BI and PM: rdbmscert
  6. #
  7. #(C) Copyright IBM Corp. 2009,2020
  8. #
  9. #US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  10. #This properties file contains default configuration attributes for all
  11. #
  12. #relational data sources. Any data source that is different must override
  13. #
  14. #the value in their own properties file.
  15. #
  16. #
  17. # Delimiters
  18. #
  19. # While a vendor may parse a statement with comments it may strip them out and the server not see them
  20. delimiters.commentBegin=/*
  21. delimiters.commentEnd=*/
  22. # delimiters.catalogDelimiter=
  23. # delimiters.schemaDelimiter=
  24. # delimiters.tableDelimiter=
  25. # delimiters.columnDelimiter=
  26. # Google driver returns double quote Google issue 775
  27. delimiters.identifierQuoteString=`
  28. # delimiters.searchStringEscape=
  29. # delimiters.catalogSeparator=
  30. delimiters.literalQuoteEscape=\\'
  31. delimiters.literalEscapeTheEscapeCharacter=true
  32. #
  33. # Keywords
  34. #
  35. keywords.columnAlias=AS
  36. #
  37. # Limits
  38. #
  39. # Normally these values would be derived from the JDBC driver DatabaseMetadata
  40. # limits.maxBinaryLiteralLength=
  41. # limits.maxCharLiteralLength=
  42. # limits.maxColumnNameLength=
  43. # limits.maxColumnsInGroupBy=
  44. # limits.maxColumnsInIndex=
  45. # limits.maxColumnsInOrderBy=
  46. # limits.maxColumnsInSelect=
  47. # limits.maxColumnsInTable=
  48. # limits.maxConnections=
  49. # limits.maxCursorNameLength=
  50. # limits.maxIndexLength=
  51. # limits.maxSchemaNameLength=
  52. # limits.maxProcedureNameLength=
  53. # limits.maxCatalogNameLength=
  54. # limits.maxRowSize=
  55. # limits.maxStatementLength=
  56. # limits.maxStatements=
  57. limits.maxStatements=1
  58. # limits.maxTableNameLength=
  59. # limits.maxTablesInSelect=
  60. # limits.maxUserNameLength=
  61. # limits.defaultTransactionIsolation=
  62. # limits.maxLengthInClause
  63. #
  64. # General
  65. #
  66. #
  67. # Null ordering
  68. #
  69. # No support is provided for vendors who change how nulls sort based on data type.
  70. general.nullsAreSortedHigh=false
  71. general.nullsAreSortedLow=true
  72. general.nullsAreSortedAtStart=false
  73. general.nullsAreSortedAtEnd=false
  74. general.nullsOrdering=true
  75. general.nullsOrderingInWindowSpecification=true
  76. #
  77. # Override sampling policy with a different one.
  78. # 1. tablesample accepting values such as BERNOULLI or SYSTEM
  79. # 2. rowsample accepting values such as NTH or RANDOM
  80. #
  81. sampling.tablesample=
  82. sampling.rowsample=RANDOM
  83. # supports.hints=false
  84. supports.constantsInWindows=false
  85. # Cursor options - appended to end of generated SELECT statement.
  86. general.cursorOptions=
  87. #
  88. # Various
  89. #
  90. supports.duplicateColumnsInSelectList=false
  91. supports.duplicateColumnNamesInSelectList=false
  92. supports.columnAliasing=true
  93. supports.tableCorrelationNames=true
  94. supports.expressionsInSelectList=true
  95. supports.expressionsInINPredicate=true
  96. supports.booleanExpressionsInSelectList=true
  97. supports.fieldsOfComplexTypeInSelectList=false
  98. supports.likeEscapeClause=false
  99. supports.outerJoins=true
  100. supports.fullOuterJoins=true
  101. supports.subqueriesInComparisons=true
  102. supports.subqueriesInExists=true
  103. supports.subqueriesInIns=true
  104. supports.subqueriesInQuantifieds=false
  105. supports.subqueriesInOnClause=false
  106. supports.subqueriesInCase=true
  107. supports.correlatedSubqueries=false
  108. supports.correlatedSubqueriesInSelectList=true
  109. supports.correlatedSubqueriesInIns=true
  110. supports.scalarSubqueries=true
  111. supports.withClauseInDerivedTable=true
  112. supports.nestedWithClause=false
  113. supports.integerDivision=false
  114. supports.nestedOlap=false
  115. supports.derivedColumnLists=false
  116. supports.orderByAlias=true
  117. supports.orderByName=true
  118. supports.orderByOrdinal=true
  119. supports.groupByAlias=true
  120. supports.blobsInGroupBy=false
  121. supports.blobsInOrderBy=false
  122. # Results for other scalar, aggregate and set operations will differ from DQM/ISO-SQL.
