oracle.properties 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. # Licensed Materials - Property of IBM
  2. # IBM Cognos Products: OQP
  3. # (C) Copyright IBM Corp. 2005, 2022
  4. # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  5. #
  6. #
  7. # Product information.
  8. #
  9. product.name=
  10. #
  11. # Delimiters.
  12. #
  13. #
  14. # Various limits.
  15. #
  16. limits.maxLengthInClause=1000
  17. limits.castClobToVarcharMaxSize=4000
  18. limits.maxDecimalPrecision=38
  19. #
  20. # General settings.
  21. #
  22. #
  23. # Override sampling policy with a different one.
  24. # 1. tablesample accepting values such as BERNOULLI or SYSTEM
  25. # 2. rowsample accepting values such as NTH or RANDOM
  26. #
  27. sampling.tablesample=BERNOULLI
  28. sampling.rowsample=NTH
  29. #
  30. # Various features.
  31. #
  32. supports.integerDivision=false
  33. supports.blobsInGroupBy=false
  34. supports.blobsInOrderBy=false
  35. supports.derivedColumnLists=false
  36. supports.emptyStringIsNull=true
  37. supports.concatNullIsNull=false
  38. supports.stitchJoins=false
  39. supports.nestedWithClause=false
  40. supports.recursiveWithClause=false
  41. supports.booleanExpressionsInSelectList=false
  42. supports.nonStandardDatetimeComparison=true
  43. supports.callProcedureInDerivedTable=false
  44. #casting with formatting pattern support
  45. supports.formatters.string_to_date=false
  46. supports.formatters.string_to_time=false
  47. supports.formatters.string_to_time_with_time_zone=false
  48. supports.formatters.string_to_timestamp=false
  49. supports.formatters.string_to_timestamp_with_time_zone=false
  50. #
  51. # Grouping query optimization
  52. #
  53. performance.convertGroupByToDistinct=true
  54. #
  55. # Command.
  56. #
  57. #
  58. # Tables.
  59. #
  60. #
  61. # Constructors.
  62. #
  63. constructors.table=false
  64. constructors.row=true
  65. constructors.array=false
  66. constructors.period=false
  67. #
  68. # Constructors - context overrides.
  69. #
  70. constructors.row.between=false
  71. constructors.row.comparison=false
  72. constructors.row.in=true
  73. constructors.row.isDistinctFrom=false
  74. constructors.row.simpleCase=false
  75. constructors.row.inListToTable=false
  76. #
  77. # Clauses.
  78. #
  79. clauses.Top=FETCH FIRST %1$s ROWS ONLY
  80. clauses.At=
  81. clauses.Window=
  82. clauses.WithRecursive=
  83. clauses.TableSampleBeforeAlias=true
  84. clauses.TableSampleSystem=SAMPLE BLOCK (%1$s)@2[ SEED (%2$s)]
  85. clauses.TableSampleBernoulli=SAMPLE (%1$s)@2[ SEED (%2$s)]
  86. clauses.ForSystemTimeAsOf=
  87. clauses.ForSystemTimeFrom=
  88. clauses.ForSystemTimeBetween=
  89. #
  90. # Joins.
  91. #
  92. #
  93. # Set operators.
  94. #
  95. operators.set.Except=%1$s MINUS %2$s
  96. operators.set.Except.all=
  97. operators.set.Intersect.all=
  98. #
  99. # Logical operators.
  100. #
  101. operators.logical.Is=
  102. operators.logical.IsNot=
  103. #
  104. # Arithmetic operators.
  105. #
  106. operators.arithmetic.Concat[any,any]=%1$s || %2$s
  107. operators.arithmetic.Subtract[any,datetime]=
  108. operators.arithmetic.Subtract[variant,timestamp]=%1$s - %2$s
  109. operators.arithmetic.Add[interval_day_time,timestamp_with_time_zone]=
  110. operators.arithmetic.Add[interval_year_month,timestamp_with_time_zone]=
  111. operators.arithmetic.Add[timestamp_with_time_zone,interval_day_time]=
  112. operators.arithmetic.Add[timestamp_with_time_zone,interval_year_month]=
  113. #
  114. # Group By Operators
  115. #
  116. #
  117. # Comparison predicates.
  118. #
  119. #
  120. # Various predicates.
