123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615 |
- # Licensed Materials - Property of IBM
- # IBM Cognos Products: OQP
- # (C) Copyright IBM Corp. 2005, 2020
- # US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM corp.
- #
- # Product information.
- #
- #
- # Delimiters.
- #
- #
- # Various limits.
- #
- supports.orderByAlias=false
- #
- # General settings.
- #
- general.nullsAreSortedLow=true
- general.nullsOrdering=false
- general.nullsOrderingInWindowSpecification=false
- #
- # Various features.
- #
- supports.sqlserverWindowBehaviour=true
- supports.withClauseInDerivedTable=false
- supports.nestedWithClause=false
- supports.blobsInGroupBy=false
- supports.blobsInOrderBy=false
- supports.mixedCaseIdentifiers=false
- supports.mixedCaseQuotedIdentifiers=false
- supports.charLiteralRoundTrip=false
- supports.stitchJoins=false
- supports.expressionsInGroupBy=false
- supports.subqueriesInAggregate=false
- supports.recursiveWithClause=false
- supports.booleanExpressionsInSelectList=false
- supports.aliasInOrderByExpression=false
- supports.orderByInDerivedTable=false
- supports.callProcedureInDerivedTable=false
- #casting with formatting pattern support
- supports.formatters.string_to_date=false
- supports.formatters.string_to_time=false
- supports.formatters.string_to_time_with_time_zone=false
- supports.formatters.string_to_timestamp=false
- supports.formatters.string_to_timestamp_with_time_zone=false
- #
- # Command.
- #
- #
- # Tables.
- #
- tables.lateral.derived=false
- #
- # Constructors.
- #
- constructors.table=false
- constructors.row=false
- constructors.array=false
- constructors.period=false
- #
- # Clauses.
- #
- clauses.Top=TOP %1$s
- clauses.Top.Position=distinct.top
- clauses.At=
- clauses.Window=
- clauses.WithRecursive=
- clauses.TableSampleSystem=
- #
- # Joins.
- #
- #
- # Set operators.
- #
- operators.set.Intersect.all=
- operators.set.Except.all=
- #
- # Logical operators.
- #
- operators.logical.Is=
- operators.logical.IsNot=
- operators.logical.IsJson=
- operators.logical.IsNotJson=
- #
- # Arithmetic operators.
- #
- operators.arithmetic.Subtract[any,datetime]=
- operators.arithmetic.Concat[any,any]=(%1$s + %2$s)
- operators.arithmetic.Concat[clob,clob]=
- operators.arithmetic.Concat[text,clob]=
- operators.arithmetic.Concat[clob,text]=
- #
- # Group By Operators
- #
- operators.groupBy.Rollup=
- operators.groupBy.Cube=
- operators.groupBy.GroupingSets=
- #
- # Comparison predicates.
- #
- predicates.comparison.LessThan[any,clob]=
- predicates.comparison.LessThan[clob,any]=
- predicates.comparison.LessThanOrEquals[any,clob]=
- predicates.comparison.LessThanOrEquals[clob,any]=
- predicates.comparison.Equals[any,clob]=
- predicates.comparison.Equals[clob,any]=
- predicates.comparison.NotEquals[any,clob]=
- predicates.comparison.NotEquals[clob,any]=
- predicates.comparison.GreaterThan[any,clob]=
- predicates.comparison.GreaterThan[clob,any]=
- predicates.comparison.GreaterThanOrEquals[any,clob]=
- predicates.comparison.GreaterThanOrEquals[clob,any]=
- #
- # Various predicates.
- #
- predicates.In[clob,any]=
- predicates.In[any,clob]=
- predicates.Overlaps[any,any,any,any]=
- predicates.IsDistinctFrom[any,any]=(%1$s IS NULL AND %2$s IS NOT NULL) OR (%1$s IS NOT NULL AND %2$s IS NULL) OR %1$s <> %2$s
- predicates.IsDistinctFrom[blob,any]=
- predicates.IsDistinctFrom[any,blob]=
- predicates.IsNotDistinctFrom[any,any]=%1$s = %2$s OR (%1$s IS NULL AND %2$s IS NULL)
- predicates.IsNotDistinctFrom[any,blob]=
- predicates.IsNotDistinctFrom[blob,any]=
- predicates.LikeRegex=
- predicates.LikeRegex.flag=
- predicates.Similar=
- predicates.Similar.escape=
- predicates.All=
- predicates.Any=
- predicates.Some=
- #
- # Period predicates.
