hive0.properties 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772
  1. # Licensed Materials - Property of IBM
  2. # IBM Cognos Products: OQP
  3. # (C) Copyright IBM Corp. 2017
  4. # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  5. #
  6. # The configuration of this properties file supports Hive 1x as a base line.
  7. #
  8. #
  9. # Product information.
  10. #
  11. #
  12. # Delimiters
  13. #
  14. delimiters.commentBegin=
  15. delimiters.commentEnd=
  16. #
  17. # Keywords.
  18. #
  19. #
  20. # Various limits. A value of 0 means no limit, or the limit is unknown.
  21. #
  22. limits.defaultTransactionIsolation=
  23. #
  24. # General settings.
  25. #
  26. general.nullsAreSortedLow=true
  27. general.nullsOrdering=false
  28. # Unable to specify ordering in a window
  29. general.nullsOrderingInWindowSpecification=false
  30. #
  31. # Cursor options - appended to end of generated SELECT statement.
  32. #
  33. #
  34. # Various features.
  35. #
  36. supports.tableCorrelationNames=true
  37. supports.expressionsInSelectList=true
  38. supports.booleanExpressionsInSelectList=true
  39. supports.fieldsOfComplexTypeInSelectList=false
  40. supports.likeEscapeClause=false
  41. supports.outerJoins=true
  42. supports.fullOuterJoins=true
  43. supports.correlatedSubqueriesInSelectList=false
  44. supports.correlatedSubqueriesInIns=false
  45. supports.withClauseInDerivedTable=false
  46. supports.derivedColumnLists=false
  47. supports.expressionsInINPredicate=true
  48. #hive supports sub queries only in FROM clause
  49. supports.subqueriesInComparisons=false
  50. #hive supports sub queries only in FROM clause
  51. supports.subqueriesInExists=false
  52. #hive supports sub queries only in FROM clause
  53. supports.subqueriesInIns=false
  54. #hive supports sub queries only in FROM clause
  55. supports.subqueriesInQuantifieds=false
  56. #hive supports sub queries only in FROM clause
  57. #hive supports sub queries only in FROM clause
  58. supports.subqueriesInCase=false
  59. #hive supports sub queries only in FROM clause
  60. supports.correlatedSubqueries=false
  61. supports.nestedWithClause=false
  62. supports.integerDivision=false
  63. supports.expressionsInGroupBy=true
  64. supports.expressionsInOrderBy=true
  65. supports.aliasInOrderByExpression=false
  66. supports.orderByUnrelated=false
  67. supports.groupByUnrelated=false
  68. supports.thetaJoins=false
  69. supports.equiJoins=true
  70. #hive supports sub queries only in FROM clause
  71. supports.scalarSubqueries=false
  72. supports.stitchJoins=false
  73. supports.crossProducts=true
  74. supports.recursiveWithClause=false
  75. supports.callProcedureInDerivedTable=false
  76. supports.constantsInWindows=false
  77. supports.join.subqueriesInOnClause=false
  78. # Indicates whether inner joins require at least one equijoin predicate.
  79. # A INNER JOIN B ON A.C1 = B.C1 AND A.C2 > B.C2 is fine, but A INNER JOIN B ON A.C2 > B.C2 is not.
  80. supports.join.inner.limitedThetaJoins=true
  81. #casting with formatting pattern support
  82. supports.formatters.string_to_date=false
  83. supports.formatters.string_to_time=false
  84. supports.formatters.string_to_time_with_time_zone=false
  85. supports.formatters.string_to_timestamp=false
  86. supports.formatters.string_to_timestamp_with_time_zone=false
  87. #
  88. # Performance properties (force certain transformations to be applied).
  89. #
  90. #
  91. # Command.
  92. #
  93. commands.Call=
  94. #
  95. # Tables.
  96. #
  97. tables.lateral.derived=false
  98. tables.joined=true
  99. tables.derived=true
  100. #
  101. # Constructors.
  102. #
  103. constructors.table=false
  104. constructors.row=false
  105. constructors.array=false
  106. constructors.period=false
  107. constructors.map=false
  108. #
  109. # Constructors - context overrides.