  123. supports.emptyStringIsNull=false
  124. supports.expressionsInGroupBy=false
  125. supports.expressionsInOrderBy=true
  126. supports.aliasInOrderByExpression=true
  127. supports.orderByUnrelated=true
  128. supports.groupByUnrelated=false
  129. supports.thetaJoins=true
  130. supports.equiJoins=true
  131. supports.crossProducts=true
  132. supports.multipleDistinctAggregates=true
  133. supports.recursiveWithClause=false
  134. # Cannot use parameter markers in subquery
  135. # Cannot use parameter markers in various scenarios
  136. supports.orderByInDerivedTable=true
  137. supports.join.betweenInOnClause=true
  138. supports.join.inPredicateInOnClause=true
  139. supports.join.isNullInOnClause=true
  140. supports.join.likeInOnClause=true
  141. supports.join.notInOnClause=true
  142. supports.join.orInOnClause=true
  143. supports.join.subqueriesInOnClause=false
  144. supports.join.onlyEquiWithAnd=false
  145. supports.join.inner.limitedThetaJoins=false
  146. # does not support a theta outer join only equality
  147. supports.join.outer.thetaJoins=false
  148. supports.join.full.thetaJoins=false
  149. supports.join.full.distinctJoins=false
  150. #casting with formatting pattern support
  151. supports.formatters.string_to_date=false
  152. supports.formatters.string_to_time=false
  153. supports.formatters.string_to_time_with_time_zone=false
  154. supports.formatters.string_to_timestamp=false
  155. supports.formatters.string_to_timestamp_with_time_zone=false
  156. #
  157. # Grouping query optimization
  158. #
  159. # If the RDBMS has costing/execution issues with group by or distinct consider these transforms
  160. performance.convertGroupByToDistinct=false
  161. performance.convertDistinctToGroupBy=false
  162. # V5 master-detail optimization when allRows optimization is specified
  163. v5.master-detail.transform=false
  164. performance.convertHavingToWhere=false
  165. performance.transitiveClosure=false
  166. performance.predicatePushdown=false
  167. performance.semiJoin=false
  168. # RTC 377496
  169. # Set this entry to F to avoid generation of predicates of the form
  170. # T1.C1 = T2.C1 OR ( T1.C1 IS NULL AND T2.C1 IS NULL ). Care must be
  171. # taken, however, since doing so may cause data integrity problems if
  172. # data contains null values.
  173. performance.generateEqualOrNull=true
  174. #
  175. # Commands
  176. #
  177. commands.Select=SELECT
  178. commands.Call=
  179. #
  180. # Tables
  181. #
  182. tables.joined=true
  183. tables.derived=true
  184. tables.lateral.derived=false
  185. #
  186. # Constructors
  187. #
  188. constructors.table=false
  189. constructors.row=false
  190. constructors.array=true
  191. constructors.period=false
  192. constructors.map=false
  193. #
  194. # Constructors - context overrides.
  195. #
  196. constructors.row.simpleCase=true
  197. constructors.row.between=false
  198. constructors.row.comparison=false
  199. constructors.row.in=false
  200. constructors.row.isDistinctFrom=false
  201. constructors.row.inListToTable=false
  202. #
  203. # Clauses
  204. #
  205. clauses.From=FROM
  206. clauses.Where=WHERE
  207. clauses.GroupBy=GROUP BY
  208. clauses.Having=HAVING
  209. # Does not allow column list in common table expression
  210. # Recursive form of common table expression not supported
  211. clauses.WithRecursive=
  212. clauses.With=WITH
  213. clauses.OrderBy=ORDER BY
  214. clauses.Distinct=DISTINCT
  215. clauses.Top=LIMIT %1$s
  216. clauses.At=
  217. clauses.Window=
  218. clauses.TableSampleSystem=
  219. clauses.TableSampleBernoulli=
  220. clauses.ForSystemTimeAsOf=
  221. clauses.ForSystemTimeFrom=
  222. clauses.ForSystemTimeBetween=
  223. #
  224. # Joins
  225. #
  226. #cannot project specific columns in cross join
  227. joins.Cross=
  228. joins.Inner=%1$s INNER JOIN %2$s ON %3$s
  229. joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s
  230. joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s
  231. joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s
  232. joins.RightNested=%1$s
  233. joins.Bracket=true
  234. #
  235. # Set Operators
  236. #
  237. # One or more set operations does not follow ISO data type combination rules. Can effect set operations, CASE, COALESCE...
  238. # Google requires DISTINCT keyword
  239. operators.set.Union=%1$s UNION DISTINCT %2$s
  240. operators.set.Union.all=%1$s UNION ALL %2$s
  241. operators.set.Intersect=%1$s INTERSECT DISTINCT %2$s
  242. operators.set.Intersect.all=
  243. operators.set.Except=%1$s EXCEPT DISTINCT %2$s
  244. operators.set.Except.all=
  245. #
  246. # Logical Operators
  247. #
  248. operators.logical.And=%1$s AND %2$s
  249. operators.logical.Or=%1$s OR %2$s
  250. operators.logical.Not=NOT ( %1$s )
  251. # Google Bigquery is operator does not support unknown
  252. operators.logical.Is=
  253. operators.logical.IsNot=
  254. operators.logical.IsJson=
  255. operators.logical.IsNotJson=
  256. #
  257. # Arithmetic and Character operators
  258. #
  259. operators.arithmetic.Add[any,any]=%1$s + %2$s
  260. operators.arithmetic.Subtract[any,any]=
  261. operators.arithmetic.Subtract[numeric,numeric]=%1$s - %2$s
  262. operators.arithmetic.Multiply[any,any]=%1$s * %2$s
  263. operators.arithmetic.Divide[any,any]=%1$s / %2$s
  264. operators.arithmetic.UnaryPlus[any]=+%1$s
  265. operators.arithmetic.Negate[any]=-%1$s
