sqlserver.azuresqldw.properties 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. # Licensed Materials - Property of IBM
  2. # IBM Cognos Products: OQP
  3. # (C) Copyright IBM Corp. 2005, 2020
  4. # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
  5. #
  6. # Product information.
  7. #
  8. #
  9. # Delimiters.
  10. #
  11. #
  12. # Various limits.
  13. #
  14. supports.orderByAlias=false
  15. #
  16. # General settings.
  17. #
  18. general.nullsAreSortedLow=true
  19. general.nullsOrdering=false
  20. general.nullsOrderingInWindowSpecification=false
  21. #
  22. # Various features.
  23. #
  24. supports.sqlserverWindowBehaviour=true
  25. supports.withClauseInDerivedTable=false
  26. supports.nestedWithClause=false
  27. supports.blobsInGroupBy=false
  28. supports.blobsInOrderBy=false
  29. supports.mixedCaseIdentifiers=false
  30. supports.mixedCaseQuotedIdentifiers=false
  31. supports.charLiteralRoundTrip=false
  32. supports.stitchJoins=false
  33. supports.expressionsInGroupBy=false
  34. supports.subqueriesInAggregate=false
  35. supports.recursiveWithClause=false
  36. supports.booleanExpressionsInSelectList=false
  37. supports.aliasInOrderByExpression=false
  38. supports.orderByInDerivedTable=false
  39. supports.callProcedureInDerivedTable=false
  40. #casting with formatting pattern support
  41. supports.formatters.string_to_date=false
  42. supports.formatters.string_to_time=false
  43. supports.formatters.string_to_time_with_time_zone=false
  44. supports.formatters.string_to_timestamp=false
  45. supports.formatters.string_to_timestamp_with_time_zone=false
  46. #
  47. # Command.
  48. #
  49. #
  50. # Tables.
  51. #
  52. tables.lateral.derived=false
  53. #
  54. # Constructors.
  55. #
  56. constructors.table=false
  57. constructors.row=false
  58. constructors.array=false
  59. constructors.period=false
  60. #
  61. # Clauses.
  62. #
  63. clauses.Top=TOP %1$s
  64. clauses.Top.Position=distinct.top
  65. clauses.At=
  66. clauses.Window=
  67. clauses.WithRecursive=
  68. clauses.TableSampleSystem=
  69. #
  70. # Joins.
  71. #
  72. #
  73. # Set operators.
  74. #
  75. operators.set.Intersect.all=
  76. operators.set.Except.all=
  77. #
  78. # Logical operators.
  79. #
  80. operators.logical.Is=
  81. operators.logical.IsNot=
  82. operators.logical.IsJson=
  83. operators.logical.IsNotJson=
  84. #
  85. # Arithmetic operators.
  86. #
  87. operators.arithmetic.Subtract[any,datetime]=
  88. operators.arithmetic.Concat[any,any]=(%1$s + %2$s)
  89. operators.arithmetic.Concat[clob,clob]=
  90. operators.arithmetic.Concat[text,clob]=
  91. operators.arithmetic.Concat[clob,text]=
  92. #
  93. # Group By Operators
  94. #
  95. operators.groupBy.Rollup=
  96. operators.groupBy.Cube=
  97. operators.groupBy.GroupingSets=
  98. #
  99. # Comparison predicates.
  100. #
  101. predicates.comparison.LessThan[any,clob]=
  102. predicates.comparison.LessThan[clob,any]=
  103. predicates.comparison.LessThanOrEquals[any,clob]=
  104. predicates.comparison.LessThanOrEquals[clob,any]=
  105. predicates.comparison.Equals[any,clob]=
  106. predicates.comparison.Equals[clob,any]=
  107. predicates.comparison.NotEquals[any,clob]=
  108. predicates.comparison.NotEquals[clob,any]=
  109. predicates.comparison.GreaterThan[any,clob]=
  110. predicates.comparison.GreaterThan[clob,any]=
  111. predicates.comparison.GreaterThanOrEquals[any,clob]=
  112. predicates.comparison.GreaterThanOrEquals[clob,any]=
  113. #
  114. # Various predicates.
