hdb1.0.properties 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. # Licensed Materials - Property of IBM
  2. # IBM Cognos Products: OQP
  3. # (C) Copyright IBM Corp. 2005, 2019
  4. # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  5. #
  6. # Delimiters
  7. #
  8. # While a vendor may parse a statement with comments it may strip them out and the server not see them
  9. delimiters.commentBegin=/*
  10. delimiters.commentEnd=*/
  11. #
  12. # Keywords
  13. #
  14. keywords.columnAlias=AS
  15. #
  16. # General
  17. #
  18. #
  19. # Null ordering
  20. #
  21. # No support is provided for vendors who change how nulls sort based on data type.
  22. general.nullsAreSortedHigh=false
  23. general.nullsAreSortedLow=true
  24. #
  25. # Various
  26. #
  27. supports.columnAliasing=true
  28. supports.tableCorrelationNames=true
  29. supports.expressionsInOrderBy=true
  30. supports.aliasInOrderByExpression=false
  31. supports.orderByName=true
  32. supports.orderByOrdinal=true
  33. supports.expressionsInINPredicate=true
  34. supports.likeEscapeClause=true
  35. supports.fullOuterJoins=true
  36. supports.outerJoins=true
  37. # Subqueries not supported in Group-by
  38. # Subquery column alias not supported
  39. supports.subqueriesInComparisons=true
  40. supports.subqueriesInExists=true
  41. supports.subqueriesInIns=true
  42. supports.subqueriesInQuantifieds=true
  43. supports.subqueriesInCase=true
  44. supports.correlatedSubqueries=true
  45. supports.scalarSubqueries=true
  46. supports.withClauseInDerivedTable=false
  47. supports.nestedWithClause=false
  48. supports.recursiveWithClause=false
  49. # Currently, SAP hana returns 1/2 as decimal(34,0) which is same as integer. Therefore, the switch should set to "true"
  50. supports.integerDivision=true
  51. supports.nestedOlap=false
  52. supports.derivedColumnLists=false
  53. # Does not allow grouping on non project column
  54. supports.blobsInGroupBy=false
  55. supports.blobsInOrderBy=false
  56. supports.emptyStringIsNull=true
  57. supports.expressionsInGroupBy=true
  58. supports.constantsInWindows=false
  59. supports.callProcedureInDerivedTable=false
  60. supports.join.subqueriesInOnClause=false
  61. supports.hanaInputParameters=true
  62. #casting with formatting pattern support
  63. supports.formatters.string_to_date=false
  64. supports.formatters.string_to_time=false
  65. supports.formatters.string_to_time_with_time_zone=false
  66. supports.formatters.string_to_timestamp=false
  67. supports.formatters.string_to_timestamp_with_time_zone=false
  68. #
  69. # Grouping query optimization
  70. #
  71. # If the RDBMS has costing/execution issues with group by or distinct consider these transforms
  72. performance.convertGroupByToDistinct=false
  73. performance.convertDistinctToGroupBy=false
  74. # V5 master-detail optimization when allRows optimization is specified
  75. v5.master-detail.transform=false
  76. #
  77. # Commands
  78. #
  79. commands.Select=SELECT
  80. commands.Call=CALL
  81. #
  82. # Tables
  83. #
  84. tables.joined=true
  85. tables.derived=true
  86. tables.lateral.derived=false
  87. #
  88. # Constructors
  89. #
  90. constructors.table=false
  91. constructors.row=true
  92. constructors.array=false
  93. constructors.period=false
  94. #
  95. # Constructors - context overrides.
  96. #
  97. constructors.row.between=false
  98. constructors.row.comparison=true
  99. constructors.row.in=true
  100. constructors.row.isDistinctFrom=false
  101. constructors.row.simpleCase=false
  102. #
  103. # Clauses
  104. #
  105. clauses.From=FROM
  106. clauses.Where=WHERE
  107. clauses.GroupBy=GROUP BY
  108. clauses.Having=HAVING
  109. # Does not allow column list in common table expression
  110. # Recursive form of common table expression not supported
  111. # Common table expression cannot be used within a derived table
  112. clauses.With=
  113. clauses.WithRecursive=
  114. clauses.OrderBy=ORDER BY
  115. clauses.Distinct=DISTINCT
  116. clauses.Top= TOP %1$s
  117. clauses.Top.Position=top.distinct
  118. clauses.ForSystemTimeAsOf=
  119. clauses.ForSystemTimeFrom=
  120. clauses.ForSystemTimeBetween=
  121. #
  122. # Joins
  123. #
  124. joins.Cross=%1$s CROSS JOIN %2$s
  125. joins.Inner=%1$s INNER JOIN %2$s ON %3$s
  126. joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s
  127. joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s
  128. joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s
  129. #
  130. # Set Operators
  131. #
  132. # One or more set operations does not follow ISO data type combination rules. Can effect set operations, CASE, COALESCE...