- #
- predicates.PeriodOverlaps[any,any]=
- predicates.PeriodEquals[any,any]=
- predicates.PeriodContains[any,any]=
- predicates.PeriodPrecedes[any,any]=
- predicates.PeriodSucceeds[any,any]=
- predicates.PeriodImmediatelyPrecedes[any,any]=
- predicates.PeriodImmediatelySucceeds[any,any]=
- #
- # Expressions.
- #
- #
- # Cast expression.
- #
- expressions.Cast[date,char]=CAST(CONVERT(CHAR(10), %1$s, 121) AS %2$s)
- expressions.Cast[date,varchar]=CAST(CONVERT(CHAR(10), %1$s, 121) AS %2$s)
- expressions.Cast[date,nchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s)
- expressions.Cast[date,nvarchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s)
- expressions.Cast[date,date]=CAST( (%1$s) AS DATE )
- expressions.Cast[any,clob]=CAST(%1$s as TEXT)
- expressions.Cast[numeric,clob]=
- expressions.Cast[time,char]=CAST(CONVERT(CHAR(12),%1$s, 114) AS %2$s)
- expressions.Cast[time,varchar]=CAST(CONVERT(CHAR(12), %1$s, 114) AS %2$s)
- expressions.Cast[time,nchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s)
- expressions.Cast[time,nvarchar]=CAST(CONVERT(NCHAR(10), %1$s, 121) AS %2$s)
- expressions.Cast[time,time]=CAST( (%1$s) AS TIME )
- expressions.Cast[time,text]=
- expressions.Cast[timestamp,text]=CONVERT(%2$s, %1$s, 121)
- expressions.Cast[any,float]=CAST(%1$s AS REAL)
- expressions.Cast[date,timestamp]=CAST(%1$s as DATETIME)
- expressions.Cast[null,timestamp]=CAST(%1$s as DATETIME)
- expressions.Cast[time,timestamp]=
- expressions.Cast[any,timestamp_with_time_zone]=CAST(%1$s as DATETIMEOFFSET)
- expressions.Cast[any,timestamp]=CAST(%1$s as DATETIME)
- # DB uses wrong timezone when convert time time timestamp TZ
- expressions.Cast[time,timestamp_with_time_zone]=
- expressions.Cast[timestamp,timestamp]=CAST(%1$s as DATETIME)
- expressions.Cast[timestamp,char]=CAST(CONVERT(CHAR(30),%1$s, 121) AS %2$s)
- expressions.Cast[timestamp_with_time_zone,timestamp_with_time_zone]=%1$s
- expressions.Cast[timestamp_with_time_zone,char]=CONVERT( %2$s, %1$s, 121 )
- expressions.Cast[timestamp_with_time_zone,varchar]=CONVERT( %2$s, %1$s, 121 )
- expressions.Cast[timestamp_with_time_zone,nchar]=CONVERT( %2$s, %1$s, 121 )
- expressions.Cast[timestamp_with_time_zone,nvarchar]=CONVERT( NVARCHAR%2$s, %1$s, 121 )
- expressions.Cast[timestamp_with_time_zone,timestamp]=
- expressions.Cast[char,timestamp]=CAST(%1$s as DATETIME)
- expressions.Cast[nchar,timestamp]=CAST(%1$s as DATETIME)
- expressions.Cast[nvarchar,timestamp]=CAST(%1$s as DATETIME)
- expressions.Cast[varchar,timestamp]=CAST(%1$s as DATETIME)
- # Minimum number of arguments for Coalesce function.
- expressions.Coalesce.minArgs=2
- #
- # Extract expression.
- #
- expressions.Extract.YEAR[any]=DATEPART(YEAR, %1$s)
- expressions.Extract.MONTH[any]=DATEPART(MONTH, %1$s)
- expressions.Extract.DAY[any]=DATEPART(DAY, %1$s)
- expressions.Extract.HOUR[any]=DATEPART(HOUR, %1$s)
- expressions.Extract.MINUTE[any]=DATEPART(MINUTE, %1$s)
- expressions.Extract.SECOND[any]=(DATEPART(SECOND, %1$s) + (CAST(DATEPART(MILLISECOND, %1$s) as DECIMAL) / 1000))
- expressions.Extract.TIMEZONE_HOUR[any]=DATEPART(TZOFFSET, %1$s) / 60
- expressions.Extract.TIMEZONE_MINUTE[any]=DATEPART(TZOFFSET, %1$s) %% 60
- expressions.Extract.EPOCH[any]=
- #
- # Trim expression.