  115. #
  116. predicates.In[clob,any]=
  117. predicates.In[any,clob]=
  118. predicates.Overlaps[any,any,any,any]=
  119. predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
  120. predicates.IsDistinctFrom[blob,any]=
  121. predicates.IsDistinctFrom[any,blob]=
  122. predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
  123. predicates.IsNotDistinctFrom[any,blob]=
  124. predicates.IsNotDistinctFrom[blob,any]=
  125. predicates.LikeRegex=
  126. predicates.LikeRegex.flag=
  127. predicates.Similar=
  128. predicates.Similar.escape=
  129. predicates.All=
  130. predicates.Any=
  131. predicates.Some=
  132. #
  133. # Period predicates.
  134. #
  135. predicates.PeriodOverlaps[any,any]=
  136. predicates.PeriodEquals[any,any]=
  137. predicates.PeriodContains[any,any]=
  138. predicates.PeriodPrecedes[any,any]=
  139. predicates.PeriodSucceeds[any,any]=
  140. predicates.PeriodImmediatelyPrecedes[any,any]=
  141. predicates.PeriodImmediatelySucceeds[any,any]=
  142. #
  143. # Expressions.
  144. #
  145. #
  146. # Cast expression.
  147. #
  148. expressions.Cast[date,char]=CAST(CONVERT(CHAR(10), %1$s, 121) AS %2$s)
  149. expressions.Cast[date,varchar]=CAST(CONVERT(CHAR(10), %1$s, 121) AS %2$s)
  150. expressions.Cast[date,nchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s)
  151. expressions.Cast[date,nvarchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s)
  152. expressions.Cast[date,date]=CAST( (%1$s) AS DATE )
  153. expressions.Cast[any,clob]=CAST(%1$s as TEXT)
  154. expressions.Cast[numeric,clob]=
  155. expressions.Cast[time,char]=CAST(CONVERT(CHAR(12),%1$s, 114) AS %2$s)
  156. expressions.Cast[time,varchar]=CAST(CONVERT(CHAR(12), %1$s, 114) AS %2$s)
  157. expressions.Cast[time,nchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s)
  158. expressions.Cast[time,nvarchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s)
  159. expressions.Cast[time,time]=CAST( (%1$s) AS TIME )
  160. expressions.Cast[time,text]=
  161. expressions.Cast[timestamp,text]=CONVERT(%2$s, %1$s, 121)
  162. expressions.Cast[any,float]=CAST(%1$s AS REAL)
  163. expressions.Cast[date,timestamp]=CAST(%1$s as DATETIME)
  164. expressions.Cast[null,timestamp]=CAST(%1$s as DATETIME)
  165. expressions.Cast[time,timestamp]=
  166. expressions.Cast[any,timestamp_with_time_zone]=CAST(%1$s as DATETIMEOFFSET)
  167. expressions.Cast[any,timestamp]=CAST(%1$s as DATETIME)
  168. # DB uses wrong timezone when convert time time timestamp TZ
  169. expressions.Cast[time,timestamp_with_time_zone]=
  170. expressions.Cast[timestamp,timestamp]=CAST(%1$s as DATETIME)
  171. expressions.Cast[timestamp,char]=CAST(CONVERT(CHAR(30),%1$s, 121) AS %2$s)
  172. expressions.Cast[timestamp_with_time_zone,timestamp_with_time_zone]=%1$s
  173. expressions.Cast[timestamp_with_time_zone,char]=CONVERT( %2$s, %1$s, 121 )
  174. expressions.Cast[timestamp_with_time_zone,varchar]=CONVERT( %2$s, %1$s, 121 )
  175. expressions.Cast[timestamp_with_time_zone,nchar]=CONVERT( %2$s, %1$s, 121 )
  176. expressions.Cast[timestamp_with_time_zone,nvarchar]=CONVERT( NVARCHAR%2$s, %1$s, 121 )
  177. expressions.Cast[timestamp_with_time_zone,timestamp]=
  178. expressions.Cast[char,timestamp]=CAST(%1$s as DATETIME)
  179. expressions.Cast[nchar,timestamp]=CAST(%1$s as DATETIME)
  180. expressions.Cast[nvarchar,timestamp]=CAST(%1$s as DATETIME)
  181. expressions.Cast[varchar,timestamp]=CAST(%1$s as DATETIME)
  182. # Minimum number of arguments for Coalesce function.