  133. operators.set.Union=%1$s UNION %2$s
  134. operators.set.Union.all=%1$s UNION ALL %2$s
  135. operators.set.Intersect=%1$s INTERSECT %2$s
  136. operators.set.Intersect.all=
  137. operators.set.Except=%1$s EXCEPT %2$s
  138. operators.set.Except.all=
  139. #
  140. # Logical Operators
  141. #
  142. operators.logical.And=%1$s AND %2$s
  143. operators.logical.Or=%1$s OR %2$s
  144. operators.logical.Not=NOT ( %1$s )
  145. operators.logical.Is=
  146. operators.logical.IsNot=
  147. #
  148. # Arithmetic and Character operators
  149. #
  150. #SAP HANA connot support date - date
  151. operators.arithmetic.Subtract[date,date]=DAYS_BETWEEN(%2$s, %1$s)
  152. operators.arithmetic.Subtract[date,any]=
  153. operators.arithmetic.Subtract[timestamp,any]=
  154. operators.arithmetic.Subtract[time,any]=
  155. #OSS 0001101325 2012
  156. operators.arithmetic.Divide[integer,integer]=
  157. operators.arithmetic.Divide[integer,smallint]=
  158. operators.arithmetic.Divide[integer,long]=
  159. operators.arithmetic.Divide[smallint,smallint]=
  160. operators.arithmetic.Divide[smallint,integer]=
  161. operators.arithmetic.Divide[smallint,long]=
  162. operators.arithmetic.Divide[long,smallint]=
  163. operators.arithmetic.Divide[long,integer]=
  164. operators.arithmetic.Divide[long,long]=
  165. #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
  166. operators.arithmetic.Concat[char,any]=
  167. operators.arithmetic.Concat[nchar,any]=
  168. operators.arithmetic.Concat[any,char]=
  169. operators.arithmetic.Concat[any,nchar]=
  170. operators.arithmetic.Concat[blob,any]=
  171. operators.arithmetic.Concat[any,blob]=
  172. operators.arithmetic.Concat[any,any]=%1$s || %2$s
  173. #
  174. # Grouping Operators
  175. #
  176. operators.groupBy.Rollup=ROLLUP
  177. operators.groupBy.Cube=CUBE
  178. operators.groupBy.GroupingSets=GROUPING SETS
  179. #
  180. # Comparison Predicates
  181. #
  182. predicates.comparison.Equals[clob,any]=
  183. predicates.comparison.Equals[any,clob]=
  184. predicates.comparison.Equals[blob,any]=
  185. predicates.comparison.Equals[any,blob]=
  186. predicates.comparison.GreaterThan[clob,any]=
  187. predicates.comparison.GreaterThan[any,clob]=
  188. predicates.comparison.GreaterThan[blob,any]=
  189. predicates.comparison.GreaterThan[any,blob]=
  190. predicates.comparison.GreaterThanOrEquals[clob,any]=
  191. predicates.comparison.GreaterThanOrEquals[any,clob]=
  192. predicates.comparison.GreaterThanOrEquals[blob,any]=
  193. predicates.comparison.GreaterThanOrEquals[any,blob]=
  194. predicates.comparison.LessThan[clob,any]=
  195. predicates.comparison.LessThan[any,clob]=
  196. predicates.comparison.LessThan[blob,any]=
  197. predicates.comparison.LessThan[any,blob]=
  198. predicates.comparison.LessThanOrEquals[clob,any]=
  199. predicates.comparison.LessThanOrEquals[any,clob]=
  200. predicates.comparison.LessThanOrEquals[blob,any]=
  201. predicates.comparison.LessThanOrEquals[any,blob]=
  202. predicates.comparison.NotEquals[clob,any]=
  203. predicates.comparison.NotEquals[any,clob]=
  204. predicates.comparison.NotEquals[blob,any]=
  205. predicates.comparison.NotEquals[any,blob]=
  206. #
  207. # Predicates
  208. #
  209. predicates.In[any,any]=%1$s IN ( %2$s )
  210. predicates.In[clob,any]=
  211. predicates.In[any,clob]=
  212. predicates.Overlaps[any,any,any,any]=
  213. predicates.LikeRegex=
  214. predicates.LikeRegex.flag=
  215. predicates.Similar.escape=
  216. predicates.Similar=
  217. predicates.Similar.escape=
  218. predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
  219. predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
  220. #
  221. # Period predicates.