  266. # BigQuery does not perform implicit type conversion so coerce to string for integer, date, time and timestamps
  267. operators.arithmetic.Concat[any,any]=concat(cast(%1$s as string), cast(%2$s as string))
  268. operators.arithmetic.Concat[text,text]=concat(%1$s,%2$s)
  269. operators.arithmetic.Concat[double,any]=
  270. operators.arithmetic.Concat[float,any]=
  271. operators.arithmetic.Concat[decimal,any]=
  272. operators.arithmetic.Concat[any,double]=
  273. operators.arithmetic.Concat[any,float]=
  274. operators.arithmetic.Concat[any,decimal]=
  275. #
  276. # Grouping Operators
  277. #
  278. operators.groupBy.Rollup=
  279. operators.groupBy.Cube=
  280. operators.groupBy.GroupingSets=
  281. #
  282. # Comparison Predicates
  283. #
  284. predicates.comparison.Equals[any,any]=%1$s = %2$s
  285. predicates.comparison.Equals[date,timestamp]=cast(%1$s as timestamp) = %2$s
  286. predicates.comparison.Equals[timestamp,date]=%1$s = cast(%2$s as timestamp)
  287. predicates.comparison.Equals[boolean,varchar]=%1$s = cast(%2$s as boolean)
  288. predicates.comparison.Equals[varchar,boolean]=cast(%1$s as boolean) = %2$s
  289. predicates.comparison.GreaterThan[any,any]=%1$s > %2$s
  290. predicates.comparison.GreaterThan[date,timestamp]=cast(%1$s as timestamp) > %2$s
  291. predicates.comparison.GreaterThan[timestamp,date]=%1$s > cast(%2$s as timestamp)
  292. predicates.comparison.GreaterThan[boolean,varchar]=%1$s > cast(%2$s as boolean)
  293. predicates.comparison.GreaterThan[varchar,boolean]=cast(%1$s as boolean) > %2$s
  294. predicates.comparison.GreaterThanOrEquals[any,any]=%1$s >= %2$s
  295. predicates.comparison.GreaterThanOrEquals[date,timestamp]=cast(%1$s as timestamp) >= %2$s
  296. predicates.comparison.GreaterThanOrEquals[timestamp,date]=%1$s >= cast(%2$s as timestamp)
  297. predicates.comparison.GreaterThanOrEquals[boolean,varchar]=%1$s >= cast(%2$s as boolean)
  298. predicates.comparison.GreaterThanOrEquals[varchar,boolean]=cast(%1$s as boolean) >= %2$s
  299. predicates.comparison.LessThan[any,any]=%1$s < %2$s
  300. predicates.comparison.LessThan[date,timestamp]=cast(%1$s as timestamp) < %2$s
  301. predicates.comparison.LessThan[timestamp,date]=%1$s < cast(%2$s as timestamp)
  302. predicates.comparison.LessThan[boolean,varchar]=%1$s < cast(%2$s as boolean)
  303. predicates.comparison.LessThan[varchar,boolean]=cast(%1$s as boolean) < %2$s
  304. predicates.comparison.LessThanOrEquals[any,any]=%1$s <= %2$s
  305. predicates.comparison.LessThanOrEquals[date,timestamp]=cast(%1$s as timestamp) <= %2$s
  306. predicates.comparison.LessThanOrEquals[timestamp,date]=%1$s <= cast(%2$s as timestamp)
  307. predicates.comparison.LessThanOrEquals[boolean,varchar]=%1$s <= cast(%2$s as boolean)
  308. predicates.comparison.LessThanOrEquals[varchar,boolean]=cast(%1$s as boolean) <= %2$s
  309. predicates.comparison.NotEquals[any,any]=%1$s <> %2$s
  310. predicates.comparison.NotEquals[date,timestamp]=cast(%1$s as timestamp) <> %2$s
  311. predicates.comparison.NotEquals[timestamp,date]=%1$s <> cast(%2$s as timestamp)
  312. predicates.comparison.NotEquals[boolean,varchar]=%1$s <> cast(%2$s as boolean)
  313. predicates.comparison.NotEquals[varchar,boolean]=cast(%1$s as boolean) <> %2$s
  314. #
  315. # Predicates
  316. #
  317. predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s
  318. predicates.In[any,any]=%1$s IN ( %2$s )
  319. predicates.Overlaps[any,any,any,any]=
  320. predicates.IsNull=%1$s IS NULL
  321. predicates.IsNotNull=%1$s IS NOT NULL
  322. predicates.Like=%1$s LIKE %2$s
  323. predicates.Like.escape=
  324. predicates.LikeRegex=
  325. predicates.LikeRegex.flag=
  326. predicates.Similar=
  327. predicates.Similar.escape=
  328. predicates.Exists=EXISTS %1$s
  329. predicates.All=
  330. predicates.Any=
  331. predicates.Some=
  332. predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
  333. # Distinct from predicate not supported by alternate is not distinct from expression could be used.
  334. predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
  335. #
  336. # Period predicates.
  337. #
  338. predicates.PeriodOverlaps[any,any]=
  339. predicates.PeriodEquals[any,any]=
  340. predicates.PeriodContains[any,any]=
  341. predicates.PeriodPrecedes[any,any]=
  342. predicates.PeriodSucceeds[any,any]=
  343. predicates.PeriodImmediatelyPrecedes[any,any]=
  344. predicates.PeriodImmediatelySucceeds[any,any]=
  345. #
  346. # Expressions
  347. #
  348. expressions.ArrayElementRef.zeroBased=false
  349. #
  350. # Conditional expressions
  351. #
  352. expressions.SimpleCase=CASE
  353. expressions.SearchedCase=CASE
  354. expressions.Coalesce[any,any]=COALESCE(%1$s)
  355. expressions.Coalesce[timestamp,timestamp]=COALESCE(%1$s)
  356. expressions.Coalesce[timestamp,any]=
  357. expressions.Coalesce[numeric,timestamp]=
  358. expressions.Coalesce[numeric,time]=
  359. expressions.Coalesce[date,timestamp]=
  360. expressions.Coalesce[date,time]=
  361. expressions.NullIf[any,any]=NULLIF(%1$s, %2$s)
  362. expressions.NullIf[timestamp,timestamp]=NULLIF(%1$s, %2$s)
  363. expressions.NullIf[timestamp,any]=
  364. expressions.NullIf[numeric,timestamp]=
  365. expressions.NullIf[date,timestamp]=
  366. # NULLIF(%1$s, %2$s) is equivalent to CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END
  367. # Minimum number of arguments for Coalesce function.