  121. #
  122. predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
  123. predicates.IsDistinctFrom[blob,any]=
  124. predicates.IsDistinctFrom[any,blob]=
  125. predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
  126. predicates.IsNotDistinctFrom[blob,any]=
  127. predicates.IsNotDistinctFrom[any,blob]=
  128. predicates.Similar=
  129. predicates.Similar.escape=
  130. predicates.LikeRegex=REGEXP_LIKE(%1$s, %2$s)
  131. predicates.LikeRegex.flag=REGEXP_LIKE(%1$s, %2$s, %3$s)
  132. predicates.Like.CaseSensitive.sql=SELECT CASE WHEN 'w' LIKE '%W%' THEN 'false' ELSE 'true' END C1 FROM ( SELECT COUNT(*) r_count FROM V$NLS_PARAMETERS) T1
  133. #
  134. # Period predicates.
  135. #
  136. predicates.PeriodOverlaps[any,any]=
  137. predicates.PeriodEquals[any,any]=
  138. predicates.PeriodContains[any,any]=
  139. predicates.PeriodPrecedes[any,any]=
  140. predicates.PeriodSucceeds[any,any]=
  141. predicates.PeriodImmediatelyPrecedes[any,any]=
  142. predicates.PeriodImmediatelySucceeds[any,any]=
  143. #
  144. # Expressions.
  145. #
  146. #
  147. # Cast expression.
  148. #
  149. expressions.Cast[date,char]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS %2$s)
  150. expressions.Cast[date,nchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS %2$s)
  151. expressions.Cast[date,varchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS VARCHAR2(%3$d))
  152. expressions.Cast[date,nvarchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD') AS NVARCHAR2(%3$d))
  153. expressions.Cast[time,text]=
  154. expressions.Cast[time,timestamp]=
  155. expressions.Cast[time,timestamp_with_time_zone]=
  156. expressions.Cast[null,date]=
  157. expressions.Cast[any,date]=TRUNC(cast(%1$s as DATE))
  158. expressions.Cast[variant,date]=TRUNC(cast(%1$s as DATE))
  159. expressions.Cast[timestamp,nvarchar]=CAST(TO_CHAR(cast(%1$s as TIMESTAMP(9)),'YYYY-MM-DD HH24:MI:SS.FF9') AS NVARCHAR2(%3$d))
  160. expressions.Cast[timestamp,text]=CAST(TO_CHAR(cast(%1$s as TIMESTAMP(9)),'YYYY-MM-DD HH24:MI:SS.FF9') AS %2$s)
  161. expressions.Cast[timestamp_with_time_zone,char]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS %2$s)
  162. expressions.Cast[timestamp_with_time_zone,nchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS %2$s)
  163. expressions.Cast[timestamp_with_time_zone,varchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS VARCHAR2(%3$d))
  164. expressions.Cast[timestamp_with_time_zone,nvarchar]=CAST(TO_CHAR(%1$s,'YYYY-MM-DD HH24:MI:SS.FF9TZH:TZM') AS NVARCHAR2(%3$d))
  165. # these casts are disabled because they sometimes fail and cause the connection to drop.
  166. expressions.Cast[interval_day_to_second,char]=
  167. expressions.Cast[interval_day_to_second,nchar]=
  168. expressions.Cast[interval_day_to_second,varchar]=
  169. expressions.Cast[interval_day_to_second,nvarchar]=
  170. expressions.Cast[interval_year_to_month,char]=
  171. expressions.Cast[interval_year_to_month,nchar]=
  172. expressions.Cast[interval_year_to_month,varchar]=
  173. expressions.Cast[interval_year_to_month,nvarchar]=
  174. expressions.Cast[numeric,varchar]=CAST(TO_CHAR(%1$s,'TM9','NLS_NUMERIC_CHARACTERS = ''.,'' ') AS VARCHAR2(%3$d))
  175. expressions.Cast[numeric,nvarchar]=CAST(TO_CHAR(%1$s,'TM9','NLS_NUMERIC_CHARACTERS = ''.,'' ') AS NVARCHAR2(%3$d))
  176. expressions.Cast[numeric,date]=CASE %1$s WHEN 0 THEN TO_DATE('00010101','YYYYMMDD') ELSE TO_DATE(TO_CHAR(%1$s),'YYYYMMDD') END
  177. expressions.Cast[numeric,text]=CAST(TO_CHAR(%1$s,'TM9','NLS_NUMERIC_CHARACTERS = ''.,'' ') AS %2$s)
  178. expressions.Cast[text,numeric]=CAST(REPLACE(%1$s,'.',SUBSTR(CAST(1.2 AS CHAR(3)),2,1)) AS %2$s)
  179. #cast(avarchar(x) as nvarchar2(y)) fail with Error: ORA-01401: inserted value too large for column if x > y
