hive.properties 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797
  1. # Licensed Materials - Property of IBM
  2. # IBM Cognos Products: OQP
  3. # (C) Copyright IBM Corp. 2005, 2020
  4. # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  5. #
  6. # The configuration of this properties file supports Hive 1x as a base line.
  7. #
  8. #
  9. # Product information.
  10. #
  11. #
  12. # Delimiters
  13. #
  14. delimiters.commentBegin=
  15. delimiters.commentEnd=
  16. #
  17. # Keywords.
  18. #
  19. #
  20. # Various limits. A value of 0 means no limit, or the limit is unknown.
  21. #
  22. limits.defaultTransactionIsolation=
  23. #
  24. # General settings.
  25. #
  26. general.nullsAreSortedLow=true
  27. # Until HIVE-15548 is resolved do not enable for Hive 2.1
  28. general.nullsOrdering=false
  29. # Until HIVE-15548 is resolved do not enable for Hive 2.1
  30. general.nullsOrderingInWindowSpecification=false
  31. #
  32. # Cursor options - appended to end of generated SELECT statement.
  33. #
  34. #
  35. # Override sampling policy with a different one.
  36. # 1. tablesample accepting values such as BERNOULLI or SYSTEM
  37. # 2. rowsample accepting values such as NTH or RANDOM
  38. #
  39. sampling.tablesample=
  40. sampling.rowsample=RANDOM
  41. #
  42. # Various features.
  43. #
  44. supports.tableCorrelationNames=true
  45. supports.expressionsInOrderBy=false
  46. supports.aliasInOrderByExpression=true
  47. supports.expressionsInINPredicate=true
  48. supports.expressionsInSelectList=true
  49. supports.booleanExpressionsInSelectList=true
  50. supports.fieldsOfComplexTypeInSelectList=false
  51. supports.likeEscapeClause=false
  52. supports.outerJoins=true
  53. supports.fullOuterJoins=true
  54. #hive supports sub queries only in FROM clause
  55. supports.subqueriesInComparisons=false
  56. supports.subqueriesInExists=false
  57. supports.subqueriesInIns=false
  58. supports.subqueriesInQuantifieds=false
  59. supports.subqueriesInCase=false
  60. supports.correlatedSubqueries=false
  61. supports.correlatedSubqueriesInSelectList=false
  62. supports.correlatedSubqueriesInIns=false
  63. supports.withClauseInDerivedTable=false
  64. supports.nestedWithClause=false
  65. supports.integerDivision=false
  66. supports.groupedWindowedTables=false
  67. supports.derivedColumnLists=false
  68. supports.orderByOrdinal=false
  69. #hive supports sub queries only in FROM clause
  70. supports.scalarSubqueries=false
  71. supports.expressionsInGroupBy=true
  72. supports.equiJoins=true
  73. supports.thetaJoins=false
  74. supports.stitchJoins=false
  75. supports.crossProducts=true
  76. supports.recursiveWithClause=false
  77. supports.orderByUnrelated=false
  78. supports.groupByUnrelated=false
  79. supports.constantsInWindows=true
  80. supports.callProcedureInDerivedTable=false
  81. supports.join.orInOnClause=false
  82. supports.join.subqueriesInOnClause=false
  83. supports.join.onlyEquiWithAnd=true
  84. # Indicates whether inner joins require at least one equijoin predicate.
  85. # A INNER JOIN B ON A.C1 = B.C1 AND A.C2 > B.C2 is fine, but A INNER JOIN B ON A.C2 > B.C2 is not.
  86. supports.join.inner.limitedThetaJoins=true
  87. #
  88. # Performance properties (force certain transformations to be applied).
  89. #
  90. #
  91. # Command.
  92. #
  93. commands.Call=
  94. #
  95. # Tables.
  96. #
  97. tables.lateral.derived=false
  98. tables.joined=true
  99. tables.derived=true
  100. #
  101. # Constructors.
  102. #
  103. constructors.table=false
  104. constructors.row=false
  105. constructors.array=false
  106. constructors.period=false
  107. constructors.map=false
  108. #
  109. # Constructors - context overrides.
  110. #
  111. constructors.row.simpleCase=false
  112. constructors.row.between=false
  113. constructors.row.isDistinctFrom=false
  114. constructors.row.inListToTable=false
  115. #
  116. # Clauses.