  368. expressions.Coalesce.minArgs=2
  369. #
  370. # Cast
  371. #
  372. # Cannot cast from null value to Bigint
  373. # Cannot cast from null value to Double
  374. # Cannot cast from null value to Varchar
  375. # Cannot cast from null value to TimestampWithTZ
  376. expressions.Cast[any,any]=
  377. expressions.Cast[boolean,varchar]=SUBSTR(UPPER(CAST(%1$s as STRING)), 1, %3$d)
  378. expressions.Cast[boolean,boolean]=CAST(%1$s AS boolean)
  379. expressions.Cast[long,long]=CAST(%1$s as int64)
  380. expressions.Cast[long,double]=CAST(%1$s as float64)
  381. expressions.Cast[long,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d)
  382. expressions.Cast[decimal,double]=CAST(%1$s as float64)
  383. expressions.Cast[double,long]=CAST(%1$s as int64)
  384. expressions.Cast[double,double]=CAST(%1$s as float64)
  385. expressions.Cast[double,varchar]=
  386. expressions.Cast[varchar,boolean]=CAST(%1$s AS boolean)
  387. expressions.Cast[varchar,long]=CAST(%1$s as int64)
  388. expressions.Cast[varchar,double]=CAST(%1$s as float64)
  389. expressions.Cast[varchar,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d)
  390. expressions.Cast[varchar,date]=CAST(%1$s as date)
  391. expressions.Cast[varchar,timestamp]=CAST(%1$s as datetime)
  392. expressions.Cast[varchar,time]=CAST(%1$s as time)
  393. expressions.Cast[varchar,timestamp_with_time_zone]=
  394. expressions.Cast[date,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d)
  395. expressions.Cast[date,timestamp]=CAST( %1$s as DATETIME)
  396. expressions.Cast[timestamp,timestamp]=CAST( %1$s as DATETIME)
  397. expressions.Cast[date,timestamp_with_time_zone]=
  398. expressions.Cast[time,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d)
  399. expressions.Cast[time,time]=CAST(%1$s as time)
  400. expressions.Cast[time,timestamp]=
  401. expressions.Cast[time,timestamp_with_time_zone]=
  402. expressions.Cast[timestamp,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d)
  403. expressions.Cast[timestamp,date]=cast(%1$s as DATE)
  404. expressions.Cast[timestamp,time]=
  405. expressions.Cast[timestamp,timestamp]=
  406. expressions.Cast[timestamp,timestamp_with_time_zone]=
  407. expressions.Cast[timestamp_with_time_zone,varchar]=
  408. expressions.Cast[timestamp_with_time_zone,time]=CAST( extract( time from %1$s) as TIME)
  409. expressions.Cast[timestamp_with_time_zone,date]=CAST( %1$s as DATE)
  410. expressions.Cast[timestamp_with_time_zone,timestamp]=
  411. expressions.Cast[timestamp_with_time_zone,timestamp_with_time_zone]=CAST( %1$s as TIMESTAMP)
  412. expressions.Cast[date,date]=cast(%1$s as DATE)
  413. expressions.Cast[any,decimal]=
  414. expressions.Cast[decimal,text]=
  415. expressions.Cast[decimal,long]=
  416. expressions.Cast[any,long]=CAST(%1$s as int64)
  417. expressions.Cast[any,double]=CAST(%1$s as float64)
  418. expressions.Cast[any,varchar]=SUBSTR(CAST(%1$s as STRING), 1, %3$d)
  419. expressions.Cast[any,date]=cast(%1$s as DATE)
  420. expressions.Cast[any,timestamp]=CAST( %1$s as DATETIME)
  421. expressions.Cast[any,boolean]=CAST(%1$s AS %2$s)
  422. expressions.Cast[any,timestamp]=CAST( %1$s as TIME)
  423. #
  424. # Extract
  425. #
  426. expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s)
  427. expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s)
  428. expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s)
  429. expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s)
  430. expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s)
  431. expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s)
  432. expressions.Extract.TIMEZONE_HOUR[any]=
  433. expressions.Extract.TIMEZONE_MINUTE[any]=
  434. #
  435. # Trim
  436. #
  437. expressions.Trim.BOTH[any]=TRIM(%1$s)
  438. expressions.Trim.BOTH[any,any]=TRIM(%2$s, %1$s)
  439. expressions.Trim.LEADING[any]=LTRIM(%1$s)
  440. expressions.Trim.LEADING[any,any]=LTRIM(%2$s, %1$s)
  441. expressions.Trim.TRAILING[any]=RTRIM(%1$s)
  442. expressions.Trim.TRAILING[any,any]=RTRIM(%2$s, %1$s)
  443. #
  444. # Windowed aggregates (SQL/OLAP).
  445. #
  446. olap.Max[any]=MAX(%1$s)
  447. olap.Min[any]=MIN(%1$s)
  448. olap.Sum[any]=SUM(%1$s)
  449. olap.Avg[any]=AVG(%1$s)
  450. olap.Count[any]=COUNT(%1$s)
  451. olap.CountStar[]=COUNT(*)
  452. olap.StdDevPop[any]=STDDEV_POP(%1$s)
  453. olap.StdDevSamp[any]=STDDEV_SAMP(%1$s)
  454. olap.VarPop[any]=VAR_POP(%1$s)
  455. olap.VarSamp[any]=VAR_SAMP(%1$s)
  456. olap.Rank[]=RANK()
  457. olap.DenseRank[]=DENSE_RANK()
  458. olap.CumeDist[]=CUME_DIST()
  459. olap.PercentileCont[any,any]=
  460. olap.PercentileDisc[any,any]=
  461. olap.PercentRank[]=PERCENT_RANK()
  462. olap.RatioToReport[any]=
  463. olap.Median[any]=
  464. olap.RowNumber[]=ROW_NUMBER()
  465. olap.Difference[any]=
  466. olap.FirstValue[any]=FIRST_VALUE(%1$s)
  467. olap.LastValue[any]=LAST_VALUE(%1$s)
  468. # Olap Ntile without an order by will sort nulls first and not last.
