123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527 |
- # Licensed Materials - Property of IBM
- # IBM Cognos Products: OQP
- # (C) Copyright IBM Corp. 2005, 2022
- # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
- #
- #
- # Product information.
- #
- product.name=
- #
- # Delimiters.
- #
- #
- # Various limits.
- #
- limits.maxLengthInClause=1000
- limits.castClobToVarcharMaxSize=4000
- limits.maxDecimalPrecision=38
- #
- # General settings.
- #
- #
- # Override sampling policy with a different one.
- # 1. tablesample accepting values such as BERNOULLI or SYSTEM
- # 2. rowsample accepting values such as NTH or RANDOM
- #
- sampling.tablesample=BERNOULLI
- sampling.rowsample=NTH
- #
- # Various features.
- #
- supports.integerDivision=false
- supports.blobsInGroupBy=false
- supports.blobsInOrderBy=false
- supports.derivedColumnLists=false
- supports.emptyStringIsNull=true
- supports.concatNullIsNull=false
- supports.stitchJoins=false
- supports.nestedWithClause=false
- supports.recursiveWithClause=false
- supports.booleanExpressionsInSelectList=false
- supports.nonStandardDatetimeComparison=true
- supports.callProcedureInDerivedTable=false
- #casting with formatting pattern support
- supports.formatters.string_to_date=false
- supports.formatters.string_to_time=false
- supports.formatters.string_to_time_with_time_zone=false
- supports.formatters.string_to_timestamp=false
- supports.formatters.string_to_timestamp_with_time_zone=false
- #
- # Grouping query optimization
- #
- performance.convertGroupByToDistinct=true
- #
- # Command.
- #
- #
- # Tables.
- #
- #
- # Constructors.
- #
- constructors.table=false
- constructors.row=true
- constructors.array=false
- constructors.period=false
- #
- # Constructors - context overrides.
- #
- constructors.row.between=false
- constructors.row.comparison=false
- constructors.row.in=true
- constructors.row.isDistinctFrom=false
- constructors.row.simpleCase=false
- constructors.row.inListToTable=false
- #
- # Clauses.
- #
- clauses.Top=FETCH FIRST %1$s ROWS ONLY
- clauses.At=
- clauses.Window=
- clauses.WithRecursive=
- clauses.TableSampleBeforeAlias=true
- clauses.TableSampleSystem=SAMPLE BLOCK (%1$s)@2[ SEED (%2$s)]
- clauses.TableSampleBernoulli=SAMPLE (%1$s)@2[ SEED (%2$s)]
- clauses.ForSystemTimeAsOf=
- clauses.ForSystemTimeFrom=
- clauses.ForSystemTimeBetween=
- #
- # Joins.
- #
- #
- # Set operators.
- #
- operators.set.Except=%1$s MINUS %2$s
- operators.set.Except.all=
- operators.set.Intersect.all=
- #
- # Logical operators.
- #
- operators.logical.Is=
- operators.logical.IsNot=
- #
- # Arithmetic operators.
- #
- operators.arithmetic.Concat[any,any]=%1$s || %2$s
- operators.arithmetic.Subtract[any,datetime]=
- operators.arithmetic.Subtract[variant,timestamp]=%1$s - %2$s
- operators.arithmetic.Add[interval_day_time,timestamp_with_time_zone]=
- operators.arithmetic.Add[interval_year_month,timestamp_with_time_zone]=
- operators.arithmetic.Add[timestamp_with_time_zone,interval_day_time]=
- operators.arithmetic.Add[timestamp_with_time_zone,interval_year_month]=
- #
- # Group By Operators
- #
- #
- # Comparison predicates.
- #
- #
- # Various predicates.
- #
- predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
- predicates.IsDistinctFrom[blob,any]=
- predicates.IsDistinctFrom[any,blob]=
- predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
- predicates.IsNotDistinctFrom[blob,any]=
- predicates.IsNotDistinctFrom[any,blob]=
- predicates.Similar=
- predicates.Similar.escape=
- predicates.LikeRegex=REGEXP_LIKE(%1$s, %2$s)
- predicates.LikeRegex.flag=REGEXP_LIKE(%1$s, %2$s, %3$s)
- predicates.Like.CaseSensitive.sql=SELECT CASE WHEN 'w' LIKE '%W%' THEN 'false' ELSE 'true' END C1 FROM ( SELECT COUNT(*) r_count FROM V$NLS_PARAMETERS) T1
- #
- # Period predicates.