  180. expressions.Cast[char,nvarchar]=CAST(TO_NCHAR(%1$d) AS NVARCHAR2(%3$d))
  181. expressions.Cast[varchar,nvarchar]=CAST(TO_NCHAR(%1$d) AS NVARCHAR2(%3$d))
  182. expressions.Cast[any,varchar]=CAST(%1$s AS VARCHAR2(%3$d))
  183. expressions.Cast[any,nvarchar]=CAST(%1$s AS NVARCHAR2(%3$d))
  184. expressions.Cast[clob,char]=CAST(TO_CHAR(%1$s) AS %2$s)
  185. expressions.Cast[clob,nchar]=CAST(TO_CHAR(%1$s) AS %2$s)
  186. expressions.Cast[clob,varchar]=CAST(%1$s AS VARCHAR2(%3$d))
  187. expressions.Cast[clob,nvarchar]=CAST(%1$s AS NVARCHAR2(%3$d))
  188. expressions.Cast[clob,any]=
  189. expressions.Cast[numeric,integer]=CAST(TRUNC(%1$s) AS INTEGER)
  190. expressions.Cast[any,integer]=
  191. expressions.Cast[char,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s)
  192. expressions.Cast[char,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF')
  193. expressions.Cast[char,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM')
  194. expressions.Cast[nchar,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s)
  195. expressions.Cast[nchar,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF')
  196. expressions.Cast[nchar,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM')
  197. expressions.Cast[nvarchar,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s)
  198. expressions.Cast[nvarchar,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF')
  199. expressions.Cast[nvarchar,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM')
  200. expressions.Cast[varchar,date]=CAST(TO_DATE(%1$s,'YYYY-MM-DD') AS %2$s)
  201. expressions.Cast[varchar,timestamp]=TO_TIMESTAMP(%1$s,'YYYY-MM-DD HH24:MI:SS.FF')
  202. expressions.Cast[varchar,timestamp_with_time_zone]=TO_TIMESTAMP_TZ(%1$s,'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM')
  203. expressions.Cast[text,xml]=
  204. expressions.Cast[blob,xml]=
  205. expressions.Cast[blob,blob]=
  206. # Minimum number of arguments for Coalesce function.
  207. expressions.Coalesce.minArgs=2
  208. #
  209. # Extract expression.
  210. #
  211. expressions.Extract.HOUR[timestamp]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP))
  212. expressions.Extract.HOUR[date]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP))
  213. expressions.Extract.HOUR[time]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP))
  214. expressions.Extract.HOUR[timestamp_with_time_zone]=EXTRACT(HOUR FROM CAST((%1$s) AS TIMESTAMP))
  215. expressions.Extract.MINUTE[timestamp]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP))
  216. expressions.Extract.MINUTE[date]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP))
  217. expressions.Extract.MINUTE[time]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP))
  218. expressions.Extract.MINUTE[timestamp_with_time_zone]=EXTRACT(MINUTE FROM CAST((%1$s) AS TIMESTAMP))
  219. expressions.Extract.SECOND[timestamp]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP))
  220. expressions.Extract.SECOND[date]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP))
  221. expressions.Extract.SECOND[time]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP))
  222. expressions.Extract.SECOND[timestamp_with_time_zone]=EXTRACT(SECOND FROM CAST((%1$s) AS TIMESTAMP))
  223. expressions.Extract.EPOCH[any]=
  224. #
  225. # Trim expression.
  226. #
  227. #
  228. # Windowed aggregates (SQL/OLAP).
  229. #
  230. olap.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END)
  231. olap.Tertile[]=
  232. olap.Difference[any]=
  233. olap.Collect[any]=
  234. olap.NthValue[blob,any]=
  235. olap.NthValue[blob,any,any]=
  236. olap.NthValue[blob,any,any,any]=
  237. olap.NthValue[clob,any]=
  238. olap.NthValue[clob,any,any]=
  239. olap.NthValue[clob,any,any,any]=
  240. #
  241. # Window clause.
