hdb.properties 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. # Licensed Materials - Property of IBM
  2. # IBM Cognos Products: OQP
  3. # (C) Copyright IBM Corp. 2005, 2020
  4. # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  5. #
  6. # Delimiters
  7. #
  8. # While a vendor may parse a statement with comments it may strip them out and the server not see them
  9. delimiters.commentBegin=/*
  10. delimiters.commentEnd=*/
  11. #
  12. # Various limits.
  13. #
  14. limits.castClobToVarcharMaxSize=5000
  15. #
  16. # Keywords
  17. #
  18. keywords.columnAlias=AS
  19. #
  20. # General
  21. #
  22. #
  23. # Null ordering
  24. #
  25. # No support is provided for vendors who change how nulls sort based on data type.
  26. general.nullsAreSortedHigh=false
  27. general.nullsAreSortedLow=true
  28. #
  29. # Override sampling policy with a different one.
  30. # 1. tablesample accepting values such as BERNOULLI or SYSTEM
  31. # 2. rowsample accepting values such as NTH or RANDOM
  32. #
  33. sampling.tablesample=
  34. sampling.rowsample=RANDOM
  35. #
  36. # Various
  37. #
  38. supports.columnAliasing=true
  39. supports.tableCorrelationNames=true
  40. supports.expressionsInOrderBy=true
  41. supports.aliasInOrderByExpression=true
  42. supports.orderByName=true
  43. supports.orderByOrdinal=true
  44. supports.expressionsInINPredicate=true
  45. supports.likeEscapeClause=true
  46. supports.fullOuterJoins=true
  47. supports.outerJoins=true
  48. # Subqueries not supported in Group-by
  49. # Subquery column alias not supported
  50. supports.subqueriesInComparisons=true
  51. supports.subqueriesInExists=true
  52. supports.subqueriesInIns=true
  53. supports.subqueriesInQuantifieds=true
  54. supports.subqueriesInCase=true
  55. supports.correlatedSubqueries=true
  56. supports.scalarSubqueries=true
  57. supports.withClauseInDerivedTable=false
  58. supports.nestedWithClause=false
  59. supports.recursiveWithClause=false
  60. # Currently, SAP hana returns 1/2 as decimal(34,0) which is same as integer. Therefore, the switch should set to "true"
  61. supports.integerDivision=true
  62. supports.nestedOlap=false
  63. supports.derivedColumnLists=false
  64. # Does not allow grouping on non project column
  65. supports.blobsInGroupBy=false
  66. supports.blobsInOrderBy=false
  67. supports.emptyStringIsNull=true
  68. supports.expressionsInGroupBy=true
  69. supports.constantsInWindows=false
  70. supports.callProcedureInDerivedTable=false
  71. supports.join.subqueriesInOnClause=false
  72. supports.hanaInputParameters=true
  73. #casting with formatting pattern support
  74. supports.formatters.string_to_date=false
  75. supports.formatters.string_to_time=false
  76. supports.formatters.string_to_time_with_time_zone=false
  77. supports.formatters.string_to_timestamp=false
  78. supports.formatters.string_to_timestamp_with_time_zone=false
  79. #
  80. # Grouping query optimization
  81. #
  82. # If the RDBMS has costing/execution issues with group by or distinct consider these transforms
  83. performance.convertGroupByToDistinct=false
  84. performance.convertDistinctToGroupBy=false
  85. # V5 master-detail optimization when allRows optimization is specified
  86. v5.master-detail.transform=false
  87. #
  88. # Commands
  89. #
  90. commands.Select=SELECT
  91. commands.Call=CALL
  92. #
  93. # Tables
  94. #
  95. tables.joined=true
  96. tables.derived=true
  97. tables.lateral.derived=false
  98. #
  99. # Constructors
  100. #
  101. constructors.table=false
  102. constructors.row=true
  103. constructors.array=false
  104. constructors.period=false
  105. #
  106. # Constructors - context overrides.
  107. #
  108. constructors.row.between=false
  109. constructors.row.comparison=true
  110. constructors.row.in=true
  111. constructors.row.isDistinctFrom=false
  112. constructors.row.simpleCase=false
  113. #
  114. # Clauses
  115. #
  116. clauses.From=FROM
  117. clauses.Where=WHERE
  118. clauses.GroupBy=GROUP BY
  119. clauses.Having=HAVING
  120. clauses.With=WITH
  121. clauses.WithRecursive=
  122. clauses.OrderBy=ORDER BY
  123. clauses.Distinct=DISTINCT
  124. clauses.Top= TOP %1$s
  125. clauses.Top.Position=top.distinct
  126. clauses.At=
  127. clauses.Window=
  128. clauses.TableSampleSystem=
  129. clauses.TableSampleBernoulli=
  130. #
  131. # Joins
  132. #
  133. joins.Cross=%1$s CROSS JOIN %2$s
  134. joins.Inner=%1$s INNER JOIN %2$s ON %3$s
  135. joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s
  136. joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s
  137. joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s
  138. #
  139. # Set Operators
  140. #
  141. # One or more set operations does not follow ISO data type combination rules. Can effect set operations, CASE, COALESCE...