  183. expressions.Coalesce.minArgs=2
  184. #
  185. # Extract expression.
  186. #
  187. expressions.Extract.YEAR[any]=DATEPART(YEAR, %1$s)
  188. expressions.Extract.MONTH[any]=DATEPART(MONTH, %1$s)
  189. expressions.Extract.DAY[any]=DATEPART(DAY, %1$s)
  190. expressions.Extract.HOUR[any]=DATEPART(HOUR, %1$s)
  191. expressions.Extract.MINUTE[any]=DATEPART(MINUTE, %1$s)
  192. expressions.Extract.SECOND[any]=(DATEPART(SECOND, %1$s) + (CAST(DATEPART(MILLISECOND, %1$s) as DECIMAL) / 1000))
  193. expressions.Extract.TIMEZONE_HOUR[any]=DATEPART(TZOFFSET, %1$s) / 60
  194. expressions.Extract.TIMEZONE_MINUTE[any]=DATEPART(TZOFFSET, %1$s) %% 60
  195. expressions.Extract.EPOCH[any]=
  196. #
  197. # Trim expression.
  198. #
  199. expressions.Trim.BOTH[any]=LTRIM(RTRIM(%1$s))
  200. expressions.Trim.BOTH[clob]=
  201. expressions.Trim.LEADING[any]=LTRIM(%1$s)
  202. expressions.Trim.LEADING[clob]=
  203. expressions.Trim.TRAILING[any]=RTRIM(%1$s)
  204. expressions.Trim.TRAILING[clob]=
  205. expressions.Trim.BOTH[any,any]=
  206. expressions.Trim.LEADING[any,any]=
  207. expressions.Trim.TRAILING[any,any]=
  208. #
  209. # Windowed aggregates (SQL/OLAP).
  210. #
  211. olap.Count[any]=COUNT_BIG(%1$s)
  212. olap.CountStar[]=COUNT_BIG(*)
  213. olap.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END)
  214. olap.StdDevSamp[any]=STDEV(%1$s)
  215. olap.StdDevPop[any]=STDEVP(%1$s)
  216. olap.VarSamp[any]=VAR(%1$s)
  217. olap.VarPop[any]=VARP(%1$s)
  218. olap.Tertile[]=
  219. olap.RatioToReport[any]=
  220. olap.Difference[any]=
  221. olap.Lag[any,any,any,any]=
  222. olap.Lead[any,any,any,any]=
  223. olap.NthValue[any,any]=
  224. olap.NthValue[any,any,any]=
  225. olap.NthValue[any,any,any,any]=
  226. olap.Collect[any]=
  227. olap.Median[any]=PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY %1$s)
  228. #
  229. # Window clause.
  230. #
  231. #
  232. # Window specification
  233. # A list of windows specifications that are supported by the DB
  234. # P = PARTITION BY
  235. # O = ORDER BY
  236. # F = FRAME
  237. #
  238. #
  239. # Olap (distinct).
  240. #
  241. olap.Max.distinct[any]=
  242. olap.Min.distinct[any]=
  243. olap.Sum.distinct[any]=
  244. olap.Avg.distinct[any]=
  245. olap.Count.distinct[any]=
  246. #
  247. # Aggregates.
  248. #
  249. aggregates.Count[any]=COUNT_BIG(%1$s)
  250. aggregates.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END)
  251. aggregates.CountStar[]=COUNT_BIG(*)
  252. aggregates.StdDevSamp[any]=STDEV(%1$s)
  253. aggregates.StdDevPop[any]=STDEVP(%1$s)
  254. aggregates.VarSamp[any]=VAR(%1$s)
  255. aggregates.VarPop[any]=VARP(%1$s)
  256. aggregates.CumeDistH[any,any]=
  257. aggregates.PercentileCont[any,any]=
  258. aggregates.PercentileDisc[any,any]=
  259. aggregates.Median[any]=
  260. aggregates.XMLAgg=
  261. aggregates.ArrayAgg[any]=
  262. aggregates.ArrayAgg[any,any]=
  263. aggregates.Collect[any]=
  264. aggregates.Rank[any,any]=
  265. aggregates.DenseRank[any,any]=
  266. #
  267. # Aggregates (distinct).