  222. #
  223. predicates.PeriodOverlaps[any,any]=
  224. predicates.PeriodEquals[any,any]=
  225. predicates.PeriodContains[any,any]=
  226. predicates.PeriodPrecedes[any,any]=
  227. predicates.PeriodSucceeds[any,any]=
  228. predicates.PeriodImmediatelyPrecedes[any,any]=
  229. predicates.PeriodImmediatelySucceeds[any,any]=
  230. #
  231. # Conditional expressions
  232. #
  233. # One or more case operations does not follow ISO type rules.
  234. expressions.SimpleCase=CASE
  235. #expressions.SearchedCase.compatibleResults=false
  236. expressions.Coalesce=COALESCE(%1$s)
  237. expressions.NullIf=NULLIF(%1$s, %2$s)
  238. #
  239. # Cast
  240. #
  241. # OSS: 0000491475 2012
  242. expressions.Cast[any,float]=TO_REAL(%1$s)
  243. #OSS: 0000491530 2012
  244. #SQL standard page 213 using respective values in an execution of CURRENT_DATE
  245. expressions.Cast[time,timestamp]=TO_TIMESTAMP(CONCAT(CONCAT(current_date,' '), %1$s) )
  246. expressions.Cast[date,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD')
  247. # turn off cast to char/nchar, because it return varchar/nvarchar, when concat for date+time generated from transfermation ConvertDatePlusTimeToCompatibleSQL, it will be failed
  248. # failed testcase testConvertDatePlusTimeToCompatibleSQL
  249. expressions.Cast[any,nchar]=
  250. expressions.Cast[any,char]=
  251. expressions.Cast[xml,any]=
  252. expressions.Cast[any,xml]=
  253. expressions.Cast[decimal,nvarchar]=
  254. expressions.Cast[decimal,varchar]=
  255. # Minimum number of arguments for Coalesce function.
  256. expressions.Coalesce.minArgs=2
  257. #
  258. # Extract
  259. #
  260. expressions.Extract.YEAR[any]=EXTRACT(YEAR FROM %1$s)
  261. expressions.Extract.MONTH[any]=EXTRACT(MONTH FROM %1$s)
  262. expressions.Extract.DAY[any]=EXTRACT(DAY FROM %1$s)
  263. expressions.Extract.HOUR[any]=EXTRACT(HOUR FROM %1$s)
  264. expressions.Extract.MINUTE[any]=EXTRACT(MINUTE FROM %1$s)
  265. #OSS: 0001070313 2012
  266. #SAP HANA return decimal(34,0) and our RQE regard it as integer and automatically round it or cast it to integer.
  267. expressions.Extract.SECOND[timestamp]=TO_DECIMAL(EXTRACT(SECOND FROM %1$s),11,9)
  268. expressions.Extract.SECOND[any]=EXTRACT(SECOND FROM %1$s)
  269. expressions.Extract.TIMEZONE_HOUR[any]=
  270. expressions.Extract.TIMEZONE_MINUTE[any]=
  271. expressions.Extract.EPOCH[any]=
  272. #
  273. # Trim
  274. #
  275. #functional support;
  276. expressions.Trim.BOTH[char]=
  277. expressions.Trim.LEADING[char]=
  278. expressions.Trim.TRAILING[char]=
  279. expressions.Trim.BOTH[any,char]=
  280. expressions.Trim.LEADING[any,char]=
  281. expressions.Trim.TRAILING[any,char]=
  282. xpressions.Trim.BOTH[nchar]=
  283. expressions.Trim.LEADING[nchar]=
  284. expressions.Trim.TRAILING[nchar]=
  285. expressions.Trim.BOTH[any,nchar]=
  286. expressions.Trim.LEADING[any,nchar]=
  287. expressions.Trim.TRAILING[any,nchar]=
  288. expressions.Trim.BOTH[blob]=
  289. expressions.Trim.LEADING[blob]=
  290. expressions.Trim.TRAILING[blob]=
  291. expressions.Trim.BOTH[any,blob]=
  292. expressions.Trim.LEADING[any,blob]=
  293. expressions.Trim.TRAILING[any,blob]=
  294. expressions.Trim.BOTH[any]=TRIM(%1$s)
  295. expressions.Trim.LEADING[any]=LTRIM(%1$s)
  296. expressions.Trim.TRAILING[any]=RTRIM(%1$s)
  297. expressions.Trim.BOTH[any,any]=RTRIM(LTRIM(%2$s,%1$s),%1$s)
  298. expressions.Trim.LEADING[any,any]=LTRIM(%2$s,%1$s)
  299. expressions.Trim.TRAILING[any,any]=RTRIM(%2$s,%1$s)
  300. #
  301. # Window clause
  302. #
  303. # Lack of window ordering impacts many aggregates being pushed
  304. # Unable to specify a literal in window ordering
  305. # Unable to specify ordering in a window
  306. general.nullsOrderingInWindowSpecification=true
  307. #
  308. # Window specification
  309. #
  310. olap.Window.Specification[POF]=false
  311. olap.Window.Specification[PF]=false
  312. olap.Window.Specification[OF]=false
  313. olap.Window.Specification[PO]=true
  314. olap.Window.Specification[P]=true
  315. olap.Window.Specification[O]=true
  316. olap.Window.Specification[F]=false
  317. olap.Window.Specification[]=true
  318. #
  319. # Olap Distinct
  320. #
  321. olap.Min.distinct[any]=
  322. olap.Max.distinct[any]=
  323. olap.Sum.distinct[any]=
  324. olap.Avg.distinct[any]=
  325. olap.Count.distinct[any]=
  326. #
  327. # Aggregates
  328. #
  329. # OSS 0000481944 AVG returns precsion=34 SCALE=0. Cast the result to double.