  142. operators.set.Union=%1$s UNION %2$s
  143. operators.set.Union.all=%1$s UNION ALL %2$s
  144. operators.set.Intersect=%1$s INTERSECT %2$s
  145. operators.set.Intersect.all=
  146. operators.set.Except=%1$s EXCEPT %2$s
  147. operators.set.Except.all=
  148. #
  149. # Logical Operators
  150. #
  151. operators.logical.And=%1$s AND %2$s
  152. operators.logical.Or=%1$s OR %2$s
  153. operators.logical.Not=NOT ( %1$s )
  154. operators.logical.Is=
  155. operators.logical.IsNot=
  156. #
  157. # Arithmetic and Character operators
  158. #
  159. #SAP HANA connot support date - date
  160. operators.arithmetic.Subtract[date,date]=DAYS_BETWEEN(%2$s, %1$s)
  161. operators.arithmetic.Subtract[date,any]=
  162. operators.arithmetic.Subtract[timestamp,any]=
  163. operators.arithmetic.Subtract[time,any]=
  164. #OSS 0001101325 2012
  165. operators.arithmetic.Divide[integer,integer]=
  166. operators.arithmetic.Divide[integer,smallint]=
  167. operators.arithmetic.Divide[integer,long]=
  168. operators.arithmetic.Divide[smallint,smallint]=
  169. operators.arithmetic.Divide[smallint,integer]=
  170. operators.arithmetic.Divide[smallint,long]=
  171. operators.arithmetic.Divide[long,smallint]=
  172. operators.arithmetic.Divide[long,integer]=
  173. operators.arithmetic.Divide[long,long]=
  174. #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
  175. operators.arithmetic.Concat[char,any]=
  176. operators.arithmetic.Concat[nchar,any]=
  177. operators.arithmetic.Concat[any,char]=
  178. operators.arithmetic.Concat[any,nchar]=
  179. operators.arithmetic.Concat[blob,any]=
  180. operators.arithmetic.Concat[any,blob]=
  181. operators.arithmetic.Concat[any,any]=%1$s || %2$s
  182. #
  183. # Grouping Operators
  184. #
  185. operators.groupBy.Rollup=ROLLUP
  186. operators.groupBy.Cube=CUBE
  187. operators.groupBy.GroupingSets=GROUPING SETS
  188. #
  189. # Comparison Predicates
  190. #
  191. predicates.comparison.Equals[clob,any]=
  192. predicates.comparison.Equals[any,clob]=
  193. predicates.comparison.Equals[blob,any]=
  194. predicates.comparison.Equals[any,blob]=
  195. predicates.comparison.GreaterThan[clob,any]=
  196. predicates.comparison.GreaterThan[any,clob]=
  197. predicates.comparison.GreaterThan[blob,any]=
  198. predicates.comparison.GreaterThan[any,blob]=
  199. predicates.comparison.GreaterThanOrEquals[clob,any]=
  200. predicates.comparison.GreaterThanOrEquals[any,clob]=
  201. predicates.comparison.GreaterThanOrEquals[blob,any]=
  202. predicates.comparison.GreaterThanOrEquals[any,blob]=
  203. predicates.comparison.LessThan[clob,any]=
  204. predicates.comparison.LessThan[any,clob]=
  205. predicates.comparison.LessThan[blob,any]=
  206. predicates.comparison.LessThan[any,blob]=
  207. predicates.comparison.LessThanOrEquals[clob,any]=
  208. predicates.comparison.LessThanOrEquals[any,clob]=
  209. predicates.comparison.LessThanOrEquals[blob,any]=
  210. predicates.comparison.LessThanOrEquals[any,blob]=
  211. predicates.comparison.NotEquals[clob,any]=
  212. predicates.comparison.NotEquals[any,clob]=
  213. predicates.comparison.NotEquals[blob,any]=
  214. predicates.comparison.NotEquals[any,blob]=
  215. #
  216. # Predicates
  217. #
  218. predicates.In[any,any]=%1$s IN ( %2$s )
  219. predicates.In[clob,any]=
  220. predicates.In[any,clob]=
  221. predicates.Overlaps[any,any,any,any]=
  222. predicates.LikeRegex=
  223. predicates.LikeRegex.flag=
  224. predicates.Similar.escape=
  225. predicates.Similar=
  226. predicates.Similar.escape=
  227. predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
  228. predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
  229. #
  230. # Period predicates.