  110. #
  111. constructors.row.simpleCase=false
  112. constructors.row.between=false
  113. constructors.row.isDistinctFrom=false
  114. constructors.row.inListToTable=false
  115. #
  116. # Clauses.
  117. #
  118. clauses.Having=
  119. clauses.With=
  120. clauses.Top=
  121. clauses.FetchFirst=
  122. clauses.At=
  123. clauses.Window=
  124. clauses.WithRecursive=
  125. clauses.Limit=LIMIT %1$s
  126. clauses.TableSampleSystem=
  127. clauses.TableSampleBernoulli=
  128. clauses.ForSystemTimeAsOf=
  129. clauses.ForSystemTimeFrom=
  130. clauses.ForSystemTimeBetween=
  131. #
  132. # Joins.
  133. #
  134. # Join condition does not support OR clause
  135. # Does not support non-equi joins
  136. # Does not allow on condition to use set functions
  137. # Does not allow join conditions to use sub-queries
  138. # Does not allow non equi joins in full outer join
  139. # Only allows equal with and conditions in joins
  140. # Does not support outer non-equi joins
  141. #
  142. # Nested joins may fail in Hive 1.2x when vectorization is enabled APACHE JIRA HIVE-11371
  143. joins.Cross=%1$s CROSS JOIN %2$s
  144. joins.Inner=%1$s JOIN %2$s ON %3$s
  145. joins.LeftOuter=%1$s LEFT OUTER JOIN %2$s ON %3$s
  146. joins.RightOuter=%1$s RIGHT OUTER JOIN %2$s ON %3$s
  147. joins.FullOuter=%1$s FULL OUTER JOIN %2$s ON %3$s
  148. joins.RightNested=%1$s
  149. #
  150. # Set operators.
  151. #
  152. # Apachive Hive HIVE-10487 requires the projections to have identical names unlike ISO-SQL
  153. operators.set.Union=
  154. operators.set.Union.all=
  155. #operators.set.Union.all=%1$s UNION ALL %2$s
  156. operators.set.Intersect=
  157. operators.set.Intersect.all=
  158. operators.set.Except=
  159. operators.set.Except.all=
  160. #
  161. # Logical operators.
  162. #
  163. operators.logical.And=%1$s AND %2$s
  164. operators.logical.Or=%1$s OR %2$s
  165. operators.logical.Not=NOT ( %1$s )
  166. operators.logical.Is=
  167. operators.logical.IsNot=
  168. operators.logical.IsJson=
  169. operators.logical.IsNotJson=
  170. #
  171. # Arithmetic operators.
  172. #
  173. # For Hive concat has below format. Rest all arithmetic operators remains as in SQL.properties.
  174. # APACHE JIRA HIVE-9537
  175. operators.arithmetic.Concat[char,any]=
  176. operators.arithmetic.Concat[any,char]=
  177. operators.arithmetic.Concat[any,any]=concat(%1$s, %2$s)
  178. operators.arithmetic.Add[timestamp,any]=
  179. operators.arithmetic.Add[any,timestamp]=
  180. operators.arithmetic.Add[date,any]=
  181. operators.arithmetic.Add[any,date]=
  182. operators.arithmetic.Subtract[date,any]=
  183. operators.arithmetic.Subtract[any,date]=
  184. operators.arithmetic.Subtract[timestamp,any]=
  185. operators.arithmetic.Subtract[any,timestamp]=
  186. #
  187. # Group By Operators
  188. #
  189. operators.groupBy.Rollup=
  190. operators.groupBy.Cube=
  191. operators.groupBy.GroupingSets=
  192. #
  193. # Comparison predicates.
  194. #
  195. #
  196. # Various predicates.
  197. #
  198. # Note in Hive 1.2x if vectorization is left on this may fail
  199. # APACHE JIRA HIVE-11372
  200. predicates.Between[any,any,any]=%1$s BETWEEN %2$s AND %3$s
  201. predicates.In[any,any]=%1$s IN ( %2$s )
  202. predicates.Overlaps[any,any,any,any]=
  203. predicates.IsNull=%1$s IS NULL
  204. predicates.IsNotNull=%1$s IS NOT NULL
  205. predicates.Like=
  206. predicates.Like.escape=
  207. predicates.LikeRegex=
  208. predicates.LikeRegex.flag=
  209. predicates.Similar=
  210. predicates.Similar.escape=
  211. ##Hive does not support EXISTS in where clause.