  117. #
  118. clauses.From=FROM
  119. clauses.Where=WHERE
  120. clauses.GroupBy=GROUP BY
  121. clauses.Having=HAVING
  122. clauses.With=WITH
  123. clauses.OrderBy=ORDER BY
  124. clauses.Distinct=DISTINCT
  125. clauses.Top=
  126. clauses.FetchFirst=
  127. clauses.At=
  128. clauses.Window=
  129. clauses.WithRecursive=
  130. clauses.Limit=LIMIT %1$s
  131. clauses.TableSampleSystem=
  132. clauses.TableSampleBernoulli=
  133. clauses.ForSystemTimeAsOf=
  134. clauses.ForSystemTimeFrom=
  135. clauses.ForSystemTimeBetween=
  136. #
  137. # Joins.
  138. #
  139. # Join condition does not support OR clause
  140. # Does not support non-equi joins
  141. # Does not allow on condition to use set functions
  142. # Does not allow join conditions to use sub-queries
  143. # Does not allow non equi joins in full outer join
  144. # Only allows equal with and conditions in joins
  145. # Does not support outer non-equi joins
  146. #
  147. # Nested joins may fail in Hive 1.2x when vectorization is enabled APACHE JIRA HIVE-11371
  148. joins.Cross=%1$s CROSS JOIN %2$s
  149. joins.Inner=%1$s JOIN %2$s ON %3$s
  150. joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s
  151. joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s
  152. joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s
  153. joins.RightNested=%1$s
  154. #
  155. # Set operators.
  156. #
  157. # Apachive Hive HIVE-10487 requires the projections to have identical names unlike ISO-SQL
  158. operators.set.Union=
  159. operators.set.Union.all=
  160. #operators.set.Union.all=%1$s UNION ALL %2$s
  161. operators.set.Intersect=
  162. operators.set.Intersect.all=
  163. operators.set.Except=
  164. operators.set.Except.all=
  165. #
  166. # Logical operators.
  167. #
  168. operators.logical.And=%1$s AND %2$s
  169. operators.logical.Or=%1$s OR %2$s
  170. operators.logical.Not=NOT ( %1$s )
  171. operators.logical.Is=
  172. operators.logical.IsNot=
  173. operators.logical.IsJson=
  174. operators.logical.IsNotJson=
  175. #
  176. # Arithmetic operators.
  177. #
  178. # For Hive concat has below format. Rest all arithmetic operators remains as in SQL.properties.
  179. # APACHE JIRA HIVE-9537
  180. operators.arithmetic.Concat[char,any]=
  181. operators.arithmetic.Concat[any,char]=
  182. operators.arithmetic.Concat[any,any]=concat(%1$s, %2$s)
  183. operators.arithmetic.Add[timestamp,any]=
  184. operators.arithmetic.Add[any,timestamp]=
  185. operators.arithmetic.Add[date,any]=
  186. operators.arithmetic.Add[any,date]=
  187. operators.arithmetic.Subtract[date,any]=
  188. operators.arithmetic.Subtract[any,date]=
  189. operators.arithmetic.Subtract[timestamp,any]=
  190. operators.arithmetic.Subtract[any,timestamp]=
  191. #
  192. # Group By Operators
  193. #
  194. operators.groupBy.Rollup=
  195. operators.groupBy.Cube=
  196. operators.groupBy.GroupingSets=
  197. #
  198. # Comparison predicates.
  199. #
  200. #
  201. # Various predicates.
  202. #
  203. # Note in Hive 1.2x if vectorization is left on this may fail
  204. # APACHE JIRA HIVE-11372
  205. predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s
  206. predicates.In[any,any]=%1$s IN ( %2$s )
  207. predicates.Overlaps[any,any,any,any]=
  208. predicates.IsNull=%1$s IS NULL
  209. predicates.IsNotNull=%1$s IS NOT NULL
  210. predicates.Like=
  211. predicates.Like.escape=
  212. predicates.LikeRegex=
  213. predicates.LikeRegex.flag=
  214. predicates.Similar=
  215. predicates.Similar.escape=
  216. ##Hive does not support EXISTS in where clause.