  469. olap.NTile[any]=NTILE(%1$s)
  470. olap.Tertile[]=
  471. olap.Lag[any]=LAG(%1$s)
  472. olap.Lag[any,any]=LAG(%1$s, %2$s)
  473. olap.Lag[any,any,any]=LAG(%1$s, %2$s, %3$s)
  474. olap.Lag[any,any,any,any]=
  475. olap.Lead[any]=LEAD(%1$s)
  476. olap.Lead[any,any]=LEAD(%1$s, %2$s)
  477. olap.Lead[any,any,any]=LEAD(%1$s, %2$s, %3$s)
  478. olap.Lead[any,any,any,any]=
  479. olap.NthValue[any]=
  480. olap.NthValue[any,any]=NTH_VALUE(%1$s, %2$s)
  481. olap.NthValue[any,any,any]=
  482. olap.NthValue[any,any,any,any]=
  483. olap.Collect[any]=
  484. #
  485. # Window clause
  486. #
  487. olap.Window=OVER(%1$s)
  488. olap.PartitionBy=PARTITION BY %1$s
  489. # Olap does not allow a constants in the order by list.
  490. # Olap does not allow a constants in the partition by list.
  491. # Olap does not allow a constants and expressions in the over clause.
  492. # Lack of window ordering impacts many aggregates being pushed
  493. # Unable to specify a literal in window ordering
  494. olap.OrderBy=ORDER BY %1$s
  495. #
  496. # Window specification
  497. #
  498. olap.Window.Specification[POF]=true
  499. olap.Window.Specification[PF]=true
  500. olap.Window.Specification[OF]=true
  501. olap.Window.Specification[PO]=true
  502. olap.Window.Specification[P]=true
  503. olap.Window.Specification[O]=true
  504. olap.Window.Specification[F]=true
  505. olap.Window.Specification[]=true
  506. olap.Window.Frame.Moving=true
  507. #
  508. # Olap Distinct
  509. #
  510. olap.Min.distinct[any]=MIN(DISTINCT %1$s)
  511. olap.Max.distinct[any]=MAX(DISTINCT %1$s)
  512. olap.Sum.distinct[any]=SUM(DISTINCT %1$s)
  513. olap.Avg.distinct[any]=
  514. olap.Count.distinct[any]=COUNT(DISTINCT %1$s)
  515. #
  516. # Aggregates
  517. #
  518. aggregates.Max[timestamp]=MAX(%1$s)
  519. aggregates.Max[boolean]=MAX(%1$s)
  520. aggregates.Max[varchar]=MAX(%1$s)
  521. aggregates.Max[time]=MAX(%1$s)
  522. aggregates.Max[numeric]=MAX(%1$s)
  523. aggregates.Max[timestamp_with_time_zone]=MAX(%1$s)
  524. aggregates.Max[date]=MAX(%1$s)
  525. aggregates.Min[timestamp]=MIN(%1$s)
  526. aggregates.Min[boolean]=MIN(%1$s)
  527. aggregates.Min[varchar]=MIN(%1$s)
  528. aggregates.Min[time]=MIN(%1$s)
  529. aggregates.Min[numeric]=MIN(%1$s)
  530. aggregates.Min[timestamp_with_time_zone]=MIN(%1$s)
  531. aggregates.Min[date]=MIN(%1$s)
  532. aggregates.Count[any]=COUNT(%1$s)
  533. aggregates.CountStar[]=COUNT(*)
  534. aggregates.Sum[any]=SUM(%1$s)
  535. aggregates.Avg[any]=AVG(%1$s)
  536. aggregates.StdDevPop[any]=STDDEV_POP(%1$s)
  537. aggregates.StdDevSamp[any]=STDDEV_SAMP(%1$s)
  538. aggregates.VarPop[any]=VAR_POP(%1$s)
  539. aggregates.VarSamp[any]=VAR_SAMP(%1$s)
  540. aggregates.Rank[any,any]=
  541. aggregates.DenseRank[any,any]=
  542. aggregates.PercentRank[any,any]=PERCENT_RANK(%1$s) WITHIN GROUP (ORDER BY %2$s)
  543. aggregates.CumeDistH[any,any]=
  544. aggregates.PercentileDisc[any,any]=
  545. aggregates.PercentileCont[any,any]=
  546. aggregates.Median[any]=
  547. aggregates.Grouping[any]=
  548. aggregates.XMLAgg[any]=
  549. # Cannot have different order by clauses in array_agg
  550. aggregates.ArrayAgg[any]=
  551. # Vendor supports ordering in array agg but not the specification of null ordering
  552. aggregates.ArrayAgg[any,any]=
  553. aggregates.Collect[any]=
  554. #
  555. # Distinct aggregates
  556. #
  557. aggregates.Avg.distinct[any]=AVG(DISTINCT %1$s)
  558. aggregates.Min.distinct[any]=MIN(DISTINCT %1$s)
  559. aggregates.Max.distinct[any]=MAX(DISTINCT %1$s)
  560. aggregates.Count.distinct[any]=COUNT(DISTINCT %1$s)
  561. aggregates.Sum.distinct[any]=SUM(DISTINCT %1$s)
  562. #
  563. # Linear regression aggregates
  564. #
  565. aggregates.Corr[any,any]=CORR(%1$s, %2$s)
  566. aggregates.CovarPop[any,any]=COVAR_POP(%1$s, %2$s)
  567. aggregates.CovarSamp[any,any]=COVAR_SAMP(%1$s, %2$s)
  568. aggregates.RegrAvgX[any,any]=
  569. aggregates.RegrAvgY[any,any]=
  570. aggregates.RegrCount[any,any]=
  571. aggregates.RegrIntercept[any,any]=
  572. aggregates.RegrR2[any,any]=
  573. aggregates.RegrSlope[any,any]=
  574. aggregates.RegrSXX[any,any]=
  575. aggregates.RegrSXY[any,any]=
  576. aggregates.RegrSYY[any,any]=
  577. #
  578. # JSON aggregates.