- #
- predicates.PeriodOverlaps[any,any]=
- predicates.PeriodEquals[any,any]=
- predicates.PeriodContains[any,any]=
- predicates.PeriodPrecedes[any,any]=
- predicates.PeriodSucceeds[any,any]=
- predicates.PeriodImmediatelyPrecedes[any,any]=
- predicates.PeriodImmediatelySucceeds[any,any]=
- #
- # Expressions.
- #
-
- #
- # Cast expression.
- #
- expressions.Cast[date,char]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS %2$s)
- expressions.Cast[date,nchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS %2$s)
- expressions.Cast[date,varchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS VARCHAR2(%3$d))
- expressions.Cast[date,nvarchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS NVARCHAR2(%3$d))
- expressions.Cast[time,text]=
- expressions.Cast[time,timestamp]=
- expressions.Cast[time,timestamp_with_time_zone]=
- expressions.Cast[null,date]=
- expressions.Cast[any,date]=TRUNC(cast(%1$s as DATE))
- expressions.Cast[variant,date]=TRUNC(cast(%1$s as DATE))
- expressions.Cast[timestamp,nvarchar]=CAST(TO_CHAR(cast(%1$s as TIMESTAMP(9)),'YYYY-MM-DD HH24:MI:SS.FF9') AS NVARCHAR2(%3$d))
- expressions.Cast[timestamp,text]=CAST(TO_CHAR(cast(%1$s as TIMESTAMP(9)),'YYYY-MM-DD HH24:MI:SS.FF9') AS %2$s)
- expressions.Cast[timestamp_with_time_zone,char]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS %2$s)
- expressions.Cast[timestamp_with_time_zone,nchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS %2$s)
- expressions.Cast[timestamp_with_time_zone,varchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS VARCHAR2(%3$d))
- expressions.Cast[timestamp_with_time_zone,nvarchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS NVARCHAR2(%3$d))
- # these casts are disabled because they sometimes fail and cause the connection to drop.
- expressions.Cast[interval_day_to_second,char]=
- expressions.Cast[interval_day_to_second,nchar]=
- expressions.Cast[interval_day_to_second,varchar]=
- expressions.Cast[interval_day_to_second,nvarchar]=
- expressions.Cast[interval_year_to_month,char]=
- expressions.Cast[interval_year_to_month,nchar]=
- expressions.Cast[interval_year_to_month,varchar]=
- expressions.Cast[interval_year_to_month,nvarchar]=
- expressions.Cast[numeric,varchar]=CAST(TO_CHAR(%1$s,'TM9','NLS_NUMERIC_CHARACTERS = ''.,'' ') AS VARCHAR2(%3$d))
- expressions.Cast[numeric,nvarchar]=CAST(TO_CHAR(%1$s,'TM9','NLS_NUMERIC_CHARACTERS = ''.,'' ') AS NVARCHAR2(%3$d))
- expressions.Cast[numeric,date]=CASE %1$s WHEN 0 THEN TO_DATE('00010101','YYYYMMDD') ELSE TO_DATE(TO_CHAR(%1$s),'YYYYMMDD') END
- expressions.Cast[numeric,text]=CAST(TO_CHAR(%1$s,'TM9','NLS_NUMERIC_CHARACTERS = ''.,'' ') AS %2$s)
- expressions.Cast[text,numeric]=CAST(REPLACE(%1$s,'.',SUBSTR(CAST(1.2 AS CHAR(3)),2,1)) AS %2$s)
- #cast(avarchar(x) as nvarchar2(y)) fail with Error: ORA-01401: inserted value too large for column if x > y
- expressions.Cast[char,nvarchar]=CAST(TO_NCHAR(%1$d) AS NVARCHAR2(%3$d))
- expressions.Cast[varchar,nvarchar]=CAST(TO_NCHAR(%1$d) AS NVARCHAR2(%3$d))
- expressions.Cast[any,varchar]=CAST(%1$s AS VARCHAR2(%3$d))
- expressions.Cast[any,nvarchar]=CAST(%1$s AS NVARCHAR2(%3$d))
- expressions.Cast[clob,char]=CAST(TO_CHAR(%1$s) AS %2$s)
- expressions.Cast[clob,nchar]=CAST(TO_CHAR(%1$s) AS %2$s)
- expressions.Cast[clob,varchar]=CAST(%1$s AS VARCHAR2(%3$d))
- expressions.Cast[clob,nvarchar]=CAST(%1$s AS NVARCHAR2(%3$d))
- expressions.Cast[clob,any]=
- expressions.Cast[numeric,integer]=CAST(TRUNC(%1$s) AS INTEGER)
- expressions.Cast[any,integer]=
- expressions.Cast[char,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s)
- expressions.Cast[char,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF')
- expressions.Cast[char,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM')
- expressions.Cast[nchar,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s)
- expressions.Cast[nchar,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF')
- expressions.Cast[nchar,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM')
- expressions.Cast[nvarchar,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s)
- expressions.Cast[nvarchar,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF')
- expressions.Cast[nvarchar,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM')
- expressions.Cast[varchar,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s)
- expressions.Cast[varchar,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF')
- expressions.Cast[varchar,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM')
- expressions.Cast[text,xml]=
- expressions.Cast[blob,xml]=
- expressions.Cast[blob,blob]=
- # Minimum number of arguments for Coalesce function.