  231. #
  232. predicates.PeriodOverlaps[any,any]=
  233. predicates.PeriodEquals[any,any]=
  234. predicates.PeriodContains[any,any]=
  235. predicates.PeriodPrecedes[any,any]=
  236. predicates.PeriodSucceeds[any,any]=
  237. predicates.PeriodImmediatelyPrecedes[any,any]=
  238. predicates.PeriodImmediatelySucceeds[any,any]=
  239. #
  240. # Conditional expressions
  241. #
  242. # One or more case operations does not follow ISO type rules.
  243. expressions.SimpleCase=CASE
  244. #expressions.SearchedCase.compatibleResults=false
  245. expressions.Coalesce=COALESCE(%1$s)
  246. expressions.NullIf=NULLIF(%1$s, %2$s)
  247. #
  248. # Cast
  249. #
  250. # OSS: 0000491475 2012
  251. expressions.Cast[any,float]=TO_REAL(%1$s)
  252. #OSS: 0000491530 2012
  253. #SQL standard page 213 using respective values in an execution of CURRENT_DATE
  254. expressions.Cast[time,timestamp]=TO_TIMESTAMP(CONCAT(CONCAT(current_date,' '), %1$s) )
  255. expressions.Cast[date,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD')
  256. # turn off cast to char/nchar, because it return varchar/nvarchar, when concat for date+time generated from transfermation ConvertDatePlusTimeToCompatibleSQL, it will be failed
  257. # failed testcase testConvertDatePlusTimeToCompatibleSQL
  258. expressions.Cast[any,nchar]=
  259. expressions.Cast[any,char]=
  260. expressions.Cast[xml,any]=
  261. expressions.Cast[clob,any]=
  262. expressions.Cast[any,xml]=
  263. expressions.Cast[decimal,nvarchar]=
  264. expressions.Cast[decimal,varchar]=
  265. # Minimum number of arguments for Coalesce function.
  266. expressions.Coalesce.minArgs=2
  267. #
  268. # Extract
  269. #
  270. expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s)
  271. expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s)
  272. expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s)
  273. expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s)
  274. expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s)
  275. #OSS: 0001070313 2012
  276. #SAP HANA return decimal(34,0) and our RQE regard it as integer and automatically round it or cast it to integer.
  277. expressions.Extract.SECOND[timestamp]=TO_DECIMAL(EXTRACT(SECOND FROM %1$s),11,9)
  278. expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s)
  279. expressions.Extract.TIMEZONE_HOUR[any]=
  280. expressions.Extract.TIMEZONE_MINUTE[any]=
  281. expressions.Extract.EPOCH[any]=
  282. #
  283. # Trim
  284. #
  285. #functional support;
  286. expressions.Trim.BOTH[char]=
  287. expressions.Trim.LEADING[char]=
  288. expressions.Trim.TRAILING[char]=
  289. expressions.Trim.BOTH[any,char]=
  290. expressions.Trim.LEADING[any,char]=
  291. expressions.Trim.TRAILING[any,char]=
  292. xpressions.Trim.BOTH[nchar]=
  293. expressions.Trim.LEADING[nchar]=
  294. expressions.Trim.TRAILING[nchar]=
  295. expressions.Trim.BOTH[any,nchar]=
  296. expressions.Trim.LEADING[any,nchar]=
  297. expressions.Trim.TRAILING[any,nchar]=
  298. expressions.Trim.BOTH[blob]=
  299. expressions.Trim.LEADING[blob]=
  300. expressions.Trim.TRAILING[blob]=
  301. expressions.Trim.BOTH[any,blob]=
  302. expressions.Trim.LEADING[any,blob]=
  303. expressions.Trim.TRAILING[any,blob]=
  304. expressions.Trim.BOTH[any]=TRIM(%1$s)
  305. expressions.Trim.LEADING[any]=LTRIM(%1$s)
  306. expressions.Trim.TRAILING[any]=RTRIM(%1$s)
  307. expressions.Trim.BOTH[any,any]=RTRIM(LTRIM(%2$s,%1$s),%1$s)
  308. expressions.Trim.LEADING[any,any]=LTRIM(%2$s,%1$s)
  309. expressions.Trim.TRAILING[any,any]=RTRIM(%2$s,%1$s)
  310. #
  311. # Window clause
  312. #
  313. # Lack of window ordering impacts many aggregates being pushed
  314. # Unable to specify a literal in window ordering
  315. # Unable to specify ordering in a window
  316. general.nullsOrderingInWindowSpecification=true
  317. #
  318. # Window specification
  319. #
  320. olap.Window.Specification[POF]=false
  321. olap.Window.Specification[PF]=false
  322. olap.Window.Specification[OF]=true
  323. olap.Window.Specification[PO]=true
  324. olap.Window.Specification[P]=true
  325. olap.Window.Specification[O]=true
  326. olap.Window.Specification[F]=false
  327. olap.Window.Specification[]=true
  328. #
  329. # Olap Distinct
  330. #
  331. olap.Min.distinct[any]=
  332. olap.Max.distinct[any]=
  333. olap.Sum.distinct[any]=
  334. olap.Avg.distinct[any]=
  335. olap.Count.distinct[any]=
  336. #
  337. # Aggregates
  338. #
  339. # OSS 0000481944 AVG returns precsion=34 SCALE=0. Cast the result to double.