  268. #
  269. aggregates.Count.distinct[any]=COUNT_BIG(DISTINCT %1$s)
  270. aggregates.Count.distinct[blob]=
  271. #
  272. # Linear regression aggregates.
  273. #
  274. aggregates.Corr[any,any]=
  275. aggregates.CovarPop[any,any]=
  276. aggregates.CovarSamp[any,any]=
  277. aggregates.RegrAvgX[any,any]=
  278. aggregates.RegrAvgY[any,any]=
  279. aggregates.RegrCount[any,any]=
  280. aggregates.RegrIntercept[any,any]=
  281. aggregates.RegrR2[any,any]=
  282. aggregates.RegrSlope[any,any]=
  283. aggregates.RegrSXX[any,any]=
  284. aggregates.RegrSXY[any,any]=
  285. aggregates.RegrSYY[any,any]=
  286. #
  287. # JSON aggregates.
  288. #
  289. aggregates.JSONArrayAgg=
  290. aggregates.JSONObjectAgg=
  291. #
  292. # Character scalar functions.
  293. #
  294. functions.CharLength[any]=LEN(%1$s)
  295. functions.CharLength[char]=LEN(REPLACE(%1$s, ' ', 'x'))
  296. functions.CharLength[nchar]=LEN(REPLACE(%1$s, N' ', N'x'))
  297. functions.CharLength[varchar]=LEN(REPLACE(%1$s, ' ', 'x'))
  298. functions.CharLength[nvarchar]=LEN(REPLACE(%1$s, N' ', N'x'))
  299. functions.CharLength[clob]=
  300. functions.OctetLength[any]=DATALENGTH(%1$s)
  301. functions.OctetLength[clob]=
  302. functions.BitLength[any]=(DATALENGTH(%1$s) * 8)
  303. functions.Upper[clob]=
  304. functions.Lower[clob]=
  305. functions.Substring[any,any]=SUBSTRING(%1$s, %2$s, LEN(%1$s))
  306. functions.Substring[any,any,any]=SUBSTRING(%1$s, %2$s, %3$s)
  307. functions.Substring[clob,numeric,numeric]=
  308. functions.Position[any,any]=CHARINDEX(%1$s, %2$s)
  309. functions.Index[any,any]=CHARINDEX(%2$s, %1$s)
  310. functions.Translate[any,any]=
  311. functions.Normalize[any]=
  312. functions.Normalize[any,any]=
  313. functions.Normalize[any,any,any]=
  314. functions.Random[]=RAND()
  315. functions.Random[any]=
  316. functions.Round[any]=
  317. #Substring function to negative START value to parse the input string from its rightmost end.
  318. functions.SubstringR[any,any]=
  319. functions.SubstringR[any,any,any]=
  320. #functions.SubstringR[any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LEN(%1$s ) - ABS(%2$s) + 1))) ELSE (SUBSTRING(%1$s, %2$s)) END
  321. #functions.SubstringR[any,any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LEN(%1$s ) - ABS(%2$s) + 1), %3$s)) ELSE (SUBSTRING(%1$s, %2$s, %3$s)) END
  322. #
  323. # Regular expression functions.
  324. #
  325. functions.SubstringRegex[any,any,any,any,any]=
  326. functions.OccurrencesRegex[any,any,any,any]=
  327. functions.PositionRegex[any,any,any,any,any,any]=
  328. #
  329. # Numeric scalar functions.
  330. #
  331. functions.Abs[interval_day_time]=
  332. functions.Abs[interval_year_month]=
  333. functions.Ln[any]=LOG(%1$s)
  334. functions.Mod[exact,exact]=((%1$s) %% (%2$s))
  335. functions.Mod[variant,variant]=((%1$s) %% (%2$s))
  336. functions.Mod[variant,exact]=((%1$s) %% (%2$s))
  337. functions.Mod[exact, variant]=((%1$s) %% (%2$s))
  338. functions.Mod[float,any]=
  339. functions.Mod[double,any]=
  340. functions.Mod[any,float]=
  341. functions.Mod[any,double]=
  342. functions.WidthBucket[any,any,any,any]=
  343. #
  344. # Array scalar functions.
