123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456 |
- # Licensed Materials - Property of IBM
- # IBM Cognos Products: OQP
- # (C) Copyright IBM Corp. 2005, 2022
- # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
- #
- # Delimiters.
- #
- #
- # Various limits.
- #
- limits.maxDecimalPrecision=38
- #
- # General settings.
- #
- # Null ordering.
- #
- general.nullsAreSortedLow=true
- general.nullsAreSortedHigh=false
- #
- # Override sampling policy with a different one.
- # 1. tablesample accepting values such as BERNOULLI or SYSTEM
- # 2. rowsample accepting values such as NTH or RANDOM
- #
- sampling.tablesample=
- sampling.rowsample=RANDOM
- #
- # Various features.
- #
- supports.nestedWithClause=false
- supports.aliasInOrderByExpression=false
- supports.subqueriesInAggregate=false
- supports.recursiveWithClause=false
- supports.booleanExpressionsInSelectList=false
- supports.correlatedSubqueriesInSelectList=false
- supports.correlatedSubqueriesInIns=false
- supports.callProcedureInDerivedTable=false
- #casting with formatting pattern support
- supports.formatters.string_to_date=false
- supports.formatters.string_to_time=false
- supports.formatters.string_to_time_with_time_zone=false
- supports.formatters.string_to_timestamp=false
- supports.formatters.string_to_timestamp_with_time_zone=false
- #
- # Tables.
- #
- tables.lateral.derived=false
- #
- # Constructors.
- #
- constructors.table=false
- constructors.row=false
- constructors.array=false
- constructors.period=false
- #
- # Constructors - context overrides.
- #
- constructors.row.simpleCase=false
- constructors.row.between=false
- #
- # Clauses.
- #
- clauses.Top=LIMIT %1$s
- clauses.At=
- clauses.Window=
- clauses.WithRecursive=
- clauses.TableSampleSystem=
- clauses.TableSampleBernoulli=
- clauses.ForSystemTimeAsOf=
- clauses.ForSystemTimeFrom=
- clauses.ForSystemTimeBetween=
- #
- # Joins.
- #
- #
- # Set operators.
- #
- #
- # Logical operators.
- #
- operators.logical.Is=
- operators.logical.IsNot=
- #
- # Arithmetic operators.
- #
- operators.arithmetic.Subtract[any,datetime]=
- #
- # Group By operators.
- #
- #
- # Comparison predicates.
- #
- #
- # Various predicates.
- #
- predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
- predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
- predicates.LikeRegex=
- predicates.LikeRegex.flag=
- predicates.Similar=
- predicates.Similar.escape=
- #
- # Period predicates.
- #
- predicates.PeriodOverlaps[any,any]=
- predicates.PeriodEquals[any,any]=
- predicates.PeriodContains[any,any]=
- predicates.PeriodPrecedes[any,any]=
- predicates.PeriodSucceeds[any,any]=
- predicates.PeriodImmediatelyPrecedes[any,any]=
- predicates.PeriodImmediatelySucceeds[any,any]=
- #
- # Expressions.
- #
- #
- # Cast expression.
- #
- expressions.Cast[time,time_with_time_zone]=
- expressions.Cast[time,timestamp]=
- expressions.Cast[timestamp,time_with_time_zone]=
- expressions.Cast[decimal,integer]=CAST(TRUNC(%1$s) as INTEGER)
- expressions.Cast[double,integer]=CAST(TRUNC(%1$s) as INTEGER)
- expressions.Cast[float,integer]=CAST(TRUNC(%1$s) as INTEGER)
- #
- # Extract expression.
- #
- expressions.Extract.SECOND[any]=CAST(EXTRACT(MILLISECOND FROM %1$s) as DECIMAL)/1000
- #
- ## COSHYP not supported by Netezza.
- functions.Coshyp[any]=
- ## SINHYP not supported by Netezza.
- functions.Sinhyp[any]=
- ## TANHYP not supported by Netezza.
- functions.Tanhyp[any]=
- #
- # Windowed aggregates (SQL/OLAP).
- #
- olap.RatioToReport[any]=
- olap.Tertile[]=
- olap.Difference[any]=
- olap.PercentileCont[any,any]=
- olap.PercentileDisc[any,any]=
- olap.Median[any]=
- # RESPECT|IGNORE NULLS option is not supported.
- olap.Lag[any,any,any,any]=
- olap.Lead[any,any,any,any]=
- olap.NthValue[any,any]=
- olap.NthValue[any,any,any]=
- olap.NthValue[any,any,any,any]=
- olap.Collect[any]=
- #
- # Window clause.