  242. #
  243. #
  244. # Window specification
  245. # A list of windows specifications that are supported by the DB
  246. # P = PARTITION BY
  247. # O = ORDER BY
  248. # F = FRAME
  249. #
  250. olap.Window.Specification[F]=false
  251. olap.Window.Specification[PF]=false
  252. #
  253. # Aggregates.
  254. #
  255. aggregates.Count[blob]=COUNT(CASE WHEN %1$s IS NOT NULL THEN 1 END)
  256. aggregates.Sum[interval_day_to_second]=
  257. aggregates.Avg[interval_day_to_second]=
  258. aggregates.Sum[interval_year_to_month]=
  259. aggregates.Avg[interval_year_to_month]=
  260. aggregates.ArrayAgg[any]=
  261. aggregates.ArrayAgg[any,any]=
  262. aggregates.Collect[any]=
  263. aggregates.ApproxCountDistinct[blob]=
  264. aggregates.ApproxCountDistinct[clob]=
  265. #
  266. # Aggregates (distinct).
  267. #
  268. aggregates.Sum.distinct[interval_day_to_second]=
  269. aggregates.Avg.distinct[interval_day_to_second]=
  270. aggregates.Sum.distinct[interval_year_to_month]=
  271. aggregates.Avg.distinct[interval_year_to_month]=
  272. aggregates.Count.distinct[blob]=
  273. #
  274. # JSON aggregates.
  275. #
  276. aggregates.JSONArrayAgg=
  277. aggregates.JSONObjectAgg=
  278. #
  279. # Linear regression aggregates.
  280. #
  281. #
  282. # Character scalar functions.
  283. #
  284. functions.CharLength[any]=LENGTH(%1$s)
  285. functions.OctetLength[any]=LENGTHB(%1$s)
  286. functions.BitLength[any]=(LENGTHB(%1$s) * 8)
  287. functions.Substring[any,any]=SUBSTR(%1$s, %2$s)
  288. functions.Substring[any,any,any]=SUBSTR(%1$s, %2$s, %3$s)
  289. functions.Position[any,any]=INSTR(%2$s, %1$s)
  290. functions.Index[any,any]=INSTR(%1$s, %2$s)
  291. functions.Translate[any,any]=
  292. functions.Normalize[any]=
  293. functions.Normalize[any,any]=
  294. functions.Normalize[any,any,any]=
  295. #
  296. # Regular expression functions.
  297. # Oracle uses POSIX regular expressions. Need to determine the difference between XQuery and POSIX.
  298. #
  299. functions.SubstringRegex[any,any,any,any,any]=
  300. functions.OccurrencesRegex[any,any,any,any]=
  301. functions.PositionRegex[any,any,any,any,any,any]=
  302. #Substring function to negative START value to parse the input string from its rightmost end.
  303. functions.SubstringR[any,any]=SUBSTR(%1$s, %2$s)
  304. functions.SubstringR[any,any,any]=SUBSTR(%1$s, %2$s, %3$s)
  305. #
  306. # Numeric scalar functions.
  307. #
  308. functions.Abs[interval_day_time]=
  309. functions.Abs[interval_year_month]=
  310. functions.Ceiling[any]=CEIL(%1$s)
  311. functions.Round[any,any,any]=
  312. functions.Log10[any]=LOG(10,%1$s)
  313. functions.Random[]=
  314. functions.Random[any]=
  315. #
  316. # Array scalar functions.
  317. #
  318. functions.Cardinality[any]=
  319. functions.TrimArray[any,any]=
  320. #
  321. # Trigonometric functions.
  322. #
  323. #
  324. # Datetime value functions.
  325. #
  326. functions.CurrentTime[]=
  327. functions.CurrentDate[]=TRUNC(CURRENT_DATE)
  328. functions.LocalTime[]=
  329. functions.CurrentTime[numeric]=
  330. functions.LocalTime[numeric]=
  331. #
  332. # XML functions.
  333. #
  334. functions.XMLAttributes=
  335. functions.XMLComment=
  336. functions.XMLConcat=
  337. functions.XMLDocument=
  338. functions.XMLElement=
  339. functions.XMLExists=
  340. functions.XMLForest=
  341. functions.XMLParse=
  342. functions.XMLPI=
  343. functions.XMLNamespaces=
  344. functions.XMLQuery=
  345. functions.XMLSerialize=
  346. functions.XMLTable=
  347. functions.XMLText=
  348. functions.XMLTransform=
  349. functions.XMLValidate=
  350. #
  351. # JSON functions.