  212. predicates.Exists=
  213. predicates.All=
  214. predicates.Any=
  215. predicates.Some=
  216. predicates.IsDistinctFrom[any,any]=
  217. predicates.IsNotDistinctFrom[any,any]=
  218. #
  219. # Period predicates.
  220. #
  221. predicates.PeriodOverlaps[any,any]=
  222. predicates.PeriodEquals[any,any]=
  223. predicates.PeriodContains[any,any]=
  224. predicates.PeriodPrecedes[any,any]=
  225. predicates.PeriodSucceeds[any,any]=
  226. predicates.PeriodImmediatelyPrecedes[any,any]=
  227. predicates.PeriodImmediatelySucceeds[any,any]=
  228. #
  229. # Expressions.
  230. #
  231. expressions.ArrayElementRef.zeroBased=false
  232. expressions.SimpleCase=CASE
  233. expressions.SearchedCase=CASE
  234. # Due to how Hive compares varchar and char it will think that a zero length string and space are not equivalent
  235. # APACHE JIRA HIVE-9537, HIVE-3745 and HIVE-9745
  236. expressions.NullIf=CASE WHEN %1$s = %2$s THEN NULL ELSE %1$s END
  237. expressions.Coalesce.minArgs=2
  238. #
  239. # Cast expression.
  240. #
  241. expressions.Cast[any,integer]=CAST(%1$s AS int)
  242. expressions.Cast[smallint,long]=
  243. expressions.Cast[smallint,float]=
  244. expressions.Cast[any,double]=CAST(%1$s AS double)
  245. expressions.Cast[any,varchar]=
  246. expressions.Cast[integer,smallint]=
  247. expressions.Cast[integer,integer]=
  248. expressions.Cast[integer,long]=
  249. expressions.Cast[integer,float]=
  250. expressions.Cast[integer,double]=
  251. expressions.Cast[long,smallint]=
  252. expressions.Cast[long,integer]=
  253. expressions.Cast[long,float]=
  254. expressions.Cast[long,double]=
  255. expressions.Cast[decimal,text]=
  256. expressions.Cast[float,smallint]=
  257. expressions.Cast[float,integer]=
  258. expressions.Cast[float,long]=
  259. expressions.Cast[float,double]=
  260. expressions.Cast[float,text]=
  261. expressions.Cast[double,smallint]=
  262. expressions.Cast[double,integer]=
  263. expressions.Cast[double,long]=
  264. expressions.Cast[double,float]=
  265. expressions.Cast[double,double]=
  266. expressions.Cast[double,text]=
  267. expressions.Cast[varchar,smallint]=
  268. expressions.Cast[varchar,integer]=
  269. expressions.Cast[varchar,long]=
  270. expressions.Cast[varchar,float]=
  271. expressions.Cast[varchar,double]=
  272. expressions.Cast[varchar,timestamp]=
  273. # Hive does not support timestamps with up to 9 digits of precision attempting to cast a character literal or value
  274. # expression to a timestamp will loose fractional seconds.
  275. #expressions.Cast[timestamp,text]=
  276. #
  277. # Extract expression.
  278. #
  279. expressions.Extract.YEAR[any]=year(%1$s)
  280. expressions.Extract.MONTH[any]=month(%1$s)
  281. expressions.Extract.DAY[any]=day(%1$s)
  282. expressions.Extract.HOUR[any]=hour(%1$s)
  283. expressions.Extract.MINUTE[any]=minute(%1$s)
  284. expressions.Extract.SECOND[any]=second(%1$s) + cast(%1$s as double) - cast(cast(from_unixtime(unix_timestamp(%1$s)) as timestamp) as double)
  285. expressions.Extract.TIMEZONE_HOUR[any]=
  286. expressions.Extract.TIMEZONE_MINUTE[any]=
  287. expressions.Extract.EPOCH[any]=
  288. #
  289. # Trim expression.