  340. aggregates.Avg[any]=CAST(AVG(%1$s) as DOUBLE)
  341. aggregates.Max[blob]=
  342. aggregates.Max[any]=MAX(%1$s)
  343. aggregates.Min[blob]=
  344. aggregates.Min[any]=MIN(%1$s)
  345. aggregates.Count[any]=COUNT(%1$s)
  346. aggregates.Count[clob]=sum( case when %1$s is not null then 1 else 0 end)
  347. aggregates.Count[blob]=sum( case when %1$s is not null then 1 else 0 end)
  348. aggregates.CountStar[]=COUNT(*)
  349. aggregates.Sum[any]=SUM(%1$s)
  350. aggregates.StdDevPop[any]=
  351. aggregates.StdDevSamp[any]=STDDEV(%1$s)
  352. aggregates.VarPop[any]=
  353. aggregates.VarSamp[any]=VAR(%1$s)
  354. aggregates.Grouping[any]=
  355. aggregates.XMLAgg[any]=
  356. aggregates.Rank[any,any]=
  357. aggregates.DenseRank[any,any]=
  358. aggregates.PercentRank[any,any]=
  359. aggregates.CumeDistH[any,any]=
  360. aggregates.PercentileCont[any,any]=
  361. aggregates.PercentileDisc[any,any]=
  362. aggregates.ArrayAgg[any]=
  363. aggregates.ArrayAgg[any,any]=
  364. aggregates.Collect[any]=
  365. aggregates.Median[any]=
  366. aggregates.ApproxCountDistinct[any]=
  367. #
  368. # Distinct aggregates
  369. #
  370. aggregates.Avg.distinct[any]=
  371. aggregates.Count.distinct[blob]=
  372. #
  373. # Linear regression aggregates
  374. #
  375. aggregates.Corr[any,any]=
  376. aggregates.CovarPop[any,any]=
  377. aggregates.CovarSamp[any,any]=
  378. aggregates.RegrAvgX[any,any]=
  379. aggregates.RegrAvgY[any,any]=
  380. aggregates.RegrCount[any,any]=
  381. aggregates.RegrIntercept[any,any]=
  382. aggregates.RegrR2[any,any]=
  383. aggregates.RegrSlope[any,any]=
  384. aggregates.RegrSXX[any,any]=
  385. aggregates.RegrSXY[any,any]=
  386. aggregates.RegrSYY[any,any]=
  387. #
  388. # JSON aggregates.
  389. #
  390. aggregates.JSONArrayAgg=
  391. aggregates.JSONObjectAgg=
  392. #
  393. # Character scalar functions
  394. #
  395. functions.CharLength[any]=LENGTH(%1$s)
  396. functions.BitLength[any]=
  397. functions.OctetLength[any]=
  398. #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
  399. # Hana 2 is returning correct precisions but return char as varchar and nchar as nvarchar
  400. functions.Upper[char]=
  401. functions.Upper[nchar]=
  402. functions.Upper[blob]=
  403. #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
  404. # Hana 2 is returning correct precisions but return char as varchar and nchar as nvarchar
  405. functions.Lower[char]=
  406. functions.Lower[nchar]=
  407. functions.Lower[blob]=
  408. #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
  409. functions.Substring[any,any]=SUBSTRING(%1$s,%2$s)
  410. functions.Substring[any,any,any]=SUBSTRING(%1$s, %2$s, %3$s)
  411. #Substring function to negative START value to parse the input string from its rightmost end.
  412. functions.SubstringR[any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s ) - ABS(%2$s) + 1))) ELSE (SUBSTRING(%1$s, %2$s)) END
  413. functions.SubstringR[any,any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s ) - ABS(%2$s) + 1), %3$s)) ELSE (SUBSTRING(%1$s, %2$s, %3$s)) END
  414. functions.Position[any,any]= LOCATE(%2$s,%1$s )
  415. functions.Index[blob,any]=
  416. functions.Index[any,blob]=
  417. functions.Index[any,any]= LOCATE(%1$s ,%2$s)
  418. functions.Ascii[any]=
  419. functions.Translate[any,any]=
  420. functions.Normalize[any]=
  421. functions.Normalize[any,any]=
  422. functions.Normalize[any,any,any]=
  423. #
  424. # Regular expression functions.