  217. predicates.Exists=
  218. predicates.All=
  219. predicates.Any=
  220. predicates.Some=
  221. predicates.IsDistinctFrom[any,any]=
  222. predicates.IsNotDistinctFrom[any,any]=
  223. #
  224. # Period predicates.
  225. #
  226. predicates.PeriodOverlaps[any,any]=
  227. predicates.PeriodEquals[any,any]=
  228. predicates.PeriodContains[any,any]=
  229. predicates.PeriodPrecedes[any,any]=
  230. predicates.PeriodSucceeds[any,any]=
  231. predicates.PeriodImmediatelyPrecedes[any,any]=
  232. predicates.PeriodImmediatelySucceeds[any,any]=
  233. #
  234. # Expressions.
  235. #
  236. expressions.ArrayElementRef.zeroBased=false
  237. expressions.SimpleCase=CASE
  238. expressions.SearchedCase=CASE
  239. # Due to how Hive compares varchar and char it will think that a zero length string and space are not equivalent
  240. # APACHE JIRA HIVE-9537, HIVE-3745 and HIVE-9745
  241. expressions.NullIf=CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END
  242. # APACHE JIRA HIVE-15552 will result in an error for coalesce or case expression mixing DATE and TIMESTAMPS
  243. expressions.Coalesce.minArgs=2
  244. #
  245. # Cast expression.
  246. #
  247. expressions.Cast[any,integer]=CAST(%1$s AS int)
  248. expressions.Cast[smallint,long]=
  249. expressions.Cast[smallint,float]=
  250. expressions.Cast[any,double]=CAST(%1$s AS double)
  251. expressions.Cast[any,varchar]=
  252. expressions.Cast[integer,smallint]=
  253. expressions.Cast[integer,integer]=
  254. expressions.Cast[integer,long]=
  255. expressions.Cast[integer,float]=
  256. expressions.Cast[integer,double]=
  257. expressions.Cast[long,smallint]=
  258. expressions.Cast[long,integer]=
  259. expressions.Cast[long,float]=
  260. expressions.Cast[long,double]=
  261. expressions.Cast[decimal,text]=
  262. expressions.Cast[float,smallint]=
  263. expressions.Cast[float,integer]=
  264. expressions.Cast[float,long]=
  265. expressions.Cast[float,double]=
  266. expressions.Cast[float,text]=
  267. expressions.Cast[double,smallint]=
  268. expressions.Cast[double,integer]=
  269. expressions.Cast[double,long]=
  270. expressions.Cast[double,float]=
  271. expressions.Cast[double,double]=
  272. expressions.Cast[double,text]=
  273. expressions.Cast[varchar,smallint]=
  274. expressions.Cast[varchar,integer]=
  275. expressions.Cast[varchar,long]=
  276. expressions.Cast[varchar,float]=
  277. expressions.Cast[varchar,double]=
  278. expressions.Cast[varchar,timestamp]=
  279. # Hive does not support timestamps with up to 9 digits of precision attempting to cast a character literal or value
  280. # expression to a timestamp will loose fractional seconds.
  281. #expressions.Cast[timestamp,text]=
  282. #
  283. # Extract expression.
  284. #
  285. expressions.Extract.YEAR[any]=year(%1$s)
  286. expressions.Extract.MONTH[any]=month(%1$s)
  287. expressions.Extract.DAY[any]=day(%1$s)
  288. expressions.Extract.HOUR[any]=hour(%1$s)
  289. expressions.Extract.MINUTE[any]=minute(%1$s)
  290. expressions.Extract.SECOND[any]=second(%1$s) + cast(%1$s as double) - cast(cast(from_unixtime(unix_timestamp(%1$s)) as timestamp) as double)
  291. expressions.Extract.TIMEZONE_HOUR[any]=
  292. expressions.Extract.TIMEZONE_MINUTE[any]=
  293. expressions.Extract.EPOCH[any]=
  294. #
  295. # Trim expression.
  296. #
  297. expressions.Trim.BOTH[any]=trim(%1$s)
  298. expressions.Trim.BOTH[any,any]=
  299. expressions.Trim.LEADING[any]=ltrim(%1$s)
  300. expressions.Trim.LEADING[any,any]=
  301. expressions.Trim.TRAILING[any]=rtrim(%1$s)
  302. expressions.Trim.TRAILING[any,any]=
  303. #
  304. # Windowed aggregates (SQL/OLAP).