  290. #
  291. expressions.Trim.BOTH[any]=trim(%1$s)
  292. expressions.Trim.BOTH[any,any]=
  293. expressions.Trim.LEADING[any]=ltrim(%1$s)
  294. expressions.Trim.LEADING[any,any]=
  295. expressions.Trim.TRAILING[any]=rtrim(%1$s)
  296. expressions.Trim.TRAILING[any,any]=
  297. #
  298. # Windowed aggregates (SQL/OLAP).
  299. #
  300. olap.Count[any]=
  301. olap.CountStar[]=
  302. olap.CumeDist[]=
  303. olap.StdDevSamp[any]=
  304. olap.StdDevPop[any]=
  305. olap.VarSamp[any]=
  306. olap.VarPop[any]=
  307. olap.Rank[]=
  308. olap.DenseRank[]=
  309. olap.PercentRank[]=
  310. olap.PercentileCont[any,any]=
  311. olap.PercentileDisc[any,any]=
  312. olap.Median[any]=
  313. olap.RowNumber[]=
  314. olap.FirstValue[any]=
  315. olap.NTile[any]=
  316. olap.Tertile[]=
  317. olap.RatioToReport[any]=
  318. olap.Difference[any]=
  319. olap.Lag[any]=
  320. olap.Lag[any,any]=
  321. olap.Lag[any,any,any]=
  322. olap.Lag[any,any,any,any]=
  323. olap.LastValue[any]=
  324. olap.Lead[any]=
  325. olap.Lead[any,any]=
  326. olap.Lead[any,any,any]=
  327. olap.Lead[any,any,any,any]=
  328. olap.NthValue[any,any]=
  329. olap.NthValue[any,any,any]=
  330. olap.NthValue[any,any,any,any]=
  331. olap.Collect[any]=
  332. #
  333. # Window clause.
  334. #
  335. olap.Window=
  336. olap.PartitionBy=
  337. olap.OrderBy=
  338. #
  339. # Window specification
  340. #
  341. # Turn off the window specification functions:
  342. # https://issues.apache.org/jira/browse/HIVE-4663
  343. olap.Window.Specification[POF]=false
  344. olap.Window.Specification[PF]=false
  345. olap.Window.Specification[OF]=false
  346. olap.Window.Specification[PO]=false
  347. olap.Window.Specification[P]=false
  348. olap.Window.Specification[O]=false
  349. olap.Window.Specification[F]=false
  350. olap.Window.Specification[]=false
  351. olap.Window.Frame.Moving=false
  352. #
  353. # Olap (distinct).
  354. #
  355. olap.Max.distinct[any]=
  356. olap.Min.distinct[any]=
  357. olap.Sum.distinct[any]=
  358. olap.Avg.distinct[any]=
  359. olap.Count.distinct[any]=
  360. #
  361. # Aggregates.
  362. #
  363. aggregates.Min[text]=
  364. aggregates.Rank[any,any]=
  365. aggregates.DenseRank[any,any]=
  366. aggregates.PercentRank[any,any]=
  367. aggregates.CumeDistH[any,any]=
  368. aggregates.PercentileCont[any,any]=
  369. aggregates.PercentileDisc[any,any]=
  370. aggregates.PercentileCont[any,any]=
  371. aggregates.PercentileDisc[any,any]=
  372. aggregates.Median[any]=
  373. aggregates.XMLAgg=
  374. aggregates.Grouping[any]=
  375. aggregates.ArrayAgg[any]=
  376. aggregates.ArrayAgg[any,any]=
  377. aggregates.Collect[any]=
  378. #
  379. # Aggregates (distinct).
  380. #
  381. #
  382. # Linear regression aggregates.
  383. #
  384. aggregates.Corr[any,any]=
  385. aggregates.CovarPop[any,any]=
  386. aggregates.CovarSamp[any,any]=
  387. aggregates.RegrAvgX[any,any]=
  388. aggregates.RegrAvgY[any,any]=
  389. aggregates.RegrCount[any,any]=
  390. aggregates.RegrIntercept[any,any]=
  391. aggregates.RegrR2[any,any]=
  392. aggregates.RegrSlope[any,any]=
  393. aggregates.RegrSXX[any,any]=
  394. aggregates.RegrSXY[any,any]=
  395. aggregates.RegrSYY[any,any]=
  396. #
  397. # JSON aggregates.