- expressions.Coalesce.minArgs=2
- #
- # Extract expression.
- #
- expressions.Extract.HOUR[timestamp]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.HOUR[date]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.HOUR[time]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.HOUR[timestamp_with_time_zone]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.MINUTE[timestamp]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.MINUTE[date]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.MINUTE[time]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.MINUTE[timestamp_with_time_zone]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.SECOND[timestamp]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.SECOND[date]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.SECOND[time]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.SECOND[timestamp_with_time_zone]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP))
- expressions.Extract.EPOCH[any]=
- #
- # Trim expression.
- #
- #
- # Windowed aggregates (SQL/OLAP).
- #
- olap.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END)
- olap.Tertile[]=
- olap.Difference[any]=
- olap.Collect[any]=
- olap.NthValue[blob,any]=
- olap.NthValue[blob,any,any]=
- olap.NthValue[blob,any,any,any]=
- olap.NthValue[clob,any]=
- olap.NthValue[clob,any,any]=
- olap.NthValue[clob,any,any,any]=
- #
- # Window clause.
- #
- #
- # Window specification
- # A list of windows specifications that are supported by the DB
- # P = PARTITION BY
- # O = ORDER BY
- # F = FRAME
- #
- olap.Window.Specification[F]=false
- olap.Window.Specification[PF]=false
- #
- # Aggregates.
- #
- aggregates.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END)
- aggregates.Sum[interval_day_to_second]=
- aggregates.Avg[interval_day_to_second]=
- aggregates.Sum[interval_year_to_month]=
- aggregates.Avg[interval_year_to_month]=
- aggregates.ArrayAgg[any]=
- aggregates.ArrayAgg[any,any]=
- aggregates.Collect[any]=
- aggregates.ApproxCountDistinct[blob]=
- aggregates.ApproxCountDistinct[clob]=
- #
- # Aggregates (distinct).
- #
- aggregates.Sum.distinct[interval_day_to_second]=
- aggregates.Avg.distinct[interval_day_to_second]=
- aggregates.Sum.distinct[interval_year_to_month]=
- aggregates.Avg.distinct[interval_year_to_month]=
- aggregates.Count.distinct[blob]=
- #
- # JSON aggregates.
- #
- aggregates.JSONArrayAgg=
- aggregates.JSONObjectAgg=
- #
- # Linear regression aggregates.
- #
- #
- # Character scalar functions.
- #
- functions.CharLength[any]=LENGTH(%1$s)
- functions.OctetLength[any]=LENGTHB(%1$s)
- functions.BitLength[any]=(LENGTHB(%1$s) * 8)
- functions.Substring[any,any]=SUBSTR(%1$s, %2$s)
- functions.Substring[any,any,any]=SUBSTR(%1$s, %2$s, %3$s)
- functions.Position[any,any]=INSTR(%2$s, %1$s)
- functions.Index[any,any]=INSTR(%1$s, %2$s)
- functions.Translate[any,any]=
- functions.Normalize[any]=
- functions.Normalize[any,any]=
- functions.Normalize[any,any,any]=
- #
- # Regular expression functions.
- # Oracle uses POSIX regular expressions. Need to determine the difference between XQuery and POSIX.
- #
- functions.SubstringRegex[any,any,any,any,any]=
- functions.OccurrencesRegex[any,any,any,any]=
- functions.PositionRegex[any,any,any,any,any,any]=
- #Substring function to negative START value to parse the input string from its rightmost end.
- functions.SubstringR[any,any]=SUBSTR(%1$s, %2$s)
- functions.SubstringR[any,any,any]=SUBSTR(%1$s, %2$s, %3$s)
- #
- # Numeric scalar functions.
- #
- functions.Abs[interval_day_time]=
- functions.Abs[interval_year_month]=
- functions.Ceiling[any]=CEIL(%1$s)
- functions.Round[any,any,any]=
- functions.Log10[any]=LOG(10,%1$s)
- functions.Random[]=
- functions.Random[any]=
- #
- # Array scalar functions.