  305. #
  306. # Hive 2.1 fails if the input to the aggregate is a standard aggregate HIVE-15553
  307. olap.Max[any]=MAX(%1$s)
  308. olap.Min[any]=MIN(%1$s)
  309. olap.Sum[any]=SUM(%1$s)
  310. olap.Avg[any]=AVG(%1$s)
  311. olap.Count[any]=COUNT(%1$s)
  312. olap.CountStar[]=COUNT(*)
  313. olap.CumeDist[]=CUME_DIST()
  314. olap.StdDevSamp[any]=
  315. olap.StdDevPop[any]=
  316. olap.VarSamp[any]=
  317. olap.VarPop[any]=
  318. olap.Rank[]=RANK()
  319. olap.DenseRank[]=DENSE_RANK()
  320. olap.PercentRank[]=PERCENT_RANK()
  321. olap.PercentileCont[any,any]=
  322. olap.PercentileDisc[any,any]=
  323. olap.Median[any]=
  324. olap.RowNumber[]=ROW_NUMBER()
  325. olap.FirstValue[any]=FIRST_VALUE(%1$s)
  326. olap.NTile[any]=
  327. olap.Tertile[]=
  328. olap.RatioToReport[any]=
  329. olap.Difference[any]=
  330. olap.Lag[any]=LAG(%1$s)
  331. olap.Lag[any,any]=LAG(%1$s, %2$s)
  332. olap.Lag[any,any,any]=
  333. olap.Lag[any,any,any,any]=
  334. olap.LastValue[any]=LAST_VALUE(%1$s)
  335. olap.Lead[any]=LEAD(%1$s)
  336. olap.Lead[any,any]=LEAD(%1$s, %2$s)
  337. olap.Lead[any,any,any]=
  338. olap.Lead[any,any,any,any]=
  339. olap.NthValue[any,any]=
  340. olap.NthValue[any,any,any]=
  341. olap.NthValue[any,any,any,any]=
  342. olap.Collect[any]=
  343. #
  344. # Window clause.
  345. #
  346. olap.Window=
  347. olap.PartitionBy=PARTITION BY %1$s
  348. olap.OrderBy=ORDER BY %1$s
  349. #
  350. # Window specification
  351. #
  352. # Older Hive 1.x releases had various issues
  353. # https://issues.apache.org/jira/browse/HIVE-4663
  354. olap.Window.Specification[POF]=true
  355. olap.Window.Specification[PF]=true
  356. olap.Window.Specification[OF]=true
  357. olap.Window.Specification[PO]=true
  358. olap.Window.Specification[P]=true
  359. olap.Window.Specification[O]=true
  360. olap.Window.Specification[F]=true
  361. olap.Window.Specification[]=true
  362. olap.Window.Frame.Moving=true
  363. #
  364. # Olap (distinct).
  365. #
  366. # Note - Hive 2.1 will impose the following restriction
  367. # Current implementation has the limitation that no ORDER BY or window specification can be supported in the partitioning clause for performance reasons
  368. #olap.Min.distinct[any]=MIN(DISTINCT %1$s)
  369. #olap.Max.distinct[any]=MAX(DISTINCT %1$s)
  370. #olap.Sum.distinct[any]=SUM(DISTINCT %1$s)
  371. #olap.Avg.distinct[any]=AVG(DISTINCT %1$s)
  372. #olap.Count.distinct[any]=COUNT(DISTINCT %1$s)
  373. olap.Min.distinct[any]=
  374. olap.Max.distinct[any]=
  375. olap.Sum.distinct[any]=
  376. olap.Avg.distinct[any]=
  377. olap.Count.distinct[any]=
  378. #
  379. # Aggregates.