  345. #
  346. functions.Cardinality[any]=
  347. functions.TrimArray[any,any]=
  348. #
  349. # FDS functions.
  350. #
  351. functions.cast_float[any]=convert(float(53), %1$s)
  352. functions.concat[any,any]={fn CONCAT(%1$s, %2$s)}
  353. functions.concat[clob,clob]=
  354. #
  355. # Trigonometric functions.
  356. #
  357. ## COSHYP not supported by ss.
  358. functions.Coshyp[any]=
  359. ## SINHYP not supported by SS.
  360. functions.Sinhyp[any]=
  361. ## TANHYP not supported by SS.
  362. functions.Tanhyp[any]=
  363. #
  364. # Datetime value functions.
  365. #
  366. functions.CurrentDate[]=CAST(CURRENT_TIMESTAMP AS DATE)
  367. functions.CurrentTime[]=
  368. functions.CurrentTimestamp[]=sysdatetimeoffset()
  369. functions.LocalTime[]=
  370. functions.LocalTimestamp[]=
  371. functions.CurrentTime[numeric]=
  372. functions.CurrentTimestamp[numeric]=
  373. functions.LocalTime[numeric]=
  374. functions.LocalTimestamp[numeric]=
  375. #
  376. # XML functions.
  377. #
  378. functions.XMLAttributes=
  379. functions.XMLComment=
  380. functions.XMLConcat=
  381. functions.XMLDocument=
  382. functions.XMLElement=
  383. functions.XMLExists=
  384. functions.XMLForest=
  385. functions.XMLParse=
  386. functions.XMLPI=
  387. functions.XMLNamespaces=
  388. functions.XMLQuery=
  389. functions.XMLSerialize=
  390. functions.XMLTable=
  391. functions.XMLText=
  392. functions.XMLTransform=
  393. functions.XMLValidate=
  394. #
  395. # JSON functions.
  396. #
  397. functions.JSONArray=
  398. functions.JSONExists=
  399. functions.JSONObject=
  400. functions.JSONQuery=
  401. functions.JSONTable=
  402. functions.JSONValue=
  403. #
  404. # Business date functions.
  405. #
  406. functions.AddFractionalSeconds[any,any]=
  407. functions.AddSeconds[time,numeric]=DATEADD(MILLISECOND, %2$s * 1000, %1$s)
  408. functions.AddSeconds[timestamp,numeric]=DATEADD(MILLISECOND, %2$s * 1000, %1$s)
  409. functions.AddSeconds[time_with_time_zone,numeric]=
  410. functions.AddSeconds[timestamp_with_time_zone,numeric]=
  411. functions.AddSeconds[interval_day_time,numeric]=
  412. functions.AddMinutes[time,numeric]=DATEADD(MINUTE, %2$s, %1$s)
  413. functions.AddMinutes[timestamp,numeric]=DATEADD(MINUTE, %2$s, %1$s)
  414. functions.AddMinutes[time_with_time_zone,numeric]=
  415. functions.AddMinutes[timestamp_with_time_zone,numeric]=
  416. functions.AddMinutes[interval_day_time,numeric]=
  417. functions.AddHours[time,numeric]=DATEADD(HOUR, %2$s, %1$s)
  418. functions.AddHours[timestamp,numeric]=DATEADD(HOUR, %2$s, %1$s)
  419. functions.AddHours[time_with_time_zone,numeric]=
  420. functions.AddHours[timestamp_with_time_zone,numeric]=
  421. functions.AddHours[interval_day_time,numeric]=
  422. functions.AddDays[any,any]=DATEADD(DAY, %2$s, %1$s)
  423. functions.AddDays[time_with_time_zone,numeric]=
  424. functions.AddDays[timestamp_with_time_zone,numeric]=
  425. functions.AddWeeks[any,any]=DATEADD(WEEK, %2$s, %1$s)
  426. functions.AddWeeks[time_with_time_zone,numeric]=
  427. functions.AddWeeks[timestamp_with_time_zone,numeric]=
  428. functions.AddMonths[any,any]=DATEADD(MONTH, %2$s, %1$s)
  429. functions.AddMonths[time_with_time_zone,numeric]=