  330. aggregates.Avg[any]=CAST(AVG(%1$s) as DOUBLE)
  331. aggregates.Max[blob]=
  332. aggregates.Max[any]=MAX(%1$s)
  333. aggregates.Min[blob]=
  334. aggregates.Min[any]=MIN(%1$s)
  335. aggregates.Count[any]=COUNT(%1$s)
  336. aggregates.Count[clob]=sum( case when %1$s is not null then 1 else 0 end)
  337. aggregates.Count[blob]=sum( case when %1$s is not null then 1 else 0 end)
  338. aggregates.CountStar[]=COUNT(*)
  339. aggregates.Sum[any]=SUM(%1$s)
  340. aggregates.StdDevPop[any]=
  341. aggregates.StdDevSamp[any]=STDDEV(%1$s)
  342. aggregates.VarPop[any]=
  343. aggregates.VarSamp[any]=VAR(%1$s)
  344. aggregates.Grouping[any]=
  345. aggregates.XMLAgg[any]=
  346. aggregates.Rank[any,any]=
  347. aggregates.DenseRank[any,any]=
  348. aggregates.PercentRank[any,any]=
  349. aggregates.CumeDistH[any,any]=
  350. aggregates.PercentileCont[any,any]=
  351. aggregates.PercentileDisc[any,any]=
  352. aggregates.ArrayAgg[any]=
  353. aggregates.ArrayAgg[any,any]=
  354. aggregates.Collect[any]=
  355. aggregates.PercentileCont[any,any]=
  356. aggregates.PercentileDisc[any,any]=
  357. aggregates.Median[any]=
  358. #
  359. # Distinct aggregates
  360. #
  361. aggregates.Avg.distinct[any]=
  362. aggregates.Count.distinct[blob]=
  363. #
  364. # Linear regression aggregates
  365. #
  366. aggregates.Corr[any,any]=
  367. aggregates.CovarPop[any,any]=
  368. aggregates.CovarSamp[any,any]=
  369. aggregates.RegrAvgX[any,any]=
  370. aggregates.RegrAvgY[any,any]=
  371. aggregates.RegrCount[any,any]=
  372. aggregates.RegrIntercept[any,any]=
  373. aggregates.RegrR2[any,any]=
  374. aggregates.RegrSlope[any,any]=
  375. aggregates.RegrSXX[any,any]=
  376. aggregates.RegrSXY[any,any]=
  377. aggregates.RegrSYY[any,any]=
  378. #
  379. # JSON aggregates.
  380. #
  381. aggregates.JSONArrayAgg=
  382. aggregates.JSONObjectAgg=
  383. #
  384. # Character scalar functions
  385. #
  386. functions.CharLength[any]=LENGTH(%1$s)
  387. functions.BitLength[any]=
  388. functions.OctetLength[any]=
  389. #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
  390. functions.Upper[char]=
  391. functions.Upper[nchar]=
  392. functions.Upper[blob]=
  393. #String functions return wrong datatype with wrong precision, therefore, turning off some string functions
  394. functions.Lower[char]=
  395. functions.Lower[nchar]=
  396. functions.Lower[blob]=
  397. #Substring function to negative START value to parse the input string from its rightmost end.
  398. functions.SubstringR[any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s ) - ABS(%2$s) + 1))) ELSE (SUBSTRING(%1$s, %2$s)) END
  399. functions.SubstringR[any,any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LENGTH(%1$s ) - ABS(%2$s) + 1), %3$s)) ELSE (SUBSTRING(%1$s, %2$s, %3$s)) END
  400. functions.Position[any,any]= LOCATE(%2$s,%1$s )
  401. functions.Index[blob,any]=
  402. functions.Index[any,blob]=
  403. functions.Index[any,any]= LOCATE(%1$s ,%2$s)
  404. functions.Ascii[any]=
  405. functions.Translate[any,any]=
  406. functions.Normalize[any]=
  407. functions.Normalize[any,any]=
  408. functions.Normalize[any,any,any]=
  409. #
  410. # Regular expression functions.