  380. #
  381. aggregates.Min[text]=
  382. aggregates.Rank[any,any]=
  383. aggregates.DenseRank[any,any]=
  384. aggregates.PercentRank[any,any]=
  385. aggregates.CumeDistH[any,any]=
  386. aggregates.PercentileCont[any,any]=
  387. aggregates.PercentileDisc[any,any]=
  388. aggregates.PercentileCont[any,any]=
  389. aggregates.PercentileDisc[any,any]=
  390. aggregates.Median[any]=
  391. aggregates.XMLAgg=
  392. aggregates.Grouping[any]=
  393. aggregates.ArrayAgg[any]=
  394. aggregates.ArrayAgg[any,any]=
  395. aggregates.Collect[any]=
  396. aggregates.ApproxCountDistinct[any]=
  397. #
  398. # Aggregates (distinct).
  399. #
  400. #
  401. # Linear regression aggregates.
  402. #
  403. aggregates.Corr[any,any]=
  404. aggregates.CovarPop[any,any]=
  405. aggregates.CovarSamp[any,any]=
  406. aggregates.RegrAvgX[any,any]=
  407. aggregates.RegrAvgY[any,any]=
  408. aggregates.RegrCount[any,any]=
  409. aggregates.RegrIntercept[any,any]=
  410. aggregates.RegrR2[any,any]=
  411. aggregates.RegrSlope[any,any]=
  412. aggregates.RegrSXX[any,any]=
  413. aggregates.RegrSXY[any,any]=
  414. aggregates.RegrSYY[any,any]=
  415. #
  416. # JSON aggregates.
  417. #
  418. aggregates.JSONArrayAgg=
  419. aggregates.JSONObjectAgg=
  420. #
  421. # Character scalar functions.
  422. #
  423. # APACHE JIRA HIVE-9537
  424. functions.CharLength[char]=
  425. functions.CharLength[any]=LENGTH(%1$s)
  426. functions.CharLength[clob]=
  427. functions.OctetLength[text]=
  428. functions.BitLength[text]=
  429. # note that Hive will return a char as a varchar with trailing spaces removed
  430. # APACHE JIRA HIVE-9537
  431. functions.Upper[char]=
  432. functions.Upper[any]=UPPER(%1$s)
  433. # note that Hive will return a char as a varchar with trailing spaces removed
  434. # APACHE JIRA HIVE-9537
  435. functions.Lower[char]=
  436. functions.Lower[any]=LOWER(%1$s)
  437. # hive will return nothing if a char field was spaces
  438. # APACHE JIRA HIVE-9537
  439. functions.Substring[char,any]=
  440. functions.Substring[any,any]=substr(%1$s, cast(%2$s as int))
  441. # hive will return nothing if a char field was spaces
  442. # APACHE JIRA HIVE-9537
  443. functions.Substring[char,any,any]=
  444. # hive has copied mysql hence if position is negative they start from the end versus how ISO-SQL
  445. # typical cases using ISO-SQL substring do not use a negative start position.
  446. # APACHE JIRA HIVE-10282
  447. functions.Substring[any,any,any]=substr(%1$s, cast(%2$s as int), cast(%3$s as int))
  448. functions.Position[any,any]=locate(%2$s, %1$s)
  449. functions.Index[any,any]=
  450. functions.Ascii[any]=
  451. functions.Translate[any,any]=
  452. functions.Normalize[any]=
  453. functions.Normalize[any,any]=
  454. functions.Normalize[any,any,any]=
  455. #
  456. # Regular expression functions.
  457. #
  458. functions.SubstringRegex[any,any,any,any,any]=
  459. functions.OccurrencesRegex[any,any,any,any]=
  460. functions.PositionRegex[any,any,any,any,any,any]=
  461. #
  462. # Numeric scalar functions
  463. #
  464. functions.Abs[any]=ABS(%1$s)
  465. functions.Ceiling[any]=CEILING(%1$s)
  466. functions.Exp[any]=EXP(%1$s)
  467. functions.Floor[any]=FLOOR(%1$s)
  468. functions.Ln[any]=LN(%1$s)
  469. functions.Log10[any]=LOG10(%1$s)
  470. functions.Power[any,any]=POWER(%1$s, %2$s)
  471. functions.Random[]=RAND()
  472. functions.Random[any]=RAND(%1$s)
  473. functions.Round[any]=ROUND(%1$s)
  474. functions.Round[any,any]=ROUND(%1$s, %2$s)
  475. functions.Sign[any]=SIGN(%1$s)
  476. functions.Sqrt[any]=SQRT(%1$s)
  477. ## mod function is not supported by Hive. Instead PMOD is supported which returns +ive value of a Mod b.