- #
- functions.Cardinality[any]=
- functions.TrimArray[any,any]=
- #
- # Trigonometric functions.
- #
- #
- # Datetime value functions.
- #
- functions.CurrentTime[]=
- functions.CurrentDate[]=TRUNC(CURRENT_DATE)
- functions.LocalTime[]=
- functions.CurrentTime[numeric]=
- functions.LocalTime[numeric]=
- #
- # XML functions.
- #
- functions.XMLAttributes=
- functions.XMLComment=
- functions.XMLConcat=
- functions.XMLDocument=
- functions.XMLElement=
- functions.XMLExists=
- functions.XMLForest=
- functions.XMLParse=
- functions.XMLPI=
- functions.XMLNamespaces=
- functions.XMLQuery=
- functions.XMLSerialize=
- functions.XMLTable=
- functions.XMLText=
- functions.XMLTransform=
- functions.XMLValidate=
- #
- # JSON functions.
- #
- functions.JSONObject=
- functions.JSONArray=
- #
- # Business date functions.
- #
- functions.AddFractionalSeconds[any,any]=
- functions.AddSeconds[any,any]=(%1$s + (INTERVAL '1' SECOND * (%2$s)))
- functions.AddMinutes[any,any]=(%1$s + (INTERVAL '1' MINUTE * Floor(%2$s)))
- functions.AddHours[any,any]=(%1$s + (INTERVAL '1' HOUR * Floor(%2$s)))
- functions.AddDays[any,any]=(%1$s + (INTERVAL '1' DAY * (%2$s)))
- functions.AddDays[time_with_time_zone,numeric]=
- functions.AddWeeks[any,any]=(%1$s + (INTERVAL '7' DAY * (%2$s)))
- functions.AddWeeks[time_with_time_zone,numeric]=
- functions.AddMonths[any,any]=CASE WHEN EXTRACT( DAY FROM %1$s - NUMTODSINTERVAL( EXTRACT( DAY FROM %1$s ), 'DAY' ) + INTERVAL '1' DAY + NUMTOYMINTERVAL( %2$s, 'MONTH' ) + INTERVAL '1' MONTH - INTERVAL '1' DAY ) < EXTRACT( DAY FROM %1$s ) THEN %1$s - NUMTODSINTERVAL( EXTRACT( DAY FROM %1$s ), 'DAY' ) + INTERVAL '1' DAY + NUMTOYMINTERVAL( %2$s, 'MONTH' ) + INTERVAL '1' MONTH - INTERVAL '1' DAY ELSE %1$s + NUMTOYMINTERVAL( %2$s, 'MONTH' ) END
- functions.AddMonths[time_with_time_zone,numeric]=
- functions.AddMonths[interval_year_to_month,numeric]=
- functions.AddQuarters[any,any]=
- functions.AddYears[any,any]=CASE WHEN TO_CHAR(%1$s,'MMDD') = '0229' AND MOD(%2$s,4) <> 0 THEN (%1$s + INTERVAL '1' DAY) + NUMTOYMINTERVAL(%2$s,'YEAR') - INTERVAL '1' DAY ELSE %1$s + NUMTOYMINTERVAL(%2$s,'YEAR') END
- functions.AddYears[time_with_time_zone,numeric]=
- functions.AddYears[interval_year_to_month,numeric]=
- functions.FractionalSecondsBetween[any,any]=
- functions.SecondsBetween[any,any]=
- functions.MinutesBetween[any,any]=
- functions.HoursBetween[any,any]=
- functions.DaysBetween[any,any]=(TRUNC( CAST( %1$s AS TIMESTAMP ) ) - TRUNC( CAST( %2$s AS TIMESTAMP ) ))
- functions.WeeksBetween[any,any]=
- functions.MonthsBetween[any,any]=TRUNC( MONTHS_BETWEEN( %1$s, %2$s ), 0 )
- functions.QuartersBetween[any,any]=
- functions.YearsBetween[any,any]=TRUNC( ( MONTHS_BETWEEN( %1$s, %2$s) / 12 ), 0 )
- functions.Age[any]=
- functions.DayOfWeek[any,any]=(MOD( MOD( TO_NUMBER( TO_CHAR( %1$s, 'D' ) ) - TO_NUMBER( TO_CHAR( TO_DATE( '2003-01-06', 'YYYY-MM-DD' ), 'D' ) ) + 7, 7 ) + 1 - %2$s + 7, 7 ) + 1)
- functions.DayOfYear[any]=TO_NUMBER( TO_CHAR( %1$s, 'DDD' ) )
- functions.DaysToEndOfMonth[any]=(EXTRACT( DAY FROM LAST_DAY(%1$s) ) - EXTRACT( DAY FROM %1$s ))
- functions.FirstOfMonth[any]=(%1$s - NUMTODSINTERVAL(EXTRACT(DAY FROM %1$s)-1, 'DAY'))
- functions.LastOfMonth[any]=(%1$s + NUMTODSINTERVAL(EXTRACT(DAY FROM LAST_DAY(%1$s)) - EXTRACT(DAY FROM %1$s), 'DAY'))
- functions.MakeTimestamp[any,any,any]=TO_TIMESTAMP( ( LPAD( %1$d, 4, '0' ) || '-' || LPAD( %2$d, 2, '0' ) || '-' || LPAD( %3$d, 2, '0' ) ), 'YYYY-MM-DD' )
- functions.WeekOfYear[any]=TO_NUMBER( TO_CHAR( %1$s, 'IW' ) )
- functions.YMDIntBetween[any,any]=
- #
- # Literals.