  425. #
  426. functions.SubstringRegex[any,any,any,any,any]=SUBSTR_REGEXPR(%1$s@5[ FLAG %5$s] IN %2$s@3[ FROM %3$s]@4[ OCCURRENCE %4$s])
  427. functions.OccurrencesRegex[any,any,any,any]=OCCURRENCES_REGEXPR(%1$s@4[ FLAG %4$s] IN %2$s@3[ FROM %3$s])
  428. functions.PositionRegex[any,any,any,any,any,any]=LOCATE_REGEXPR(@1[%1$s ]%2$s@6[ FLAG %6$s] IN %3$s@4[ FROM %4$s]@5[ OCCURRENCE %5$s])
  429. #
  430. # Numeric scalar functions
  431. #
  432. functions.Abs[interval_day_time]=
  433. functions.Abs[interval_year_month]=
  434. functions.Ceiling[any]=CEIL(%1$s)
  435. #EXP returns double without decimal(34,0) issue
  436. functions.Exp[any]=EXP(%1$s)
  437. # OSS 0000481944 return precsion=34
  438. functions.Floor[decimal]=
  439. functions.Floor[any]=FLOOR(%1$s)
  440. functions.Ln[any]=LN(%1$s)
  441. functions.Log10[any]= LOG(10,%1$s)
  442. # Mod failed exception cases
  443. # OSS 0000481944 return precsion=34
  444. functions.Mod[decimal,any]=
  445. functions.Mod[any,any]=MOD(%1$s, %2$s)
  446. functions.Sign[any]=SIGN(%1$s)
  447. #Sqrt returns double without decimal(34,0) issue
  448. functions.Sqrt[any]=SQRT(%1$s)
  449. functions.WidthBucket[any,any,any,any]=
  450. #power returns double without decimal(34,0) issue
  451. functions.Power[any,any]=POWER(%1$s, %2$s)
  452. functions.Random[]=RAND()
  453. functions.Random[any]=
  454. functions.Round[any]=ROUND(%1$s)
  455. #
  456. # Array scalar functions.
  457. #
  458. functions.Cardinality[any]=
  459. functions.TrimArray[any,any]=
  460. # OSS 0000481944 return precsion=34 without scaler
  461. functions.Round[decimal,any]=
  462. functions.Round[any,any]=ROUND(%1$s, %2$s)
  463. functions.Round[any,any,any]=
  464. #
  465. # Trig Functions
  466. #
  467. #
  468. # Windowed aggregates (SQL/OLAP).
  469. #
  470. olap.Max[any]=MAX(%1$s)
  471. olap.Max[blob]=
  472. olap.Min[any]=MIN(%1$s)
  473. olap.Min[blob]=
  474. olap.Sum[any]=SUM(%1$s)
  475. olap.Avg[any]=
  476. olap.Count[any]=COUNT(%1$s)
  477. olap.Count[blob]=
  478. olap.CountStar[]=COUNT(*)
  479. olap.StdDevSamp[any]=
  480. olap.StdDevPop[any]=
  481. olap.VarSamp[any]=
  482. olap.VarPop[any]=
  483. olap.Rank[]=RANK()
  484. olap.DenseRank[]=DENSE_RANK()
  485. olap.PercentRank[]=PERCENT_RANK()
  486. olap.CumeDist[]=CUME_DIST()
  487. olap.PercentileCont[any,any]=
  488. olap.PercentileDisc[any,any]=
  489. olap.Median[any]=
  490. olap.RowNumber[]=ROW_NUMBER()
  491. olap.FirstValue[any]=FIRST_VALUE(%1$s)
  492. olap.LastValue[any]=LAST_VALUE(%1$s)
  493. olap.NTile[any]=NTILE(%1$s)
  494. olap.Tertile[]=
  495. olap.RatioToReport[any]=
  496. olap.Difference[any]=
  497. olap.Lag[any]=LAG(%1$s)
  498. olap.Lag[any,any]=LAG(%1$s, %2$s)
  499. olap.Lag[any,any,any]=LAG(%1$s, %2$s, %3$s)
  500. olap.Lag[any,any,any,any]=
  501. olap.Lag[blob]=
  502. olap.Lag[blob,any]=
  503. olap.Lag[blob,any,any]=
  504. olap.Lead[any]=LEAD(%1$s)
  505. olap.Lead[any,any]=LEAD(%1$s, %2$s)
  506. olap.Lead[any,any,any]=LEAD(%1$s, %2$s, %3$s)
  507. olap.Lead[any,any,any,any]=
  508. olap.Lead[blob]=
  509. olap.Lead[blob,any]=
  510. olap.Lead[blob,any,any]=
  511. olap.NthValue[any,any]=
  512. olap.NthValue[any,any,any]=
  513. olap.NthValue[any,any,any,any]=
  514. olap.Collect[any]=
  515. #
  516. # Temporal value expressions
  517. #
  518. # Note: JDBC does not define fractional seconds for TIME data type.