  478. functions.Mod[any,any]=
  479. ##function round with 3 parameters not supported by Hive.
  480. functions.Round[any,any,any]=
  481. ##function WidthBucket not supported by Hive.
  482. functions.WidthBucket[any,any,any,any]=
  483. #
  484. # Array scalar functions.
  485. #
  486. functions.Cardinality[any]=
  487. functions.TrimArray[any,any]=
  488. #
  489. # Trigonometric functions.
  490. #
  491. functions.Arccos[any]=ACOS(%1$s)
  492. functions.Cos[any]=COS(%1$s)
  493. functions.Arcsin[any]=ASIN(%1$s)
  494. functions.Sin[any]=SIN(%1$s)
  495. functions.Arctan[any]=ATAN(%1$s)
  496. functions.Tan[any]=TAN(%1$s)
  497. ## COSHYP not supported by Hive.
  498. functions.Coshyp[any]=
  499. ## SINHYP not supported by Hive.
  500. functions.Sinhyp[any]=
  501. ## TANHYP not supported by Hive.
  502. functions.Tanhyp[any]=
  503. #Substring function to negative START value to parse the input string from its rightmost end.
  504. functions.SubstringR[any,any]=
  505. functions.SubstringR[any,any,any]=
  506. #
  507. # Datetime value functions.
  508. #
  509. functions.CurrentDate[]=cast(to_date(cast(from_unixtime( unix_timestamp()) as timestamp)) as date)
  510. functions.CurrentTime[]=
  511. # APACHE JIRA HIVE-11377
  512. functions.CurrentTimestamp[]=
  513. functions.LocalTime[]=
  514. functions.LocalTimestamp[]=cast(from_unixtime( unix_timestamp()) as timestamp)
  515. functions.CurrentTime[numeric]=
  516. functions.CurrentTimestamp[numeric]=
  517. functions.LocalTime[numeric]=
  518. functions.LocalTimestamp[numeric]=
  519. #
  520. # XML functions.
  521. #
  522. functions.XMLAttributes=
  523. functions.XMLComment=
  524. functions.XMLConcat=
  525. functions.XMLDocument=
  526. functions.XMLElement=
  527. functions.XMLExists=
  528. functions.XMLForest=
  529. functions.XMLParse=
  530. functions.XMLPI=
  531. functions.XMLNamespaces=
  532. functions.XMLQuery=
  533. functions.XMLSerialize=
  534. functions.XMLTable=
  535. functions.XMLText=
  536. functions.XMLTransform=
  537. functions.XMLValidate=
  538. functions.XMLElement.ContentOption.NULL_ON_NULL=false
  539. functions.XMLElement.ContentOption.EMPTY_ON_NULL=false
  540. functions.XMLForest.ContentOption.NULL_ON_NULL=false
  541. functions.XMLForest.ContentOption.EMPTY_ON_NULL=false
  542. functions.XMLParse.DocumentOrContent.DOCUMENT=false
  543. functions.XMLParse.DocumentOrContent.CONTENT=false
  544. functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false
  545. functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false
  546. functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=true
  547. functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=true
  548. functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false
  549. functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false
  550. #
  551. # JSON functions.
  552. #
  553. functions.JSONArray=
  554. functions.JSONExists=
  555. functions.JSONObject=
  556. functions.JSONQuery=
  557. functions.JSONTable=
  558. functions.JSONValue=
  559. #
  560. # Business date functions.