- #
- #
- # Aggregates
- #
- aggregates.PercentileCont[any,any]=
- aggregates.PercentileDisc[any,any]=
- aggregates.Median[any]=
- aggregates.XMLAgg=
- aggregates.ArrayAgg[any]=
- aggregates.ArrayAgg[any,any]=
- aggregates.Collect[any]=
- aggregates.ApproxCountDistinct[any]=
- #
- # Aggregates (distinct)
- #
- #
- # Linear regression aggregates.
- #
- aggregates.Corr[any,any]=
- aggregates.CovarPop[any,any]=
- aggregates.CovarSamp[any,any]=
- aggregates.RegrAvgX[any,any]=
- aggregates.RegrAvgY[any,any]=
- aggregates.RegrCount[any,any]=
- aggregates.RegrIntercept[any,any]=
- aggregates.RegrR2[any,any]=
- aggregates.RegrSlope[any,any]=
- aggregates.RegrSXX[any,any]=
- aggregates.RegrSXY[any,any]=
- aggregates.RegrSYY[any,any]=
- #
- # JSON aggregates.
- #
- aggregates.JSONArrayAgg=
- aggregates.JSONObjectAgg=
- #
- # Character scalar functions.
- #
- functions.BitLength[any]=(OCTET_LENGTH(%1$s) * 8)
- functions.Index[any,any]=POSITION(%2$s IN %1$s)
- functions.Translate[any,any]=
- functions.Normalize[any]=
- functions.Normalize[any,any]=
- functions.Normalize[any,any,any]=
- #
- # Regular expression functions.
- #
- functions.SubstringRegex[any,any,any,any,any]=
- functions.OccurrencesRegex[any,any,any,any]=
- functions.PositionRegex[any,any,any,any,any,any]=
- #
- # Numeric scalar functions.
- #
- functions.Abs[interval_day_time]=
- functions.Abs[interval_year_month]=
- functions.Ceiling[any]=CEIL(%1$s)
- functions.Round[any,any,any]=
- functions.Power[any,any]=POW(%1$s, %2$s)
- functions.Random[]=RANDOM()
- functions.Random[any]=
- functions.Log10[any]=LOG(%1$s)
- #
- # Array scalar functions.
- #
- functions.Cardinality[any]=
- functions.TrimArray[any,any]=
- #
- # Trigonometric functions.
- #
- #
- # Datetime value functions.
- #
- functions.CurrentDate[]=CURRENT_DATE
- functions.CurrentTime[]=
- functions.CurrentTimestamp[]=CURRENT_TIMESTAMP
- functions.LocalTime[]=CAST(CURRENT_TIME AS TIME)
- functions.LocalTimestamp[]=CAST(CURRENT_TIMESTAMP AS TIMESTAMP)
- functions.CurrentTime[numeric]=
- functions.CurrentTimestamp[numeric]=
- functions.LocalTime[numeric]=
- functions.LocalTimestamp[numeric]=
- #
- # XML functions.
- #
- functions.XMLAttributes=
- functions.XMLComment=
- functions.XMLConcat=
- functions.XMLDocument=
- functions.XMLElement=
- functions.XMLExists=
- functions.XMLForest=
- functions.XMLParse=
- functions.XMLPI=
- functions.XMLNamespaces=
- functions.XMLQuery=
- functions.XMLSerialize=
- functions.XMLTable=
- functions.XMLText=
- functions.XMLTransform=
- functions.XMLValidate=
- #
- # JSON functions.
- #
- functions.JSONArray=
- functions.JSONExists=
- functions.JSONObject=
- functions.JSONQuery=
- functions.JSONTable=
- functions.JSONValue=
- #
- # Business date functions.