  519. functions.CurrentDate[]=CURRENT_DATE
  520. functions.CurrentTime[]=
  521. functions.CurrentTime[numeric]=
  522. functions.CurrentTimestamp[]=
  523. functions.CurrentTimestamp[numeric]=
  524. functions.LocalTime[]=CURRENT_TIME
  525. functions.LocalTimestamp[]=CURRENT_TIMESTAMP
  526. functions.LocalTime[numeric]=
  527. functions.LocalTimestamp[numeric]=
  528. #
  529. # XML Functions
  530. #
  531. functions.XMLAttributes=
  532. functions.XMLComment=
  533. functions.XMLConcat=
  534. functions.XMLDocument=
  535. functions.XMLElement=
  536. functions.XMLExists=
  537. functions.XMLForest=
  538. functions.XMLParse=
  539. functions.XMLPI=
  540. functions.XMLNamespaces=
  541. functions.XMLQuery=
  542. functions.XMLSerialize=
  543. functions.XMLTable=
  544. functions.XMLText=
  545. functions.XMLTransform=
  546. functions.XMLValidate=
  547. #
  548. # JSON functions.
  549. #
  550. functions.JSONArray=
  551. functions.JSONExists=
  552. functions.JSONObject=
  553. functions.JSONQuery=
  554. functions.JSONTable=
  555. functions.JSONValue=
  556. #
  557. # Business functions.
  558. #
  559. functions.AddFractionalSeconds[any,any]=
  560. functions.AddSeconds[time,any]=
  561. functions.AddSeconds[any,any]=add_seconds(%1$s,%2$s)
  562. functions.AddMinutes[time,any]=
  563. functions.AddMinutes[any,any]=add_seconds(%1$s,floor(%2$s) * 60)
  564. functions.AddHours[time,any]=
  565. functions.AddHours[any,any]=add_seconds(%1$s,floor(%2$s) * 3600)
  566. functions.AddDays[timestamp,any]=(add_days(%1$s, FLOOR(%2$s)))
  567. functions.AddDays[date,any]=(add_days(%1$s, FLOOR(%2$s)))
  568. functions.AddDays[any,any]=
  569. functions.AddWeeks[timestamp,any]=(add_days(%1$s, FLOOR(%2$s * 7)))
  570. functions.AddWeeks[date,any]=(add_days(%1$s, FLOOR(%2$s * 7)))
  571. functions.AddWeeks[any,any]=
  572. functions.AddMonths[timestamp,any]=(add_months(%1$s, FLOOR(%2$s)))
  573. functions.AddMonths[date,any]=(add_months(%1$s , floor(%2$s)))
  574. functions.AddMonths[any,any]=
  575. functions.AddQuarters[timestamp,any]=(add_months(%1$s, FLOOR(%2$s * 3)))
  576. functions.AddQuarters[date,any]=(add_months(%1$s , floor(%2$s * 3)))
  577. functions.AddQuarters[any,any]=
  578. functions.AddYears[timestamp,any]=(add_years(%1$s , floor(%2$s)))
  579. functions.AddYears[date,any]=(add_years(%1$s , floor(%2$s)))
  580. functions.AddYears[any,any]=
  581. functions.FractionalSecondsBetween[any,any]=
  582. functions.SecondsBetween[any,any]=
  583. functions.SecondsBetween[date,date]=SECONDS_BETWEEN(%1$s,%2$s)
  584. functions.MinutesBetween[any,any]=
  585. functions.HoursBetween[any,any]=
  586. functions.DaysBetween[timestamp,timestamp]=DAYS_BETWEEN(TO_DATE(%2$s),TO_DATE(%1$s))
  587. functions.DaysBetween[date,timestamp]=DAYS_BETWEEN(TO_DATE(%2$s),%1$s)
  588. functions.DaysBetween[timestamp,date]=DAYS_BETWEEN(%2$s,TO_DATE(%1$s))
  589. functions.DaysBetween[date,date]=DAYS_BETWEEN(%2$s,%1$s)
  590. functions.DaysBetween[any,any]=
  591. functions.WeeksBetween[any,any]=
  592. functions.MonthsBetween[any,any]=
  593. functions.QuartersBetween[any,any]=
  594. functions.YearsBetween[any,any]=
  595. functions.Age[any]=
  596. functions.DayOfWeek[any,any]=
  597. functions.DayOfYear[date]=DAYOFYEAR(%1$s)
  598. functions.DayOfYear[timestamp]=DAYOFYEAR(%1$s)
  599. functions.DayOfYear[any]=
  600. functions.DaysToEndOfMonth[date]=DAYS_BETWEEN(%1$s,LAST_DAY(%1$s))
  601. functions.DaysToEndOfMonth[any]=
  602. functions.FirstOfMonth[any]=add_days(%1$s, -dayofmonth(%1$s)+1)
  603. functions.LastOfMonth[timestamp]=CONCAT(CONCAT(LAST_DAY(%1$s),' '), TO_TIME(%1$s))
  604. functions.LastOfMonth[any]=LAST_DAY(%1$s)