  579. #
  580. aggregates.JSONArrayAgg=
  581. aggregates.JSONObjectAgg=
  582. #
  583. # Character scalar functions
  584. #
  585. functions.CharLength[any]=CHAR_LENGTH(%1$s)
  586. functions.OctetLength[any]=
  587. functions.BitLength[any]=
  588. functions.Upper[any]=UPPER(%1$s)
  589. functions.Lower[any]=LOWER(%1$s)
  590. functions.Substring[any,any]=SUBSTR(%1$s, cast(floor(%2$s) as int64))
  591. functions.Substring[any,any,any]=SUBSTR(%1$s, cast(floor(%2$s) as int64), cast(floor(%3$s) as int64))
  592. functions.Position[any,any]=STRPOS(%2$s, %1$s)
  593. functions.Index[any,any]=
  594. functions.Ascii[any]=
  595. functions.Translate[any,any]=
  596. functions.Normalize[any]=
  597. functions.Normalize[any,any]=
  598. functions.Normalize[any,any,any]=
  599. #Substring function to negative START value to parse the input string from its rightmost end.
  600. #It's not a standard SQL function, so leave the definition empty.
  601. functions.SubstringR[any,any]=
  602. functions.SubstringR[any,any,any]=
  603. #
  604. # Regular expression functions.
  605. #
  606. functions.SubstringRegex[any,any,any,any,any]=
  607. functions.OccurrencesRegex[any,any,any,any]=
  608. functions.PositionRegex[any,any,any,any,any,any]=
  609. #
  610. # Numeric scalar functions
  611. #
  612. functions.Abs[any]=ABS(%1$s)
  613. functions.Ceiling[any]=CEILING(%1$s)
  614. functions.Exp[any]=EXP(%1$s)
  615. functions.Floor[any]=FLOOR(%1$s)
  616. functions.Ln[any]=LN(%1$s)
  617. functions.Log10[any]=LOG10(%1$s)
  618. functions.Mod[any,any]=MOD(%1$s, %2$s)
  619. # only supports int64 types
  620. functions.Mod[long,long]=MOD(%1$s, %2$s)
  621. functions.Power[any,any]=POWER(%1$s, %2$s)
  622. functions.Random[]=RAND()
  623. functions.Random[any]=
  624. functions.Round[any]=ROUND(%1$s)
  625. functions.Round[any,any]=ROUND(%1$s, %2$s)
  626. functions.Round[any,any,any]=
  627. functions.Sign[any]=SIGN(%1$s)
  628. functions.Sqrt[any]=SQRT(%1$s)
  629. functions.WidthBucket[any,any,any,any]=
  630. #
  631. # Array scalar functions
  632. #
  633. functions.Cardinality[any]=
  634. functions.TrimArray[any,any]=
  635. #
  636. # Trig Functions
  637. #
  638. functions.Arccos[any]=ACOS(%1$s)
  639. functions.Cos[any]=COS(%1$s)
  640. functions.Coshyp[any]=COSH(%1$s)
  641. functions.Arcsin[any]=ASIN(%1$s)
  642. functions.Sin[any]=SIN(%1$s)
  643. functions.Sinhyp[any]=SINH(%1$s)
  644. functions.Arctan[any]=ATAN(%1$s)
  645. functions.Tan[any]=TAN(%1$s)
  646. functions.Tanhyp[any]=TANH(%1$s)
  647. #
  648. # Temporal value expressions
  649. #
  650. # Note: JDBC does not define fractional seconds for TIME data type.
  651. # Bigquery is automatically shifting based on TZ versus date reflecting session tz
  652. functions.CurrentDate[]=
  653. functions.CurrentTime[]=CURRENT_TIME()
  654. functions.CurrentTime[numeric]=
  655. functions.CurrentTimestamp[]=CURRENT_TIMESTAMP()
  656. functions.CurrentTimestamp[numeric]=
  657. functions.LocalTime[]=
  658. functions.LocalTime[numeric]=
  659. functions.LocalTimestamp[]=
  660. functions.LocalTimestamp[numeric]=
  661. #
  662. # XML Functions
  663. #
  664. functions.XMLAttributes=
  665. functions.XMLComment=
  666. functions.XMLConcat=
  667. functions.XMLDocument=
  668. functions.XMLElement=
  669. functions.XMLExists=
  670. functions.XMLForest=
  671. functions.XMLParse=
  672. functions.XMLPI=
  673. functions.XMLNamespaces=
  674. functions.XMLQuery=
  675. functions.XMLSerialize=
  676. functions.XMLTable=
  677. functions.XMLText=
  678. functions.XMLTransform=
  679. functions.XMLValidate=
  680. functions.XMLElement.ContentOption.NULL_ON_NULL=false
  681. functions.XMLElement.ContentOption.EMPTY_ON_NULL=false
  682. functions.XMLForest.ContentOption.NULL_ON_NULL=false
  683. functions.XMLForest.ContentOption.EMPTY_ON_NULL=false
  684. functions.XMLParse.DocumentOrContent.DOCUMENT=false
  685. functions.XMLParse.DocumentOrContent.CONTENT=false
  686. functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false
  687. functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false
  688. functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=false
  689. functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=false
  690. functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false
  691. functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false
  692. #
  693. # JSON functions.