  561. #
  562. # cast timestamp to double to preserve fractional seconds versus unix_timestamp which is only to seconds
  563. functions.AddFractionalSeconds[any,any]=cast(cast(%1$s as double ) + %2$s as timestamp)
  564. functions.AddSeconds[any,any]=cast(cast(%1$s as double ) + cast( %2$s as int) as timestamp)
  565. functions.AddMinutes[any,any]=cast(cast(%1$s as double ) + (60 * cast( %2$s as int)) as timestamp)
  566. functions.AddHours[any,any]=cast(cast(%1$s as double ) + (3600 * cast( %2$s as int)) as timestamp)
  567. functions.AddDays[interval_day_time,numeric]=
  568. functions.AddDays[date,numeric]=cast(date_add(%1$s, cast(%2$s as int)) as date)
  569. # Hive truncates time component of a timestamp if date_add is used
  570. # Apache JIRA HIVE-3196
  571. functions.AddDays[timestamp,numeric]=cast(cast(%1$s as double ) + (86400 * cast( %2$s as int)) as timestamp)
  572. functions.AddWeeks[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 7) as date)
  573. # Hive truncates time component of a timestamp if date_add is used
  574. # Apache JIRA HIVE-3196
  575. functions.AddWeeks[timestamp,numeric]=cast(cast(%1$s as double ) + (604800 * cast( %2$s as int)) as timestamp)
  576. functions.AddMonths[any,any]=
  577. functions.AddQuarters[any,any]=
  578. functions.AddYears[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 365) as date)
  579. # Hive truncates time component of a timestamp if date_add is used
  580. # Apache JIRA HIVE-3196
  581. functions.AddYears[timestamp,numeric]=
  582. functions.MinutesBetween[any,any]=cast((unix_timestamp( %1$s ) - unix_timestamp( %2$s)) / 60 as bigint)
  583. functions.FractionalSecondsBetween[any,any]=
  584. functions.SecondsBetween[any,any]=(unix_timestamp( %1$s ) - unix_timestamp( %2$s))
  585. functions.HoursBetween[any,any]=cast((unix_timestamp( %1$s ) - unix_timestamp( %2$s)) / 3600 as bigint)
  586. functions.DaysBetween[any,any]=datediff(%1$s, %2$s)
  587. functions.WeeksBetween[any,any]=
  588. functions.MonthsBetween[any,any]=
  589. functions.QuartersBetween[any,any]=
  590. functions.YearsBetween[any,any]=
  591. functions.DaysToEndOfMonth[any]=
  592. functions.Age[any]=
  593. functions.FirstOfMonth[any]=
  594. #FirstOfMonth does not work with Julian Calender for Hive 3.1. Defect 278152
  595. functions.FirstOfMonth[date]=cast(date_add( %1$s, (day( %1$s ) - 1) * -1) as date)
  596. functions.LastOfMonth[any]=
  597. functions.MakeTimestamp[any,any,any]=
  598. functions.DayOfYear[any]=
  599. functions.DayOfWeek[any,any]=
  600. functions.WeekOfYear[any]=weekofyear(%1$s)
  601. functions.YMDIntBetween[any,any]=
  602. #
  603. # Table functions.
  604. #
  605. functions.Unnest=
  606. #
  607. # FDS functions.
  608. #
  609. functions.cast_smallint[any]=
  610. functions.cast_integer[any]=
  611. functions.cast_float[any]=
  612. functions.cast_real[any]=
  613. functions.cast_double[any]=
  614. functions.cast_double_precision[any]=
  615. functions.cast_decimal[any]=
  616. functions.cast_decimal[any,any]=
  617. functions.cast_decimal[any,any,any]=
  618. functions.cast_numeric[any]=
  619. functions.cast_numeric[any,any]=
  620. functions.cast_numeric[any,any,any]=
  621. functions.cast_date[any]=
  622. functions.cast_time[any]=
  623. functions.cast_timestamp[any]=
  624. functions.cast_char[any]=
  625. functions.cast_char[any,any]=
  626. functions.cast_varchar[any]=
  627. functions.cast_varchar[any,any]=
  628. #
  629. # Literals.
  630. #
  631. literals.binary=false
  632. literals.boolean=false
  633. literals.date=true
  634. literals.time=false
  635. literals.time_with_time_zone=false
  636. literals.timestamp=false
  637. literals.timestamp_with_time_zone=false
  638. literals.interval_day=false
  639. literals.interval_day_to_hour=false
  640. literals.interval_day_to_minute=false
  641. literals.interval_day_to_second=false
  642. literals.interval_hour=false
  643. literals.interval_hour_to_minute=false
  644. literals.interval_hour_to_second=false
  645. literals.interval_minute=false
  646. literals.interval_minute_to_second=false
  647. literals.interval_second=false
  648. literals.interval_year=false
  649. literals.interval_year_to_month=false
  650. literals.interval_month=false
  651. literals.decimal=false
  652. literals.char=true
  653. literals.nchar=false
  654. literals.nvarchar=false
  655. literals.xml=false
  656. literals.distinct=false
  657. literals.array=false
  658. literals.perioddate=false
  659. #
  660. # Literal format specifications. Formats are compatible with String.format().