  411. #
  412. functions.SubstringRegex[any,any,any,any,any]=SUBSTR_REGEXPR(%1$s@5[ FLAG %5$s] IN %2$s@3[ FROM %3$s]@4[ OCCURRENCE %4$s])
  413. functions.OccurrencesRegex[any,any,any,any]=OCCURRENCES_REGEXPR(%1$s@4[ FLAG %4$s] IN %2$s@3[ FROM %3$s])
  414. functions.PositionRegex[any,any,any,any,any,any]=LOCATE_REGEXPR(@1[%1$s ]%2$s@6[ FLAG %6$s] IN %3$s@4[ FROM %4$s]@5[ OCCURRENCE %5$s])
  415. #
  416. # Numeric scalar functions
  417. #
  418. functions.Abs[interval_day_time]=
  419. functions.Abs[interval_year_month]=
  420. functions.Ceiling[any]=CEIL(%1$s)
  421. #EXP returns double without decimal(34,0) issue
  422. functions.Exp[any]=EXP(%1$s)
  423. # OSS 0000481944 return precsion=34
  424. functions.Floor[decimal]=
  425. functions.Floor[any]=FLOOR(%1$s)
  426. functions.Ln[any]=LN(%1$s)
  427. functions.Log10[any]= LOG(10,%1$s)
  428. # Mod failed exception cases
  429. # OSS 0000481944 return precsion=34
  430. functions.Mod[decimal,any]=
  431. functions.Mod[any,any]=MOD(%1$s, %2$s)
  432. functions.Sign[any]=SIGN(%1$s)
  433. #Sqrt returns double without decimal(34,0) issue
  434. functions.Sqrt[any]=SQRT(%1$s)
  435. functions.WidthBucket[any,any,any,any]=
  436. #power returns double without decimal(34,0) issue
  437. functions.Power[any,any]=POWER(%1$s, %2$s)
  438. functions.Round[any]=ROUND(%1$s)
  439. #
  440. # Array scalar functions.
  441. #
  442. functions.Cardinality[any]=
  443. functions.TrimArray[any,any]=
  444. # OSS 0000481944 return precsion=34 without scaler
  445. functions.Round[decimal,any]=
  446. functions.Round[any,any]=ROUND(%1$s, %2$s)
  447. functions.Round[any,any,any]=
  448. #
  449. # Trig Functions
  450. #
  451. #
  452. # Windowed aggregates (SQL/OLAP).
  453. #
  454. olap.Max[any]=MAX(%1$s)
  455. olap.Min[any]=MIN(%1$s)
  456. olap.Sum[any]=SUM(%1$s)
  457. olap.Avg[any]=
  458. olap.Count[any]=COUNT(%1$s)
  459. olap.Count[blob]=
  460. olap.CountStar[]=COUNT(*)
  461. olap.StdDevSamp[any]=
  462. olap.StdDevPop[any]=
  463. olap.VarSamp[any]=
  464. olap.VarPop[any]=
  465. olap.Rank[]=RANK()
  466. olap.DenseRank[]=DENSE_RANK()
  467. olap.PercentRank[]=PERCENT_RANK()
  468. olap.CumeDist[]=CUME_DIST()
  469. olap.PercentileCont[any,any]=
  470. olap.PercentileDisc[any,any]=
  471. olap.Median[any]=
  472. olap.RowNumber[]=ROW_NUMBER()
  473. olap.FirstValue[any]=FIRST_VALUE(%1$s)
  474. olap.LastValue[any]=LAST_VALUE(%1$s)
  475. olap.NTile[any]=NTILE(%1$s)
  476. olap.Tertile[]=
  477. olap.RatioToReport[any]=
  478. olap.Difference[any]=
  479. olap.Lag[any]=LAG(%1$s)
  480. olap.Lag[any,any]=LAG(%1$s, %2$s)
  481. olap.Lag[any,any,any]=LAG(%1$s, %2$s, %3$s)
  482. olap.Lag[any,any,any,any]=
  483. olap.Lead[any]=LEAD(%1$s)
  484. olap.Lead[any,any]=LEAD(%1$s, %2$s)
  485. olap.Lead[any,any,any]=LEAD(%1$s, %2$s, %3$s)
  486. olap.Lead[any,any,any,any]=
  487. olap.NthValue[any,any]=
  488. olap.NthValue[any,any,any]=
  489. olap.NthValue[any,any,any,any]=
  490. olap.Collect[any]=
  491. #
  492. # Temporal value expressions
  493. #
  494. # Note: JDBC does not define fractional seconds for TIME data type.