  605. functions.MakeTimestamp[any,any,any]=TO_TIMESTAMP( ( LPAD( %1$d, 4, '0' ) || '-' || LPAD( %2$d, 2, '0' ) || '-' || LPAD( %3$d, 2, '0' ) ), 'YYYY-MM-DD' )
  606. functions.YMDIntBetween[any,any]=
  607. functions.WeekOfYear[date]=TO_INT(SUBSTRING(ISOWEEK(%1$s),7,2))
  608. functions.WeekOfYear[timestamp]=TO_INT(SUBSTRING(ISOWEEK(%1$s),7,2))
  609. functions.WeekOfYear[time]=TO_INT(SUBSTRING(ISOWEEK(CURRENT_DATE),7,2))
  610. functions.WeekOfYear[any]=
  611. # Multiple 'vendor' mappings were found first found is active. Select the preferred entry and delete the others.
  612. # functions.AddDays[any,any]=(add_days(%1s, FLOOR(%2s)))
  613. # functions.AddMonths[timestamp,any]=(add_months(%1s, FLOOR(%2s)))
  614. # functions.AddMonths[date,double]=(add_months(%1s , floor(%2s)))
  615. # functions.AddMonths[date,decimal]=(add_months(%1s, FLOOR(%2s)))
  616. # functions.AddMonths[date,smallint]=(add_months(%1s , floor(%2s)))
  617. # functions.AddMonths[date,long]=(add_months(%1s , floor(%2s)))
  618. # functions.AddMonths[date,float]=(add_months(%1s, FLOOR(%2s)))
  619. # functions.AddMonths[date,integer]=(add_months(%1s , floor(%2s)))
  620. # functions.AddYears[timestamp,decimal]=(add_months(%1s , floor(%2s) * 12))
  621. # functions.AddYears[timestamp,double]=(add_months(%1s , floor(%2s) * 12))
  622. # functions.AddYears[timestamp,smallint]=(add_months(%1s , floor(%2s) * 12))
  623. # functions.AddYears[timestamp,long]=(add_months(%1s , floor(%2s) * 12))
  624. # functions.AddYears[timestamp,float]=(add_years(%1s, FLOOR(%2s)))
  625. # functions.AddYears[timestamp,integer]=(add_months(%1s , floor(%2s) * 12))
  626. # functions.AddYears[date,double]=(add_months(%1s , floor(%2s) * 12))
  627. # functions.AddYears[date,decimal]=(add_years(%1s, FLOOR(%2s)))
  628. # functions.AddYears[date,smallint]=(add_months(%1s , floor(%2s) * 12))
  629. # functions.AddYears[date,long]=(add_months(%1s , floor(%2s) * 12))
  630. # functions.AddYears[date,float]=(add_years(%1s, FLOOR(%2s)))
  631. # functions.AddYears[date,integer]=(add_months(%1s , floor(%2s) * 12))
  632. # functions.FirstOfMonth[any,any]=(add_days(add_days(%1s, - dayofmonth(%1s)),1))
  633. # functions.LastOfMonth[any,any]=(add_days(add_days(%1s, - dayofmonth(%1s)),1))
  634. # functions.MakeTimestamp[any,any,any]=cast(TO_TIMESTAMP('%1s-%2s-%3s','YYYY-MM-DD') as timestamp)
  635. # functions.AddHours[any,any]=add_seconds(%1s,floor(%2s) * 3600)
  636. # functions.AddMinutes[any,any]=add_seconds(%1s,floor(%2s) * 60)
  637. # functions.AddSeconds[any,any]=add_seconds(%1s,floor(%2s))
  638. #
  639. # Literals
  640. #
  641. literals.integer=true
  642. literals.smallint=true
  643. literals.long=true
  644. literals.decimal=true
  645. literals.float=true
  646. literals.double=true
  647. literals.char=true
  648. literals.nchar=true
  649. literals.varchar=true
  650. literals.nvarchar=true
  651. literals.clob=true
  652. literals.date=true
  653. literals.time=true
  654. literals.time_with_time_zone=false
  655. literals.timestamp=true
  656. literals.timestamp_with_time_zone=false
  657. literals.interval_year=false
  658. literals.interval_month=false
  659. literals.interval_year_to_month=false
  660. literals.interval_day=false
  661. literals.interval_hour=false
  662. literals.interval_minute=false
  663. literals.interval_second=false
  664. literals.interval_day_to_hour=false
  665. literals.interval_day_to_minute=false
  666. literals.interval_day_to_second=false
  667. literals.interval_hour_to_minute=false
  668. literals.interval_hour_to_second=false
  669. literals.interval_minute_to_second=false
  670. literals.binary=true
  671. literals.boolean=true
  672. literals.xml=false
  673. # Literal format specifications. Formats are compatible with String.format().