  352. #
  353. functions.JSONObject=
  354. functions.JSONArray=
  355. #
  356. # Business date functions.
  357. #
  358. functions.AddFractionalSeconds[any,any]=
  359. functions.AddSeconds[any,any]=(%1$s + (INTERVAL '1' SECOND * (%2$s)))
  360. functions.AddMinutes[any,any]=(%1$s + (INTERVAL '1' MINUTE * Floor(%2$s)))
  361. functions.AddHours[any,any]=(%1$s + (INTERVAL '1' HOUR * Floor(%2$s)))
  362. functions.AddDays[any,any]=(%1$s + (INTERVAL '1' DAY * (%2$s)))
  363. functions.AddDays[time_with_time_zone,numeric]=
  364. functions.AddWeeks[any,any]=(%1$s + (INTERVAL '7' DAY * (%2$s)))
  365. functions.AddWeeks[time_with_time_zone,numeric]=
  366. functions.AddMonths[any,any]=CASE WHEN EXTRACT( DAY FROM %1$s - NUMTODSINTERVAL( EXTRACT( DAY FROM %1$s ), 'DAY' ) + INTERVAL '1' DAY + NUMTOYMINTERVAL( %2$s, 'MONTH' ) + INTERVAL '1' MONTH - INTERVAL '1' DAY ) < EXTRACT( DAY FROM %1$s ) THEN %1$s - NUMTODSINTERVAL( EXTRACT( DAY FROM %1$s ), 'DAY' ) + INTERVAL '1' DAY + NUMTOYMINTERVAL( %2$s, 'MONTH' ) + INTERVAL '1' MONTH - INTERVAL '1' DAY ELSE %1$s + NUMTOYMINTERVAL( %2$s, 'MONTH' ) END
  367. functions.AddMonths[time_with_time_zone,numeric]=
  368. functions.AddMonths[interval_year_to_month,numeric]=
  369. functions.AddQuarters[any,any]=
  370. functions.AddYears[any,any]=CASE WHEN TO_CHAR(%1$s,'MMDD') = '0229' AND MOD(%2$s,4) <> 0 THEN (%1$s + INTERVAL '1' DAY) + NUMTOYMINTERVAL(%2$s,'YEAR') - INTERVAL '1' DAY ELSE %1$s + NUMTOYMINTERVAL(%2$s,'YEAR') END
  371. functions.AddYears[time_with_time_zone,numeric]=
  372. functions.AddYears[interval_year_to_month,numeric]=
  373. functions.FractionalSecondsBetween[any,any]=
  374. functions.SecondsBetween[any,any]=
  375. functions.MinutesBetween[any,any]=
  376. functions.HoursBetween[any,any]=
  377. functions.DaysBetween[any,any]=(TRUNC( CAST( %1$s AS TIMESTAMP ) ) - TRUNC( CAST( %2$s AS TIMESTAMP ) ))
  378. functions.WeeksBetween[any,any]=
  379. functions.MonthsBetween[any,any]=TRUNC( MONTHS_BETWEEN( %1$s, %2$s ), 0 )
  380. functions.QuartersBetween[any,any]=
  381. functions.YearsBetween[any,any]=TRUNC( ( MONTHS_BETWEEN( %1$s, %2$s) / 12 ), 0 )
  382. functions.Age[any]=
  383. functions.DayOfWeek[any,any]=(MOD( MOD( TO_NUMBER( TO_CHAR( %1$s, 'D' ) ) - TO_NUMBER( TO_CHAR( TO_DATE( '2003-01-06', 'YYYY-MM-DD' ), 'D' ) ) + 7, 7 ) + 1 - %2$s + 7, 7 ) + 1)
  384. functions.DayOfYear[any]=TO_NUMBER( TO_CHAR( %1$s, 'DDD' ) )
  385. functions.DaysToEndOfMonth[any]=(EXTRACT( DAY FROM LAST_DAY(%1$s) ) - EXTRACT( DAY FROM %1$s ))
  386. functions.FirstOfMonth[any]=(%1$s - NUMTODSINTERVAL(EXTRACT(DAY FROM %1$s)-1, 'DAY'))
  387. functions.LastOfMonth[any]=(%1$s + NUMTODSINTERVAL(EXTRACT(DAY FROM LAST_DAY(%1$s)) - EXTRACT(DAY FROM %1$s), 'DAY'))
  388. functions.MakeTimestamp[any,any,any]=TO_TIMESTAMP( ( LPAD( %1$d, 4, '0' ) || '-' || LPAD( %2$d, 2, '0' ) || '-' || LPAD( %3$d, 2, '0' ) ), 'YYYY-MM-DD' )
  389. functions.WeekOfYear[any]=TO_NUMBER( TO_CHAR( %1$s, 'IW' ) )
  390. functions.YMDIntBetween[any,any]=
  391. #
  392. # Literals.