  694. #
  695. functions.JSONObject=
  696. functions.JSONArray=
  697. functions.JSONExists=
  698. functions.JSONQuery=
  699. functions.JSONTable=
  700. functions.JSONValue=
  701. #
  702. # Business functions.
  703. #
  704. functions.AddHours[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) HOUR )
  705. functions.AddHours[timestamp,any]=
  706. functions.AddHours[time,any]=TIME_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) HOUR )
  707. functions.AddMinutes[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) MINUTE )
  708. functions.AddMinutes[timestamp,any]=
  709. functions.AddMinutes[time,any]=TIME_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) MINUTE )
  710. functions.AddSeconds[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, CAST(TRUNC(%2$s) as int64) SECOND )
  711. functions.AddSeconds[timestamp,any]=
  712. functions.AddSeconds[time,any]=TIME_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) SECOND )
  713. functions.AddFractionalSeconds[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, CAST(TRUNC(%2$s) as int64) MILLISECOND )
  714. functions.AddFractionalSeconds[timestamp,any]=
  715. functions.AddFractionalSeconds[time,any]=TIME_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) MILLISECOND )
  716. functions.AddDays[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) DAY )
  717. functions.AddDays[timestamp,any]=
  718. functions.AddDays[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) DAY )
  719. functions.AddWeeks[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) WEEK )
  720. functions.AddWeeks[timestamp,any]=
  721. functions.AddWeeks[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) * 7 DAY )
  722. functions.AddMonths[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) MONTH )
  723. functions.AddMonths[timestamp,any]=
  724. functions.AddMonths[timestamp_with_time_zone,any]=
  725. functions.AddQuarters[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) QUARTER )
  726. functions.AddQuarters[timestamp,any]=
  727. functions.AddQuarters[timestamp_with_time_zone,any]=
  728. functions.AddYears[date,any]=DATE_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) YEAR )
  729. functions.AddYears[timestamp,any]=
  730. functions.AddYears[timestamp_with_time_zone,any]=TIMESTAMP_ADD(%1$s, INTERVAL CAST(TRUNC(%2$s) as int64) * 365 DAY )
  731. functions.Age[any]=
  732. functions.FractionalSecondsBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, MILLISECOND)
  733. functions.FractionalSecondsBetween[any,timestamp]=
  734. functions.FractionalSecondsBetween[timestamp,any]=
  735. functions.FractionalSecondsBetween[timestamp,time]=TIME_DIFF(%1$s, %2$s, MILLISECOND)
  736. functions.SecondsBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, SECOND)
  737. functions.SecondsBetween[any,timestamp]=
  738. functions.SecondsBetween[timestamp,any]=
  739. functions.SecondsBetween[time,time]=TIME_DIFF(%1$s, %2$s, SECOND)
  740. functions.MinutesBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, MINUTE)
  741. functions.MinutesBetween[any,timestamp]=
  742. functions.MinutesBetween[timestamp,any]=
  743. functions.MinutesBetween[time,time]=TIME_DIFF(%1$s, %2$s, MINUTE)
  744. functions.HoursBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, HOUR)
  745. functions.HoursBetween[timestamp,any]=
  746. functions.HoursBetween[any,timestamp]=
  747. functions.HoursBetween[time,time]=TIME_DIFF(%1$s, %2$s, HOUR)
  748. functions.DaysBetween[any,any]=
  749. functions.DaysBetween[date,date]=DATE_DIFF(%1$s, %2$s, DAY)
  750. functions.DaysBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, DAY)
  751. functions.WeeksBetween[any,any]=
  752. functions.MonthsBetween[any,any]=
  753. functions.QuartersBetween[any,any]=
  754. functions.YearsBetween[any,any]=
  755. functions.YearsBetween[date,date]=DATE_DIFF(%1$s, %2$s, YEAR)
  756. functions.YearsBetween[timestamp_with_time_zone,timestamp_with_time_zone]=TIMESTAMP_DIFF(%1$s, %2$s, YEAR)
  757. functions.DayOfWeek[any,any]=
  758. functions.DayOfWeek[date,any]=MOD(EXTRACT(DAYOFWEEK FROM %1$s) - 1 + 7 - (%2$s), 7) + 1
  759. functions.DayOfWeek[timestamp_with_time_zone,any]=MOD(EXTRACT(DAYOFWEEK FROM %1$s) - 1 + 7 - (%2$s), 7) + 1
  760. functions.DayOfYear[any]=EXTRACT(DAYOFYEAR FROM %1$s)
  761. functions.DaysToEndOfMonth[any]
  762. functions.DaysToEndOfMonth[date]=DATE_DIFF(DATE_ADD(DATE_TRUNC(%1$s, MONTH), interval 1 month), %1$s, DAY) - 1
  763. functions.DaysToEndOfMonth[timestamp_with_time_zone]=EXTRACT(DAY FROM DATE_SUB(DATE_ADD(DATE_TRUNC(extract(DATE from %1$s), MONTH), INTERVAL 1 MONTH), INTERVAL 1 DAY)) - EXTRACT(DAY from %1$s)
  764. functions.FirstOfMonth[any]=
  765. functions.FirstOfMonth[date]=DATE_TRUNC(%1$s, MONTH)
  766. functions.FirstOfMonth[timestamp_with_time_zone]=TIMESTAMP_TRUNC(%1$s, MONTH)
  767. functions.LastOfMonth[any]=
  768. functions.LastOfMonth[date]=DATE_SUB( DATE_ADD( DATE_TRUNC(%1$s, MONTH), interval 1 month) ), interval 1 day)
  769. functions.LastOfMonth[timestamp_with_time_zone]=TIMESTAMP_ADD(TIMESTAMP_TRUNC( %1$s), INTERVAL EXTRACT(DAY FROM DATE_SUB(DATE_ADD(DATE_TRUNC(extract(DATE from %1$s), MONTH), INTERVAL 1 MONTH), INTERVAL 1 DAY)) - 1 DAY)
  770. functions.MakeTimestamp[any,any,any]=
  771. functions.WeekOfYear[any]=
  772. functions.YMDIntBetween[any,any]=
  773. #
  774. # Table functions.