  674. # Values for default behaviour are listed.
  675. # Only char, temporal and string types can be overridden.
  676. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
  677. # 0-padded string representing nanoseconds or empty.
  678. literals.format.boolean=TRUE:FALSE:UNKNOWN
  679. literals.format.char='%s'
  680. literals.format.clob='%s'
  681. #cannot use this date format, because when running add_days(DATE '2000-12-31', 1), SAP HANA throws Error: SAP DBTech JDBC: [266] (at 7): inconsistent datatype: line 1 col 8 (at pos 7)
  682. #SQLState: 07006
  683. #ErrorCode: 266
  684. #DATE '%1$04d-%2$02d-%3$02d'
  685. literals.format.date=TO_DATE('%1$04d-%2$02d-%3$02d','YYYY-MM-DD')
  686. literals.format.interval_day=
  687. literals.format.interval_day_to_hour=
  688. literals.format.interval_day_to_minute=
  689. literals.format.interval_day_to_second=
  690. literals.format.interval_hour=
  691. literals.format.interval_hour_to_minute=
  692. literals.format.interval_hour_to_second=
  693. literals.format.interval_minute=
  694. literals.format.interval_minute_to_second=
  695. literals.format.interval_month=
  696. literals.format.interval_second=
  697. literals.format.interval_year=
  698. literals.format.interval_year_to_month=
  699. literals.format.nchar=TO_NCHAR('%s')
  700. literals.format.nvarchar=TO_NVARCHAR('%s')
  701. literals.format.time=TO_TIME('%1$02d:%2$02d:%3$02d','HH:MI:SS')
  702. literals.format.time_with_time_zone=
  703. literals.format.timestamp=TO_TIMESTAMP('%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.4s')
  704. literals.format.timestamp_with_time_zone=
  705. literals.format.varchar='%s'
  706. literals.format.double=TO_DOUBLE('%s')
  707. #
  708. # DataTypes
  709. #
  710. dataType.smallint=true
  711. dataType.integer=true
  712. dataType.long=true
  713. dataType.decimal=true
  714. dataType.float=true
  715. dataType.double=true
  716. dataType.char=false
  717. dataType.nchar=false
  718. dataType.varchar=true
  719. dataType.nvarchar=true
  720. dataType.clob=true
  721. dataType.blob=true
  722. dataType.date=true
  723. dataType.time=true
  724. dataType.time_with_time_zone=false
  725. dataType.timestamp=true
  726. dataType.timestamp_with_time_zone=false
  727. dataType.interval_year=false
  728. dataType.interval_month=false
  729. dataType.interval_year_to_month=false
  730. dataType.interval_day=false
  731. dataType.interval_hour=false
  732. dataType.interval_minute=false
  733. dataType.interval_second=false
  734. dataType.interval_day_to_hour=false
  735. dataType.interval_day_to_minute=false
  736. dataType.interval_day_to_second=false
  737. dataType.interval_hour_to_minute=false
  738. dataType.interval_hour_to_second=false
  739. dataType.interval_minute_to_second=false
  740. dataType.boolean=false
  741. dataType.binary=false
  742. dataType.xml=true
  743. dataType.period=false
  744. #
  745. # Collation
  746. #
  747. # Collation Sequence SQL (SQL statement for retrieving the collation sequence)
  748. # This statement returns a single row and single column containing the collation sequence
  749. collation.sequence.sql=
  750. # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data.
  751. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder.
  752. database.charset.sql=
  753. #
  754. # dataType.comparable
  755. #
  756. # Used to indicate that some data types that are comparable locally may not by the database
  757. # e.g. dataType.comparable[varchar,nvarchar]=false
  758. #
  759. # dataType.promotion
  760. #
  761. # Used to indicate what direction the promotion needs to occur
  762. # <lhs> -> <rhs> these properties are not symetrical
  763. # e.g. dataType.promotion[char,nvarchar]=true