  495. functions.CurrentDate[]=CURRENT_DATE
  496. functions.CurrentTime[]=
  497. functions.CurrentTime[numeric]=
  498. functions.CurrentTimestamp[]=
  499. functions.CurrentTimestamp[numeric]=
  500. functions.LocalTime[]=CURRENT_TIME
  501. functions.LocalTimestamp[]=CURRENT_TIMESTAMP
  502. functions.LocalTime[numeric]=
  503. functions.LocalTimestamp[numeric]=
  504. #
  505. # XML Functions
  506. #
  507. functions.XMLAttributes=
  508. functions.XMLComment=
  509. functions.XMLConcat=
  510. functions.XMLDocument=
  511. functions.XMLElement=
  512. functions.XMLExists=
  513. functions.XMLForest=
  514. functions.XMLParse=
  515. functions.XMLPI=
  516. functions.XMLNamespaces=
  517. functions.XMLQuery=
  518. functions.XMLSerialize=
  519. functions.XMLTable=
  520. functions.XMLText=
  521. functions.XMLTransform=
  522. functions.XMLValidate=
  523. #
  524. # JSON functions.
  525. #
  526. functions.JSONArray=
  527. functions.JSONExists=
  528. functions.JSONObject=
  529. functions.JSONQuery=
  530. functions.JSONTable=
  531. functions.JSONValue=
  532. #
  533. # Business functions.
  534. #
  535. functions.AddFractionalSeconds[any,any]=
  536. functions.AddSeconds[time,any]=
  537. functions.AddSeconds[any,any]=add_seconds(%1$s,%2$s)
  538. functions.AddMinutes[time,any]=
  539. functions.AddMinutes[any,any]=add_seconds(%1$s,floor(%2$s) * 60)
  540. functions.AddHours[time,any]=
  541. functions.AddHours[any,any]=add_seconds(%1$s,floor(%2$s) * 3600)
  542. functions.AddDays[timestamp,any]=(add_days(%1$s, FLOOR(%2$s)))
  543. functions.AddDays[date,any]=(add_days(%1$s, FLOOR(%2$s)))
  544. functions.AddDays[any,any]=
  545. functions.AddWeeks[timestamp,any]=(add_days(%1$s, FLOOR(%2$s * 7)))
  546. functions.AddWeeks[date,any]=(add_days(%1$s, FLOOR(%2$s * 7)))
  547. functions.AddWeeks[any,any]=
  548. functions.AddMonths[timestamp,any]=(add_months(%1$s, FLOOR(%2$s)))
  549. functions.AddMonths[date,any]=(add_months(%1$s , floor(%2$s)))
  550. functions.AddMonths[any,any]=
  551. functions.AddQuarters[timestamp,any]=(add_months(%1$s, FLOOR(%2$s * 3)))
  552. functions.AddQuarters[date,any]=(add_months(%1$s , floor(%2$s * 3)))
  553. functions.AddQuarters[any,any]=
  554. functions.AddYears[timestamp,any]=(add_years(%1$s , floor(%2$s)))
  555. functions.AddYears[date,any]=(add_years(%1$s , floor(%2$s)))
  556. functions.AddYears[any,any]=
  557. functions.FractionalSecondsBetween[any,any]=
  558. functions.SecondsBetween[any,any]=
  559. functions.SecondsBetween[date,date]=SECONDS_BETWEEN(%1$s,%2$s)
  560. functions.MinutesBetween[any,any]=
  561. functions.HoursBetween[any,any]=
  562. functions.DaysBetween[timestamp,timestamp]=DAYS_BETWEEN(TO_DATE(%2$s),TO_DATE(%1$s))
  563. functions.DaysBetween[date,timestamp]=DAYS_BETWEEN(TO_DATE(%2$s),%1$s)
  564. functions.DaysBetween[timestamp,date]=DAYS_BETWEEN(%2$s,TO_DATE(%1$s))
  565. functions.DaysBetween[date,date]=DAYS_BETWEEN(%2$s,%1$s)
  566. functions.DaysBetween[any,any]=
  567. functions.WeeksBetween[any,any]=
  568. functions.MonthsBetween[any,any]=
  569. functions.QuartersBetween[any,any]=
  570. functions.YearsBetween[any,any]=
  571. functions.Age[any]=
  572. functions.DayOfWeek[any,any]=
  573. functions.DayOfYear[date]=DAYOFYEAR(%1$s)
  574. functions.DayOfYear[timestamp]=DAYOFYEAR(%1$s)
  575. functions.DayOfYear[any]=
  576. functions.DaysToEndOfMonth[date]=DAYS_BETWEEN(%1$s,LAST_DAY(%1$s))
  577. functions.DaysToEndOfMonth[any]=
  578. functions.FirstOfMonth[any]=add_days(%1$s, -dayofmonth(%1$s)+1)
  579. functions.LastOfMonth[timestamp]=CONCAT(CONCAT(LAST_DAY(%1$s),' '), TO_TIME(%1$s))
  580. functions.LastOfMonth[any]=LAST_DAY(%1$s)