  398. #
  399. aggregates.JSONArrayAgg=
  400. aggregates.JSONObjectAgg=
  401. #
  402. # Character scalar functions.
  403. #
  404. # APACHE JIRA HIVE-9537
  405. functions.CharLength[char]=
  406. functions.CharLength[any]=LENGTH(%1$s)
  407. functions.CharLength[clob]=
  408. functions.OctetLength[text]=
  409. functions.BitLength[text]=
  410. # note that Hive will return a char as a varchar with trailing spaces removed
  411. # APACHE JIRA HIVE-9537
  412. functions.Upper[char]=
  413. functions.Upper[any]=UPPER(%1$s)
  414. # note that Hive will return a char as a varchar with trailing spaces removed
  415. # APACHE JIRA HIVE-9537
  416. functions.Lower[char]=
  417. functions.Lower[any]=LOWER(%1$s)
  418. # hive will return nothing if a char field was spaces
  419. # APACHE JIRA HIVE-9537
  420. functions.Substring[char,any]=
  421. functions.Substring[any,any]=substr(%1$s, cast(%2$s as int))
  422. # hive will return nothing if a char field was spaces
  423. # APACHE JIRA HIVE-9537
  424. functions.Substring[char,any,any]=
  425. # hive has copied mysql hence if position is negative they start from the end versus how ISO-SQL
  426. # typical cases using ISO-SQL substring do not use a negative start position.
  427. # APACHE JIRA HIVE-10282
  428. functions.Substring[any,any,any]=substr(%1$s, cast(%2$s as int), cast(%3$s as int))
  429. functions.Position[any,any]=locate(%2$s, %1$s)
  430. functions.Index[any,any]=
  431. functions.Ascii[any]=
  432. functions.Translate[any,any]=
  433. functions.Normalize[any]=
  434. functions.Normalize[any,any]=
  435. functions.Normalize[any,any,any]=
  436. #
  437. # Regular expression functions.
  438. #
  439. functions.SubstringRegex[any,any,any,any,any]=
  440. functions.OccurrencesRegex[any,any,any,any]=
  441. functions.PositionRegex[any,any,any,any,any,any]=
  442. #
  443. # Numeric scalar functions
  444. #
  445. functions.Abs[any]=ABS(%1$s)
  446. functions.Ceiling[any]=CEILING(%1$s)
  447. functions.Exp[any]=EXP(%1$s)
  448. functions.Floor[any]=FLOOR(%1$s)
  449. functions.Ln[any]=LN(%1$s)
  450. functions.Log10[any]=LOG10(%1$s)
  451. functions.Power[any,any]=POWER(%1$s, %2$s)
  452. functions.Round[any]=ROUND(%1$s)
  453. functions.Round[any,any]=ROUND(%1$s, %2$s)
  454. functions.Sign[any]=SIGN(%1$s)
  455. functions.Sqrt[any]=SQRT(%1$s)
  456. ## mod function is not supported by Hive. Instead PMOD is supported which returns +ive value of a Mod b.
  457. functions.Mod[any,any]=
  458. ##function round with 3 parameters not supported by Hive.
  459. functions.Round[any,any,any]=
  460. ##function WidthBucket not supported by Hive.
  461. functions.WidthBucket[any,any,any,any]=
  462. #
  463. # Array scalar functions.
  464. #
  465. functions.Cardinality[any]=
  466. functions.TrimArray[any,any]=
  467. #
  468. # Trigonometric functions.
  469. #
  470. functions.Arccos[any]=ACOS(%1$s)
  471. functions.Cos[any]=COS(%1$s)
  472. functions.Arcsin[any]=ASIN(%1$s)
  473. functions.Sin[any]=SIN(%1$s)
  474. functions.Arctan[any]=ATAN(%1$s)
  475. functions.Tan[any]=TAN(%1$s)
  476. ## COSHYP not supported by Hive.