  430. functions.AddMonths[timestamp_with_time_zone,numeric]=
  431. functions.AddQuarters[any,any]=DATEADD(QUARTER, %2$s, %1$s)
  432. functions.AddQuarters[time_with_time_zone,numeric]=
  433. functions.AddQuarters[timestamp_with_time_zone,numeric]=
  434. functions.AddYears[any,any]=DATEADD(YEAR, %2$s, %1$s)
  435. functions.AddYears[time_with_time_zone,numeric]=
  436. functions.AddYears[timestamp_with_time_zone,numeric]=
  437. functions.FractionalSecondsBetween[any,any]=
  438. functions.SecondsBetween[any,any]=DATEDIFF(SECOND, %2$s, %1$s)
  439. functions.MinutesBetween[any,any]=DATEDIFF(MINUTE, %2$s, %1$s)
  440. functions.HoursBetween[any,any]=DATEDIFF(HOUR, %2$s, %1$s)
  441. functions.DaysBetween[any,any]=DATEDIFF(DAY, %2$s, %1$s)
  442. functions.WeeksBetween[any,any]=DATEDIFF(WEEK, %2$s, %1$s)
  443. functions.MonthsBetween[any,any]=
  444. functions.QuartersBetween[any,any]=DATEDIFF(QUARTER, %2$s, %1$s)
  445. functions.YearsBetween[any,any]=
  446. functions.Age[any]=
  447. functions.DayOfWeek[any,any]=(((DATEPART(WEEKDAY, %1$s) + @@DATEFIRST - 1 - 1) %% 7 + 1 - %2$s + 7) %% 7 + 1)
  448. functions.DayOfYear[any]=DATEPART(DAYOFYEAR, %1$s)
  449. functions.DaysToEndOfMonth[any]=DATEDIFF(DAY, %1$s, DATEADD (DAY, -1, DATEADD(MONTH, 1, DATEADD(DAY, 1 - DATEPART(DAY, %1$s), %1$s))))
  450. functions.FirstOfMonth[any]=DATEADD(DAY, -DAY(%1$s) + 1, %1$s)
  451. functions.LastOfMonth[any]=DATEADD(DAY, -1, DATEADD(MONTH, 1, DATEADD(DAY, -DAY(%1$s) + 1, %1$s)))
  452. functions.MakeTimestamp[any,any,any]=CONVERT(DATETIME, CONVERT(VARCHAR(8), ((%1$s) * 10000) + ((%2$s) * 100) + %3$s))
  453. functions.WeekOfYear[any]=DATEPART(isowk, %1$s)
  454. functions.YMDIntBetween[any,any]=
  455. #
  456. # Mappings used for transformation purposes only.
  457. #
  458. functions.size[text]=datalength(%1$s)
  459. #
  460. # Literals.
  461. #
  462. literals.binary=false
  463. literals.boolean=false
  464. literals.time_with_time_zone=false
  465. literals.interval_day=false
  466. literals.interval_day_to_hour=false
  467. literals.interval_day_to_minute=false
  468. literals.interval_day_to_second=false
  469. literals.interval_hour=false
  470. literals.interval_hour_to_minute=false
  471. literals.interval_hour_to_second=false
  472. literals.interval_minute=false
  473. literals.interval_minute_to_second=false
  474. literals.interval_second=false
  475. literals.interval_year=false
  476. literals.interval_year_to_month=false
  477. literals.interval_month=false
  478. literals.xml=false
  479. #
  480. # Literal format specifications.
  481. #
  482. literals.format.date=CONVERT(DATE, '%1$04d-%2$02d-%3$02d')
  483. literals.format.date.procedure={d '%1$04d-%2$02d-%3$02d'}
  484. literals.format.time=CONVERT(TIME, {t '%1$02d:%2$02d:%3$02d%4$.4s'})
  485. literals.format.time.procedure={t '%1$02d:%2$02d:%3$02d%4$.4s'}
  486. literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'}
  487. literals.format.timestamp=CONVERT(DATETIME2, '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.4s')
  488. literals.format.timestamp_with_time_zone=CONVERT(DATETIMEOFFSET, '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d')
  489. #
  490. # Literal Exceptions.