  393. #
  394. literals.time=false
  395. literals.time_with_time_zone=false
  396. literals.timetamp_with_time_zone=true
  397. literals.interval_day=false
  398. literals.interval_day_to_hour=false
  399. literals.interval_day_to_minute=false
  400. literals.interval_hour=false
  401. literals.interval_hour_to_minute=false
  402. literals.interval_hour_to_second=false
  403. literals.interval_minute=false
  404. literals.interval_minute_to_second=false
  405. literals.interval_second=false
  406. literals.interval_year=false
  407. literals.interval_month=false
  408. #
  409. # Literal format specifications.
  410. #
  411. literals.format.binary=0x%s
  412. literals.format.date={d '%1$04d-%2$02d-%3$02d'}
  413. literals.format.time={t '%1$02d:%2$02d:%3$02d'}
  414. literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'}
  415. literals.format.timestamp={ts '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s'}
  416. literals.format.timestamp_with_time_zone=TIMESTAMP '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d'
  417. literals.format.interval_year_to_month=INTERVAL '%4$s%1$d-%2$02d' YEAR(9) TO MONTH
  418. literals.format.interval_day_to_second=INTERVAL '%8$s%1$d %2$02d:%3$02d:%4$02d%5$.10s' DAY(9) TO SECOND(9)
  419. #
  420. # Data types.
  421. #
  422. dataType.long=false
  423. dataType.time=false
  424. dataType.clob=false
  425. dataType.time_with_time_zone=false
  426. dataType.interval_day=false
  427. dataType.interval_day_to_hour=false
  428. dataType.interval_day_to_minute=false
  429. dataType.interval_hour=false
  430. dataType.interval_hour_to_minute=false
  431. dataType.interval_hour_to_second=false
  432. dataType.interval_minute=false
  433. dataType.interval_minute_to_second=false
  434. dataType.interval_second=false
  435. dataType.interval_year=false
  436. dataType.interval_month=false
  437. dataType.period=false
  438. dataType.datalink=false
  439. #dataType.nvarchar=false
  440. dataType.comparable[char,nchar]=false
  441. dataType.comparable[char,nvarchar]=false
  442. dataType.comparable[varchar,nvarchar]=false
  443. dataType.comparable[varchar,nchar]=false
  444. dataType.comparable[nchar,char]=false
  445. dataType.comparable[nchar,varchar]=false
  446. dataType.comparable[nvarchar,varchar]=false
  447. dataType.comparable[nvarchar,char]=false
  448. dataType.promotion[char,nchar]=true
  449. dataType.promotion[varchar,nchar]=true
  450. dataType.promotion[char,nvarchar]=true
  451. dataType.promotion[varchar,nvarchar]=true
  452. #
  453. # Collation sequence query
  454. # collation.sequence.sql=<sql_statement> The query can return only a single result
  455. #
  456. collation.sequence.sql=SELECT sort_tbl.sort_val || '.' || charset_tbl.charset_val, CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH FROM (SELECT VALUE AS sort_val FROM V$NLS_PARAMETERS WHERE PARAMETER IN ( 'NLS_SORT')) sort_tbl, (SELECT VALUE AS charset_val FROM V$NLS_PARAMETERS WHERE PARAMETER IN ( 'NLS_CHARACTERSET')) charset_tbl
  457. #
  458. # Collation sequence mappings
  459. # collation.sequence.mapping.<sql_result>=<collation_name>,<collation_weight>
  460. #
  461. # NOTE: These mappings are case sensitive
  462. #
  463. collation.sequence.mapping.BINARY.WE8MSWIN1252=OrWe8mswin1252,TERTIARY
  464. collation.sequence.mapping.BINARY.WE8ISO8859P1=OrWe8iso8859p1,TERTIARY
  465. collation.sequence.mapping.BINARY.US7ASCII=OrWe8iso8859p1,TERTIARY
  466. collation.sequence.mapping.BINARY.AL32UTF8=UnicodeCodepoint,IDENTICAL