  477. functions.Coshyp[any]=
  478. ## SINHYP not supported by Hive.
  479. functions.Sinhyp[any]=
  480. ## TANHYP not supported by Hive.
  481. functions.Tanhyp[any]=
  482. #Substring function to negative START value to parse the input string from its rightmost end.
  483. functions.SubstringR[any,any]=
  484. functions.SubstringR[any,any,any]=
  485. #
  486. # Datetime value functions.
  487. #
  488. functions.CurrentDate[]=cast(to_date(cast(from_unixtime( unix_timestamp()) as timestamp)) as date)
  489. functions.CurrentTime[]=
  490. # APACHE JIRA HIVE-11377
  491. functions.CurrentTimestamp[]=
  492. functions.LocalTime[]=
  493. functions.LocalTimestamp[]=cast(from_unixtime( unix_timestamp()) as timestamp)
  494. functions.CurrentTime[numeric]=
  495. functions.CurrentTimestamp[numeric]=
  496. functions.LocalTime[numeric]=
  497. functions.LocalTimestamp[numeric]=
  498. #
  499. # XML functions.
  500. #
  501. functions.XMLAttributes=
  502. functions.XMLComment=
  503. functions.XMLConcat=
  504. functions.XMLDocument=
  505. functions.XMLElement=
  506. functions.XMLExists=
  507. functions.XMLForest=
  508. functions.XMLParse=
  509. functions.XMLPI=
  510. functions.XMLNamespaces=
  511. functions.XMLQuery=
  512. functions.XMLSerialize=
  513. functions.XMLTable=
  514. functions.XMLText=
  515. functions.XMLTransform=
  516. functions.XMLValidate=
  517. functions.XMLElement.ContentOption.NULL_ON_NULL=false
  518. functions.XMLElement.ContentOption.EMPTY_ON_NULL=false
  519. functions.XMLForest.ContentOption.NULL_ON_NULL=false
  520. functions.XMLForest.ContentOption.EMPTY_ON_NULL=false
  521. functions.XMLParse.DocumentOrContent.DOCUMENT=false
  522. functions.XMLParse.DocumentOrContent.CONTENT=false
  523. functions.XMLParse.WhitespaceOption.STRIP_WHITESPACE=false
  524. functions.XMLParse.WhitespaceOption.PRESERVE_WHITESPACE=false
  525. functions.XMLQuery.EmptyHandlingOption.NULL_ON_EMPTY=true
  526. functions.XMLQuery.EmptyHandlingOption.EMPTY_ON_EMPTY=true
  527. functions.XMLSerialize.DeclarationOption.INCLUDING_XMLDECLARATION=false
  528. functions.XMLSerialize.DeclarationOption.EXCLUDING_XMLDECLARATION=false
  529. #
  530. # JSON functions.
  531. #
  532. functions.JSONArray=
  533. functions.JSONExists=
  534. functions.JSONObject=
  535. functions.JSONQuery=
  536. functions.JSONTable=
  537. functions.JSONValue=
  538. #
  539. # Business date functions.