  581. functions.MakeTimestamp[any,any,any]=TO_TIMESTAMP( ( LPAD( %1$d, 4, '0' ) || '-' || LPAD( %2$d, 2, '0' ) || '-' || LPAD( %3$d, 2, '0' ) ), 'YYYY-MM-DD' )
  582. functions.YMDIntBetween[any,any]=
  583. functions.WeekOfYear[date]=TO_INT(SUBSTRING(ISOWEEK(%1$s),7,2))
  584. functions.WeekOfYear[timestamp]=TO_INT(SUBSTRING(ISOWEEK(%1$s),7,2))
  585. functions.WeekOfYear[time]=TO_INT(SUBSTRING(ISOWEEK(CURRENT_DATE),7,2))
  586. functions.WeekOfYear[any]=
  587. # Multiple 'vendor' mappings were found first found is active. Select the preferred entry and delete the others.
  588. # functions.AddDays[any,any]=(add_days(%1s, FLOOR(%2s)))
  589. # functions.AddMonths[timestamp,any]=(add_months(%1s, FLOOR(%2s)))
  590. # functions.AddMonths[date,double]=(add_months(%1s , floor(%2s)))
  591. # functions.AddMonths[date,decimal]=(add_months(%1s, FLOOR(%2s)))
  592. # functions.AddMonths[date,smallint]=(add_months(%1s , floor(%2s)))
  593. # functions.AddMonths[date,long]=(add_months(%1s , floor(%2s)))
  594. # functions.AddMonths[date,float]=(add_months(%1s, FLOOR(%2s)))
  595. # functions.AddMonths[date,integer]=(add_months(%1s , floor(%2s)))
  596. # functions.AddYears[timestamp,decimal]=(add_months(%1s , floor(%2s) * 12))
  597. # functions.AddYears[timestamp,double]=(add_months(%1s , floor(%2s) * 12))
  598. # functions.AddYears[timestamp,smallint]=(add_months(%1s , floor(%2s) * 12))
  599. # functions.AddYears[timestamp,long]=(add_months(%1s , floor(%2s) * 12))
  600. # functions.AddYears[timestamp,float]=(add_years(%1s, FLOOR(%2s)))
  601. # functions.AddYears[timestamp,integer]=(add_months(%1s , floor(%2s) * 12))
  602. # functions.AddYears[date,double]=(add_months(%1s , floor(%2s) * 12))
  603. # functions.AddYears[date,decimal]=(add_years(%1s, FLOOR(%2s)))
  604. # functions.AddYears[date,smallint]=(add_months(%1s , floor(%2s) * 12))
  605. # functions.AddYears[date,long]=(add_months(%1s , floor(%2s) * 12))
  606. # functions.AddYears[date,float]=(add_years(%1s, FLOOR(%2s)))
  607. # functions.AddYears[date,integer]=(add_months(%1s , floor(%2s) * 12))
  608. # functions.FirstOfMonth[any,any]=(add_days(add_days(%1s, - dayofmonth(%1s)),1))
  609. # functions.LastOfMonth[any,any]=(add_days(add_days(%1s, - dayofmonth(%1s)),1))
  610. # functions.MakeTimestamp[any,any,any]=cast(TO_TIMESTAMP('%1s-%2s-%3s','YYYY-MM-DD') as timestamp)
  611. # functions.AddHours[any,any]=add_seconds(%1s,floor(%2s) * 3600)
  612. # functions.AddMinutes[any,any]=add_seconds(%1s,floor(%2s) * 60)
  613. # functions.AddSeconds[any,any]=add_seconds(%1s,floor(%2s))
  614. #
  615. # Literals
  616. #
  617. literals.integer=true
  618. literals.smallint=true
  619. literals.long=true
  620. literals.decimal=true
  621. literals.float=true
  622. literals.double=true
  623. literals.char=true
  624. literals.nchar=true
  625. literals.varchar=true
  626. literals.nvarchar=true
  627. literals.clob=true
  628. literals.date=true
  629. literals.time=true
  630. literals.time_with_time_zone=false
  631. literals.timestamp=true
  632. literals.timestamp_with_time_zone=false
  633. literals.interval_year=false
  634. literals.interval_month=false
  635. literals.interval_year_to_month=false
  636. literals.interval_day=false
  637. literals.interval_hour=false
  638. literals.interval_minute=false
  639. literals.interval_second=false
  640. literals.interval_day_to_hour=false
  641. literals.interval_day_to_minute=false
  642. literals.interval_day_to_second=false
  643. literals.interval_hour_to_minute=false
  644. literals.interval_hour_to_second=false
  645. literals.interval_minute_to_second=false
  646. literals.binary=true
  647. literals.boolean=true
  648. literals.xml=false
  649. # Literal format specifications. Formats are compatible with String.format().