  775. #
  776. functions.Unnest=
  777. #
  778. # Literals
  779. #
  780. literals.integer=true
  781. literals.smallint=true
  782. literals.decimal=true
  783. literals.float=true
  784. literals.char=false
  785. literals.nchar=false
  786. literals.varchar=true
  787. literals.nvarchar=false
  788. literals.blob=false
  789. literals.clob=false
  790. literals.nclob=false
  791. literals.date=true
  792. literals.time=true
  793. literals.time_with_time_zone=false
  794. literals.timestamp=true
  795. literals.timestamp_with_time_zone=true
  796. literals.interval_year=false
  797. literals.interval_month=false
  798. literals.interval_year_to_month=false
  799. literals.interval_day=false
  800. literals.interval_hour=false
  801. literals.interval_minute=false
  802. literals.interval_second=false
  803. literals.interval_day_to_hour=false
  804. literals.interval_day_to_minute=false
  805. literals.interval_day_to_second=false
  806. literals.interval_hour_to_minute=false
  807. literals.interval_hour_to_second=false
  808. literals.interval_minute_to_second=false
  809. literals.time_with_time_zone=false
  810. literals.binary=false
  811. literals.boolean=true
  812. literals.xml=false
  813. literals.array=false
  814. literals.perioddate=false
  815. # Literal format specifications. Formats are compatible with String.format().
  816. # Values for default behaviour are listed.
  817. # Only char, temporal and string types can be overridden.
  818. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
  819. # 0-padded string representing nanoseconds or empty.
  820. literals.format.boolean=TRUE:FALSE:UNKNOWN
  821. literals.format.char='%s'
  822. literals.format.clob='%s'
  823. literals.format.date=DATE '%1$04d-%2$02d-%3$02d'
  824. literals.format.decimal=cast(%s as numeric)
  825. literals.format.interval_day=
  826. literals.format.interval_day_to_hour=
  827. literals.format.interval_day_to_minute=
  828. literals.format.interval_day_to_second=
  829. literals.format.interval_hour=
  830. literals.format.interval_hour_to_minute=
  831. literals.format.interval_hour_to_second=
  832. literals.format.interval_minute=
  833. literals.format.interval_minute_to_second=
  834. literals.format.interval_month=
  835. literals.format.interval_second=
  836. literals.format.interval_year=
  837. literals.format.interval_year_to_month=
  838. literals.format.nchar=
  839. literals.format.nvarchar=
  840. literals.format.time=TIME '%1$02d:%2$02d:%3$02d%4$.6s'
  841. literals.format.time_with_time_zone=
  842. literals.format.timestamp=DATETIME '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.6s'
  843. literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s%10$c%8$02d:%9$02d'
  844. literals.format.varchar='%s'
  845. #
  846. # DataTypes
  847. #
  848. dataType.smallint=false
  849. dataType.integer=false
  850. dataType.long=true
  851. dataType.decimal=true
  852. dataType.float=false
  853. dataType.double=true
  854. dataType.char=false
  855. dataType.nchar=false
  856. dataType.varchar=true
  857. dataType.nvarchar=false
  858. dataType.clob=false
  859. dataType.blob=false
  860. dataType.date=true
  861. dataType.time=true
  862. dataType.time_with_time_zone=false
  863. dataType.timestamp=true
  864. dataType.timestamp_with_time_zone=true
  865. dataType.interval_year=false
  866. dataType.interval_month=false
  867. dataType.interval_year_to_month=false
  868. dataType.interval_day=false
  869. dataType.interval_hour=false
  870. dataType.interval_minute=false
  871. dataType.interval_second=false
  872. dataType.interval_day_to_hour=false
  873. dataType.interval_day_to_minute=false
  874. dataType.interval_day_to_second=false
  875. dataType.interval_hour_to_minute=false
  876. dataType.interval_hour_to_second=false
  877. dataType.interval_minute_to_second=false
  878. dataType.boolean=true
  879. dataType.binary=false
  880. dataType.xml=false
  881. dataType.perioddate=false
  882. dataType.array=false
  883. dataType.struct=false
  884. dataType.map=false
  885. dataType.json=false
  886. #
  887. # Collation
  888. #
  889. # Collation Sequence SQL (SQL statement for retrieving the collation sequence)
  890. # This statement returns a single row and single column containing the collation sequence
  891. collation.sequence.sql=
  892. # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data.
  893. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder.
  894. database.charset.sql=
  895. #
  896. # dataType.comparable
  897. #
  898. # Used to indicate that some data types that are comparable locally may not by the database
  899. # e.g. dataType.comparable[varchar,nvarchar]=false
  900. #
  901. # dataType.promotion
  902. #
  903. # Used to indicate what direction the promotion needs to occur
  904. # <lhs> -> <rhs> these properties are not symetrical
  905. # e.g. dataType.promotion[char,nvarchar]=true