  540. #
  541. # cast timestamp to double to preserve fractional seconds versus unix_timestamp which is only to seconds
  542. functions.AddFractionalSeconds[any,any]=cast(cast(%1$s as double ) + %2$s as timestamp)
  543. functions.AddSeconds[any,any]=cast(cast(%1$s as double ) + cast( %2$s as int) as timestamp)
  544. functions.AddMinutes[any,any]=cast(cast(%1$s as double ) + (60 * cast( %2$s as int)) as timestamp)
  545. functions.AddHours[any,any]=cast(cast(%1$s as double ) + (3600 * cast( %2$s as int)) as timestamp)
  546. functions.AddDays[interval_day_time,numeric]=
  547. functions.AddDays[date,numeric]=cast(date_add(%1$s, cast(%2$s as int)) as date)
  548. # Hive truncates time component of a timestamp if date_add is used
  549. # Apache JIRA HIVE-3196
  550. functions.AddDays[timestamp,numeric]=cast(cast(%1$s as double ) + (86400 * cast( %2$s as int)) as timestamp)
  551. functions.AddWeeks[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 7) as date)
  552. # Hive truncates time component of a timestamp if date_add is used
  553. # Apache JIRA HIVE-3196
  554. functions.AddWeeks[timestamp,numeric]=cast(cast(%1$s as double ) + (604800 * cast( %2$s as int)) as timestamp)
  555. functions.AddMonths[any,any]=
  556. functions.AddQuarters[any,any]=
  557. functions.AddYears[date,numeric]=cast(date_add(%1$s, cast(%2$s as int) * 365) as date)
  558. # Hive truncates time component of a timestamp if date_add is used
  559. # Apache JIRA HIVE-3196
  560. functions.AddYears[timestamp,numeric]=
  561. functions.MinutesBetween[any,any]=cast((unix_timestamp( %1$s ) - unix_timestamp( %2$s)) / 60 as bigint)
  562. functions.FractionalSecondsBetween[any,any]=
  563. functions.SecondsBetween[any,any]=(unix_timestamp( %1$s ) - unix_timestamp( %2$s))
  564. functions.HoursBetween[any,any]=cast((unix_timestamp( %1$s ) - unix_timestamp( %2$s)) / 3600 as bigint)
  565. functions.DaysBetween[any,any]=datediff(%1$s, %2$s)
  566. functions.WeeksBetween[any,any]=
  567. functions.MonthsBetween[any,any]=
  568. functions.QuartersBetween[any,any]=
  569. functions.YearsBetween[any,any]=
  570. functions.DaysToEndOfMonth[any]=
  571. functions.Age[any]=
  572. functions.FirstOfMonth[any]=
  573. functions.FirstOfMonth[date]=cast(date_add( %1$s, (day( %1$s ) - 1) * -1) as date)
  574. functions.LastOfMonth[any]=
  575. functions.MakeTimestamp[any,any,any]=
  576. functions.DayOfYear[any]=
  577. functions.DayOfWeek[any,any]=
  578. functions.WeekOfYear[any]=weekofyear(%1$s)
  579. functions.YMDIntBetween[any,any]=
  580. #
  581. # Table functions.
  582. #
  583. functions.Unnest=
  584. #
  585. # FDS functions.
  586. #
  587. functions.cast_smallint[any]=
  588. functions.cast_integer[any]=
  589. functions.cast_float[any]=
  590. functions.cast_real[any]=
  591. functions.cast_double[any]=
  592. functions.cast_double_precision[any]=
  593. functions.cast_decimal[any]=
  594. functions.cast_decimal[any,any]=
  595. functions.cast_decimal[any,any,any]=
  596. functions.cast_numeric[any]=
  597. functions.cast_numeric[any,any]=
  598. functions.cast_numeric[any,any,any]=
  599. functions.cast_date[any]=
  600. functions.cast_time[any]=
  601. functions.cast_timestamp[any]=
  602. functions.cast_char[any]=
  603. functions.cast_char[any,any]=
  604. functions.cast_varchar[any]=
  605. functions.cast_varchar[any,any]=
  606. #
  607. # Literals.
  608. #
  609. literals.binary=false
  610. literals.boolean=false
  611. literals.date=true
  612. literals.time=false
  613. literals.time_with_time_zone=false
  614. literals.timestamp=false
  615. literals.timestamp_with_time_zone=false
  616. literals.interval_day=false
  617. literals.interval_day_to_hour=false
  618. literals.interval_day_to_minute=false
  619. literals.interval_day_to_second=false
  620. literals.interval_hour=false
  621. literals.interval_hour_to_minute=false
  622. literals.interval_hour_to_second=false
  623. literals.interval_minute=false
  624. literals.interval_minute_to_second=false
  625. literals.interval_second=false
  626. literals.interval_year=false
  627. literals.interval_year_to_month=false
  628. literals.interval_month=false
  629. literals.decimal=false
  630. literals.char=true
  631. literals.nchar=false
  632. literals.nvarchar=false
  633. literals.xml=false
  634. literals.distinct=false
  635. literals.array=false
  636. literals.perioddate=false
  637. #
  638. # Literal format specifications. Formats are compatible with String.format().
  639. # Values for default behaviour are listed.