  491. #
  492. # In MS SQL Server datetime value is rendered to accuracy of 1/300 seconds
  493. # and value are rounded to increment of .000, .003 or .007 seconds as shown below:
  494. # 1999-12-31 23:59:59.999 is rounded to 2000-01-01 00:00:00.000
  495. # 1999-12-31 23:59:59.998 is rounded to 1999-12-31 23:59:59.997
  496. # 1999-12-31 23:59:59.997 is rounded to 1999-12-31 23:59:59.997
  497. # 1999-12-31 23:59:59.996 is rounded to 1999-12-31 23:59:59.997
  498. # 1999-12-31 23:59:59.995 is rounded to 1999-12-31 23:59:59.997
  499. # 1999-12-31 23:59:59.994 is rounded to 1999-12-31 23:59:59.993
  500. # 1999-12-31 23:59:59.993 is rounded to 1999-12-31 23:59:59.993
  501. # 1999-12-31 23:59:59.992 is rounded to 1999-12-31 23:59:59.993
  502. # 1999-12-31 23:59:59.991 is rounded to 1999-12-31 23:59:59.990
  503. # 1999-12-31 23:59:59.990 is rounded to 1999-12-31 23:59:59.990
  504. # The value of End_Time_Literal must be of the form
  505. # "HH:MM:SS.FFFFFFFFF".
  506. literals.exception.End_Time_Literal=23:59:59.998000000
  507. #
  508. # Data types.
  509. #
  510. dataType.time_with_time_zone=false
  511. dataType.interval_day=false
  512. dataType.interval_day_to_hour=false
  513. dataType.interval_day_to_minute=false
  514. dataType.interval_day_to_second=false
  515. dataType.interval_hour=false
  516. dataType.interval_hour_to_minute=false
  517. dataType.interval_hour_to_second=false
  518. dataType.interval_minute=false
  519. dataType.interval_minute_to_second=false
  520. dataType.interval_second=false
  521. dataType.interval_year=false
  522. dataType.interval_year_to_month=false
  523. dataType.interval_month=false
  524. dataType.period=false
  525. #
  526. # Collation sequence query
  527. # collation.sequence.sql=<sql_statement> The query can return only a single result
  528. #
  529. collation.sequence.sql=SELECT CAST( ServerProperty('collation') AS VARCHAR(100)), CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH
  530. database.charset.sql=select CAST(COLLATIONPROPERTY(CAST(DATABASEPROPERTYEX(db_name(), 'Collation') as VARCHAR(100)), 'CodePage') as varchar(100))
  531. #
  532. # Collation sequence mappings
  533. # collation.sequence.mapping.<sql_result>=<collation_name>,<collation_weight>
  534. #
  535. # NOTE: These mappings are case sensitive
  536. #
  537. collation.sequence.mapping.SQL_Latin1_General_CP1_CI_AI=MsSqlLatin1GeneralCp1,PRIMARY
  538. collation.sequence.mapping.SQL_Latin1_General_CP1_CI_AS=MsSqlLatin1GeneralCp1,SECONDARY
  539. collation.sequence.mapping.SQL_Latin1_General_CP1_CS_AS=MsSqlLatin1GeneralCp1,TERTIARY
  540. #
  541. # Support for SQL data types that are not defined in the JDBC 3.0 standard
  542. # datasource.type.<datasource specific name>=CCL datatype name
  543. # all spaces need to be replaced with an underscore (_)
  544. #
  545. #datasource.type.datetimeoffset=timestamp with time zone
  546. #
  547. # If the unsupported type returns value information in a non-standard way
  548. # then a way to pull apart the non standard string and a mapping to put it
  549. # back together.
  550. # datasource.type.<ccl type name>.separator=Regex for splitting the string
  551. # datasource.type.<ccl type name>.mapping=String formatter for putting the pieces back together
  552. #
  553. #datasource.type.timestamp_with_time_zone.separator=[ ]|[:]|[\.]
  554. #datasource.type.timestamp_with_time_zone.mapping=%1$s %2$s:%3$s:%4$s.%5$s%6$s:%7$s