  661. # Values for default behaviour are listed.
  662. # Only char, temporal and string types can be overridden.
  663. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
  664. # 0-padded string representing nanoseconds or empty.
  665. #
  666. literals.format.time=TIME '%1$02d:%2$02d:%2$02d%4$.10s'
  667. literals.format.time_with_time_zone=TIME '%1$02d:%2$02d:%2$02d%4$.10s%7$c%5$02d:%6$02d'
  668. literals.format.timestamp=cast( '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s' as timestamp )
  669. literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'
  670. literals.format.interval_day=INTERVAL %3$s'%1$d' DAY
  671. literals.format.interval_day_to_hour=INTERVAL %4$s'%1$d %2$d' DAY TO HOUR
  672. literals.format.interval_day_to_minute=INTERVAL %5$s'%1$d %2$02d:%3$02d' DAY TO MINUTE
  673. literals.format.interval_day_to_second=INTERVAL %8$s'%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY TO SECOND
  674. literals.format.interval_hour=INTERVAL %3$s'%1$d' HOUR
  675. literals.format.interval_hour_to_minute=INTERVAL %4$s'%1$02d:%2$02d' HOUR TO MINUTE
  676. literals.format.interval_hour_to_second=INTERVAL %7$s'%1$02d:%2$02d:%3$02d%4$.10s' HOUR TO SECOND
  677. literals.format.interval_minute=INTERVAL %3$s'%1$d' MINUTE
  678. literals.format.interval_minute_to_second=INTERVAL %6$s'%1$02d:%2$02d%3$.10s' MINUTE TO SECOND
  679. literals.format.interval_second=INTERVAL %3$s'%1$d%2$.10s' SECOND
  680. literals.format.interval_year=INTERVAL %3$s'%1$d' YEAR
  681. literals.format.interval_year_to_month=INTERVAL %4$s'%1$d-%2$d' YEAR TO MONTH
  682. literals.format.interval_month=INTERVAL %3$s'%1$d' MONTH
  683. # 1 parameter (string)
  684. literals.format.nchar='%s'
  685. # 1 parameter (string)
  686. literals.format.varchar='%s'
  687. # 1 parameter (string)
  688. literals.format.nvarchar='%s'
  689. #
  690. # Data types.
  691. #
  692. dataType.binary=false
  693. dataType.blob=false
  694. dataType.clob=false
  695. dataType.date=true
  696. dataType.time=false
  697. dataType.time_with_time_zone=false
  698. dataType.timestamp_with_time_zone=false
  699. dataType.interval_day=false
  700. dataType.interval_day_to_hour=false
  701. dataType.interval_day_to_minute=false
  702. dataType.interval_day_to_second=false
  703. dataType.interval_hour=false
  704. dataType.interval_hour_to_minute=false
  705. dataType.interval_hour_to_second=false
  706. dataType.interval_minute=false
  707. dataType.interval_minute_to_second=false
  708. dataType.interval_second=false
  709. dataType.interval_year=false
  710. dataType.interval_year_to_month=false
  711. dataType.interval_month=false
  712. dataType.decimal=false
  713. dataType.char=true
  714. dataType.nchar=false
  715. dataType.nvarchar=false
  716. dataType.xml=false
  717. dataType.period=false
  718. dataType.array=false
  719. dataType.struct=false
  720. dataType.map=false
  721. dataType.json=false
  722. #
  723. # Collation Sequence SQL (SQL statement for retrieving the collation sequence)
  724. # This statement returns a single row and single column containing the collation sequence
  725. #
  726. collation.sequence.sql=
  727. #
  728. # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data.
  729. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder.
  730. #
  731. database.charset.sql=
  732. #
  733. # Support for SQL data types that are not defined in the JDBC 3.0 standard
  734. # datasource.type.<datasource specific name>=CCL datatype name
  735. # all spaces need to be replaced with an underscore (_)
  736. #
  737. datasource.type.string=varchar(2048)