  650. # Values for default behaviour are listed.
  651. # Only char, temporal and string types can be overridden.
  652. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
  653. # 0-padded string representing nanoseconds or empty.
  654. literals.format.boolean=TRUE:FALSE:UNKNOWN
  655. literals.format.char='%s'
  656. literals.format.clob='%s'
  657. #cannot use this date format, because when running add_days(DATE '2000-12-31', 1), SAP HANA throws Error: SAP DBTech JDBC: [266] (at 7): inconsistent datatype: line 1 col 8 (at pos 7)
  658. #SQLState: 07006
  659. #ErrorCode: 266
  660. #DATE '%1$04d-%2$02d-%3$02d'
  661. literals.format.date=TO_DATE('%1$04d-%2$02d-%3$02d','YYYY-MM-DD')
  662. literals.format.interval_day=
  663. literals.format.interval_day_to_hour=
  664. literals.format.interval_day_to_minute=
  665. literals.format.interval_day_to_second=
  666. literals.format.interval_hour=
  667. literals.format.interval_hour_to_minute=
  668. literals.format.interval_hour_to_second=
  669. literals.format.interval_minute=
  670. literals.format.interval_minute_to_second=
  671. literals.format.interval_month=
  672. literals.format.interval_second=
  673. literals.format.interval_year=
  674. literals.format.interval_year_to_month=
  675. literals.format.nchar=TO_NCHAR('%s')
  676. literals.format.nvarchar=TO_NVARCHAR('%s')
  677. literals.format.time=TO_TIME('%1$02d:%2$02d:%3$02d','HH:MI:SS')
  678. literals.format.time_with_time_zone=
  679. literals.format.timestamp=TO_TIMESTAMP('%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.4s')
  680. literals.format.timestamp_with_time_zone=
  681. literals.format.varchar='%s'
  682. literals.format.double=TO_DOUBLE('%s')
  683. #
  684. # DataTypes
  685. #
  686. dataType.smallint=true
  687. dataType.integer=true
  688. dataType.long=true
  689. dataType.decimal=true
  690. dataType.float=true
  691. dataType.double=true
  692. dataType.char=false
  693. dataType.nchar=false
  694. dataType.varchar=true
  695. dataType.nvarchar=true
  696. dataType.clob=true
  697. dataType.blob=true
  698. dataType.date=true
  699. dataType.time=true
  700. dataType.time_with_time_zone=false
  701. dataType.timestamp=true
  702. dataType.timestamp_with_time_zone=false
  703. dataType.interval_year=false
  704. dataType.interval_month=false
  705. dataType.interval_year_to_month=false
  706. dataType.interval_day=false
  707. dataType.interval_hour=false
  708. dataType.interval_minute=false
  709. dataType.interval_second=false
  710. dataType.interval_day_to_hour=false
  711. dataType.interval_day_to_minute=false
  712. dataType.interval_day_to_second=false
  713. dataType.interval_hour_to_minute=false
  714. dataType.interval_hour_to_second=false
  715. dataType.interval_minute_to_second=false
  716. dataType.boolean=false
  717. dataType.binary=false
  718. dataType.xml=true
  719. dataType.period=false
  720. #
  721. # Collation
  722. #
  723. # Collation Sequence SQL (SQL statement for retrieving the collation sequence)
  724. # This statement returns a single row and single column containing the collation sequence
  725. collation.sequence.sql=
  726. # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data.
  727. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder.
  728. database.charset.sql=
  729. #
  730. # dataType.comparable
  731. #
  732. # Used to indicate that some data types that are comparable locally may not by the database
  733. # e.g. dataType.comparable[varchar,nvarchar]=false
  734. #
  735. # dataType.promotion
  736. #
  737. # Used to indicate what direction the promotion needs to occur
  738. # <lhs> -> <rhs> these properties are not symetrical
  739. # e.g. dataType.promotion[char,nvarchar]=true