- #
- literals.time=false
- literals.time_with_time_zone=false
- literals.timetamp_with_time_zone=true
- literals.interval_day=false
- literals.interval_day_to_hour=false
- literals.interval_day_to_minute=false
- literals.interval_hour=false
- literals.interval_hour_to_minute=false
- literals.interval_hour_to_second=false
- literals.interval_minute=false
- literals.interval_minute_to_second=false
- literals.interval_second=false
- literals.interval_year=false
- literals.interval_month=false
- #
- # Literal format specifications.
- #
- literals.format.binary=0x%s
- literals.format.date={d '%1$04d-%2$02d-%3$02d'}
- literals.format.time={t '%1$02d:%2$02d:%3$02d'}
- literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'}
- literals.format.timestamp={ts '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s'}
- literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'
- literals.format.interval_year_to_month=INTERVAL '%4$s%1$d-%2$02d' YEAR(9) TO MONTH
- literals.format.interval_day_to_second=INTERVAL '%8$s%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY(9) TO SECOND(9)
- #
- # Data types.
- #
- dataType.long=false
- dataType.time=false
- dataType.clob=false
- dataType.time_with_time_zone=false
- dataType.interval_day=false
- dataType.interval_day_to_hour=false
- dataType.interval_day_to_minute=false
- dataType.interval_hour=false
- dataType.interval_hour_to_minute=false
- dataType.interval_hour_to_second=false
- dataType.interval_minute=false
- dataType.interval_minute_to_second=false
- dataType.interval_second=false
- dataType.interval_year=false
- dataType.interval_month=false
- dataType.period=false
- dataType.datalink=false
- #dataType.nvarchar=false
- dataType.comparable[char,nchar]=false
- dataType.comparable[char,nvarchar]=false
- dataType.comparable[varchar,nvarchar]=false
- dataType.comparable[varchar,nchar]=false
- dataType.comparable[nchar,char]=false
- dataType.comparable[nchar,varchar]=false
- dataType.comparable[nvarchar,varchar]=false
- dataType.comparable[nvarchar,char]=false
- dataType.promotion[char,nchar]=true
- dataType.promotion[varchar,nchar]=true
- dataType.promotion[char,nvarchar]=true
- dataType.promotion[varchar,nvarchar]=true
- #
- # Collation sequence query
- # collation.sequence.sql=<sql_statement> The query can return only a single result
- #
- collation.sequence.sql=SELECT sort_tbl.sort_val || '.' || charset_tbl.charset_val, CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH FROM (SELECT VALUE AS sort_val FROM V$NLS_PARAMETERS WHERE PARAMETER IN ( 'NLS_SORT')) sort_tbl, (SELECT VALUE AS charset_val FROM V$NLS_PARAMETERS WHERE PARAMETER IN ( 'NLS_CHARACTERSET')) charset_tbl
- #
- # Collation sequence mappings
- # collation.sequence.mapping.<sql_result>=<collation_name>,<collation_weight>
- #
- # NOTE: These mappings are case sensitive
- #
- collation.sequence.mapping.BINARY.WE8MSWIN1252=OrWe8mswin1252,TERTIARY
- collation.sequence.mapping.BINARY.WE8ISO8859P1=OrWe8iso8859p1,TERTIARY
- collation.sequence.mapping.BINARY.US7ASCII=OrWe8iso8859p1,TERTIARY
- collation.sequence.mapping.BINARY.AL32UTF8=UnicodeCodepoint,IDENTICAL
|