  640. # Only char, temporal and string types can be overridden.
  641. # Fractional seconds are presented as a string of up to 10 characters: '.' followed by 9 character
  642. # 0-padded string representing nanoseconds or empty.
  643. #
  644. literals.format.time=TIME '%1$02d:%2$02d:%2$02d%4$.10s'
  645. literals.format.time_with_time_zone=TIME '%1$02d:%2$02d:%2$02d%4$.10s%7$c%5$02d:%6$02d'
  646. literals.format.timestamp=cast( '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s' as timestamp )
  647. literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'
  648. literals.format.interval_day=INTERVAL %3$s'%1$d' DAY
  649. literals.format.interval_day_to_hour=INTERVAL %4$s'%1$d %2$d' DAY TO HOUR
  650. literals.format.interval_day_to_minute=INTERVAL %5$s'%1$d %2$02d:%3$02d' DAY TO MINUTE
  651. literals.format.interval_day_to_second=INTERVAL %8$s'%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY TO SECOND
  652. literals.format.interval_hour=INTERVAL %3$s'%1$d' HOUR
  653. literals.format.interval_hour_to_minute=INTERVAL %4$s'%1$02d:%2$02d' HOUR TO MINUTE
  654. literals.format.interval_hour_to_second=INTERVAL %7$s'%1$02d:%2$02d:%3$02d%4$.10s' HOUR TO SECOND
  655. literals.format.interval_minute=INTERVAL %3$s'%1$d' MINUTE
  656. literals.format.interval_minute_to_second=INTERVAL %6$s'%1$02d:%2$02d%3$.10s' MINUTE TO SECOND
  657. literals.format.interval_second=INTERVAL %3$s'%1$d%2$.10s' SECOND
  658. literals.format.interval_year=INTERVAL %3$s'%1$d' YEAR
  659. literals.format.interval_year_to_month=INTERVAL %4$s'%1$d-%2$d' YEAR TO MONTH
  660. literals.format.interval_month=INTERVAL %3$s'%1$d' MONTH
  661. # 1 parameter (string)
  662. literals.format.nchar='%s'
  663. # 1 parameter (string)
  664. literals.format.varchar='%s'
  665. # 1 parameter (string)
  666. literals.format.nvarchar='%s'
  667. #
  668. # Data types.
  669. #
  670. dataType.binary=false
  671. dataType.blob=false
  672. dataType.clob=false
  673. dataType.date=true
  674. dataType.time=false
  675. dataType.time_with_time_zone=false
  676. dataType.timestamp_with_time_zone=false
  677. dataType.interval_day=false
  678. dataType.interval_day_to_hour=false
  679. dataType.interval_day_to_minute=false
  680. dataType.interval_day_to_second=false
  681. dataType.interval_hour=false
  682. dataType.interval_hour_to_minute=false
  683. dataType.interval_hour_to_second=false
  684. dataType.interval_minute=false
  685. dataType.interval_minute_to_second=false
  686. dataType.interval_second=false
  687. dataType.interval_year=false
  688. dataType.interval_year_to_month=false
  689. dataType.interval_month=false
  690. dataType.decimal=false
  691. dataType.char=true
  692. dataType.nchar=false
  693. dataType.nvarchar=false
  694. dataType.xml=false
  695. dataType.period=false
  696. dataType.array=false
  697. dataType.struct=false
  698. dataType.map=false
  699. dataType.json=false
  700. #
  701. # Collation Sequence SQL (SQL statement for retrieving the collation sequence)
  702. # This statement returns a single row and single column containing the collation sequence
  703. #
  704. collation.sequence.sql=
  705. #
  706. # Datbase Encoding SQL. This statement retrieves the charset name for the non-unicode character data.
  707. # This statement returns a single row and single column with the charset name for use in a java.nio.CharsetEncoder.
  708. #
  709. database.charset.sql=
  710. #
  711. # Support for SQL data types that are not defined in the JDBC 3.0 standard
  712. # datasource.type.<datasource specific name>=CCL datatype name
  713. # all spaces need to be replaced with an underscore (_)
  714. #
  715. datasource.type.string=varchar(2048)