- #
- functions.AddFractionalSeconds[any,any]=
- functions.AddSeconds[interval_day_time,numeric]=(CAST( %1$s AS INTERVAL) + (INTERVAL '1 SECOND' * (%2$s)))
- functions.AddSeconds[time,numeric]=(CAST( %1$s AS TIME) + (INTERVAL '1 SECOND' * (%2$s)))
- functions.AddSeconds[timestamp,numeric]=(CAST( %1$s AS TIMESTAMP) + (INTERVAL '1 SECOND' * (%2$s)))
- functions.AddSeconds[time_with_time_zone,numeric]=(CAST( %1$s AS TIMETZ) + (INTERVAL '1 SECOND' * (%2$s)))
- functions.AddSeconds[timestamp_with_time_zone,numeric]=
- functions.AddMinutes[interval_day_time,numeric]=(CAST( %1$s AS INTERVAL) + (INTERVAL '1 MINUTE' * (%2$s)))
- functions.AddMinutes[time,numeric]=(CAST( %1$s AS TIME) + (INTERVAL '1 MINUTE' * (%2$s)))
- functions.AddMinutes[timestamp,numeric]=(CAST( %1$s AS TIMESTAMP) + (INTERVAL '1 MINUTE' * (%2$s)))
- functions.AddMinutes[time_with_time_zone,numeric]=(CAST( %1$s AS TIMETZ) + (INTERVAL '1 MINUTE' * (%2$s)))
- functions.AddMinutes[timestamp_with_time_zone,numeric]=
- functions.AddHours[interval_day_time,numeric]=(CAST( %1$s AS INTERVAL) + (INTERVAL '1 HOUR' * (%2$s)))
- functions.AddHours[time,numeric]=(CAST( %1$s AS TIME) + (INTERVAL '1 HOUR' * (%2$s)))
- functions.AddHours[timestamp,numeric]=(CAST( %1$s AS TIMESTAMP) + (INTERVAL '1 HOUR' * (%2$s)))
- functions.AddHours[time_with_time_zone,numeric]=(CAST( %1$s AS TIMETZ) + (INTERVAL '1 HOUR' * (%2$s)))
- functions.AddHours[timestamp_with_time_zone,numeric]=
- functions.AddDays[any,any]=((%1$s) + INTERVAL '1 DAY' * (%2$s))
- functions.AddDays[interval_day_time,numeric]=
- functions.AddDays[date,numeric]=CAST((%1$s) + INTERVAL '1 DAY' * (%2$s) AS DATE)
- functions.AddDays[timestamp_with_time_zone,numeric]=
- functions.AddWeeks[any,any]=((%1$s) + INTERVAL '7 DAY' * (%2$s))
- functions.AddWeeks[interval_day_time,numeric]=
- functions.AddWeeks[date,numeric]=CAST((%1$s) + INTERVAL '7 DAY' * (%2$s) AS DATE)
- functions.AddWeeks[timestamp_with_time_zone,numeric]=
- # Netezza has different implementation for ADD_MONTHS and %1$s + INTERVAL %2$s MONTH
- # ADD_MONTHS implements rule: result is last day of the month if months are added to the last day of the month.
- # Feb28 + 1 month -> Mar31. This is inconsistent with local processing and other vendors.
- #functions.AddMonths[any,any]=ADD_MONTHS(%1$s, %2$s)
- functions.AddMonths[any,any]=((%1$s) + (INTERVAL '1 MONTH' * (%2$s)))
- functions.AddMonths[interval_year_month,numeric]=
- functions.AddMonths[date,numeric]=CAST(((%1$s) + (INTERVAL '1 MONTH' * (%2$s))) AS DATE)
- functions.AddMonths[timestamp_with_time_zone,numeric]=
- functions.AddQuarters[any,any]=ADD_MONTHS(%1$s, (%2$s * 3))
- functions.AddQuarters[interval_year_month,numeric]=
- functions.AddQuarters[timestamp_with_time_zone,numeric]=
- # ADD_MONTHS implements rule: result is last day of the month if months are added to the last day of the month.
- # Feb28, 2011 + 1 year -> Feb29, 2012. This is inconsistent with local processing and other vendors.
- #functions.AddYears[any,any]=ADD_MONTHS(%1$s, ( (%2$s) * 12 ))
- functions.AddYears[any,any]=(%1$s + (INTERVAL '1 YEAR' * (%2$s)))
- functions.AddYears[interval_year_month,numeric]=
- functions.AddYears[date,numeric]=CAST(((%1$s) + (INTERVAL '1 YEAR' * (%2$s))) AS DATE)
- functions.AddYears[timestamp_with_time_zone,numeric]=
- functions.FractionalSecondsBetween[any,any]=
- functions.SecondsBetween[any,any]=
- functions.MinutesBetween[any,any]=
- functions.HoursBetween[any,any]=
- functions.DaysBetween[date,date]=((%1$s) - (%2$s))
- functions.DaysBetween[date,timestamp]=((%1$s) - CAST(%2$s AS DATE))
- functions.DaysBetween[any,any]=(CAST(%1$s AS DATE) - CAST(%2$s AS DATE))
- functions.DaysBetween[timestamp,date]=(CAST(%1$s AS DATE) - (%2$s))
- functions.WeeksBetween[any,any]=
- functions.MonthsBetween[any,any]=CAST(TRUNC(MONTHS_BETWEEN(%1$s, %2$s)) AS INTEGER)
- functions.QuartersBetween[any,any]=
- functions.YearsBetween[date,date]=EXTRACT(YEAR FROM AGE(%1$s, %2$s))
- functions.YearsBetween[date,timestamp]=EXTRACT(YEAR FROM AGE(%1$s, CAST(%2$s as DATE)))
- functions.YearsBetween[any,any]=EXTRACT(YEAR FROM AGE(cast(%1$s AS DATE), CAST(%2$s AS DATE)))
- functions.YearsBetween[timestamp,date]=EXTRACT(YEAR FROM AGE(CAST(%1$s AS DATE), %2$s))
- functions.Age[any]=
- functions.DayOfWeek[any,any]=(MOD( CAST( TO_CHAR( %1$s, 'D' ) AS INTEGER ) + 6 - %2$s, 7 ) + 1)
- functions.DayOfYear[any]=EXTRACT(DOY FROM %1$s)
- functions.DaysToEndOfMonth[any]=(EXTRACT( DAY FROM (ADD_MONTHS(%1$s - ( EXTRACT( DAY FROM %1$s ) * INTERVAL '1 DAY') + INTERVAL '1 DAY', 1) - INTERVAL '1 DAY')) - EXTRACT(DAY FROM %1$s))
- functions.FirstOfMonth[any]=((%1$s) - ( EXTRACT( DAY FROM (%1$s) ) * INTERVAL '1 DAY' ) + INTERVAL '1 DAY')
- functions.LastOfMonth[any]=(ADD_MONTHS( ( %1$s - ( EXTRACT( DAY FROM %1$s ) * INTERVAL '1 DAY' ) + INTERVAL '1 DAY' ), 1 ) - INTERVAL '1 DAY')
- functions.MakeTimestamp[any,any,any]=TO_TIMESTAMP(%1$s || '-' || %2$s || '-' || %3$s, 'YYYY-MM-DD')
- functions.WeekOfYear[any]=CAST( TO_CHAR( CAST(%1$s AS TIMESTAMP),'IW') AS INTEGER)
- functions.YMDIntBetween[any,any]=
- #
- # FDS functions.
- #
- functions.concat[any,any]={fn CONCAT(%1$s, %2$s)}
- #
- # Literals.
- #
- literals.binary=false
- literals.blob=false
- literals.clob=false
- literals.boolean=false
- literals.date=true
- literals.time=true
- literals.time_with_time_zone=false
- literals.timestamp=true
- literals.timestamp_with_time_zone=false
- literals.interval_day=false
- literals.interval_day_to_hour=false
- literals.interval_day_to_minute=false
- literals.interval_day_to_second=false
- literals.interval_hour=false
- literals.interval_hour_to_minute=false
- literals.interval_hour_to_second=false
- literals.interval_minute=false
- literals.interval_minute_to_second=false
- literals.interval_second=false
- literals.interval_year=false
- literals.interval_year_to_month=false
- literals.interval_month=false
- literals.decimal=true
- literals.double=true
- literals.float=true
- literals.real=true
- literals.integer=true
- literals.long=true
- literals.smallint=true
- literals.char=true
- literals.nchar=true
- literals.nvarchar=true
- literals.varchar=true
- literals.xml=false
- #
- # literal formats
- #
- literals.format.date=DATE '%1$04d-%2$02d-%3$02d'
- literals.format.time=TIME '%1$02d:%2$02d:%3$02d%4$.7s'
- literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'}
- literals.format.timestamp=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.7s'
- literals.format.timestamp_with_time_zone={ts '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'}
- #
- # Data types.
- #
- dataType.blob=false
- dataType.clob=false
- dataType.timestamp_with_time_zone=false
- dataType.interval_day=false
- dataType.interval_day_to_hour=false
- dataType.interval_day_to_minute=false
- dataType.interval_day_to_second=false
- dataType.interval_hour=false
- dataType.interval_hour_to_minute=false
- dataType.interval_hour_to_second=false
- dataType.interval_minute=false
- dataType.interval_minute_to_second=false
- dataType.interval_second=false
- dataType.interval_year=false
- dataType.interval_year_to_month=false
- dataType.interval_month=false
- dataType.period=false
- #
- # Data source type overrides
- #
- datasource.type.NCHAR=nchar(%1$s)
- datasource.type.NVARCHAR=nvarchar(%1$s)
- datasource.type.TIMETZ=time with time zone
- datasource.type.INTERVAL=varchar(%1$s)
- #
- # Data source type overrides
- # driver 4.5
- datasource.type.INTERVAL_DAY=varchar(%1$s)
- #
- # We are unable to retrieve the collation sequence from teradata but we can still check if the comparison is case sensitive or not
- #
- collation.sequence.sql=SELECT '', CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH
|