- #
- expressions.Trim.BOTH[any]=LTRIM(RTRIM(%1$s))
- expressions.Trim.BOTH[clob]=
- expressions.Trim.LEADING[any]=LTRIM(%1$s)
- expressions.Trim.LEADING[clob]=
- expressions.Trim.TRAILING[any]=RTRIM(%1$s)
- expressions.Trim.TRAILING[clob]=
- expressions.Trim.BOTH[any,any]=
- expressions.Trim.LEADING[any,any]=
- expressions.Trim.TRAILING[any,any]=
- #
- # Windowed aggregates (SQL/OLAP).
- #
- olap.Count[any]=COUNT_BIG(%1$s)
- olap.CountStar[]=COUNT_BIG(*)
- olap.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END)
- olap.StdDevSamp[any]=STDEV(%1$s)
- olap.StdDevPop[any]=STDEVP(%1$s)
- olap.VarSamp[any]=VAR(%1$s)
- olap.VarPop[any]=VARP(%1$s)
- olap.Tertile[]=
- olap.RatioToReport[any]=
- olap.Difference[any]=
- olap.Lag[any,any,any,any]=
- olap.Lead[any,any,any,any]=
- olap.NthValue[any,any]=
- olap.NthValue[any,any,any]=
- olap.NthValue[any,any,any,any]=
- olap.Collect[any]=
- olap.Median[any]=PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY %1$s)
- #
- # Window clause.
- #
- #
- # Window specification
- # A list of windows specifications that are supported by the DB
- # P = PARTITION BY
- # O = ORDER BY
- # F = FRAME
- #
- #
- # Olap (distinct).
- #
- olap.Max.distinct[any]=
- olap.Min.distinct[any]=
- olap.Sum.distinct[any]=
- olap.Avg.distinct[any]=
- olap.Count.distinct[any]=
- #
- # Aggregates.
- #
- aggregates.Count[any]=COUNT_BIG(%1$s)
- aggregates.Count[blob]=COUNT_BIG(CASE WHEN %1$s IS NOT NULL THEN 1 END)
- aggregates.CountStar[]=COUNT_BIG(*)
- aggregates.StdDevSamp[any]=STDEV(%1$s)
- aggregates.StdDevPop[any]=STDEVP(%1$s)
- aggregates.VarSamp[any]=VAR(%1$s)
- aggregates.VarPop[any]=VARP(%1$s)
- aggregates.CumeDistH[any,any]=
- aggregates.PercentileCont[any,any]=
- aggregates.PercentileDisc[any,any]=
- aggregates.Median[any]=
- aggregates.XMLAgg=
- aggregates.ArrayAgg[any]=
- aggregates.ArrayAgg[any,any]=
- aggregates.Collect[any]=
- aggregates.Rank[any,any]=
- aggregates.DenseRank[any,any]=
- #
- # Aggregates (distinct).
- #
- aggregates.Count.distinct[any]=COUNT_BIG(DISTINCT %1$s)
- aggregates.Count.distinct[blob]=
- #
- # Linear regression aggregates.
- #
- aggregates.Corr[any,any]=
- aggregates.CovarPop[any,any]=
- aggregates.CovarSamp[any,any]=
- aggregates.RegrAvgX[any,any]=
- aggregates.RegrAvgY[any,any]=
- aggregates.RegrCount[any,any]=
- aggregates.RegrIntercept[any,any]=
- aggregates.RegrR2[any,any]=
- aggregates.RegrSlope[any,any]=
- aggregates.RegrSXX[any,any]=
- aggregates.RegrSXY[any,any]=
- aggregates.RegrSYY[any,any]=
- #
- # JSON aggregates.
- #
- aggregates.JSONArrayAgg=
- aggregates.JSONObjectAgg=
- #
- # Character scalar functions.
- #
- functions.CharLength[any]=LEN(%1$s)
- functions.CharLength[char]=LEN(REPLACE(%1$s, ' ', 'x'))
- functions.CharLength[nchar]=LEN(REPLACE(%1$s, N' ', N'x'))
- functions.CharLength[varchar]=LEN(REPLACE(%1$s, ' ', 'x'))
- functions.CharLength[nvarchar]=LEN(REPLACE(%1$s, N' ', N'x'))
- functions.CharLength[clob]=
- functions.OctetLength[any]=DATALENGTH(%1$s)
- functions.OctetLength[clob]=
- functions.BitLength[any]=(DATALENGTH(%1$s) * 8)
- functions.Upper[clob]=
- functions.Lower[clob]=
- functions.Substring[any,any]=SUBSTRING(%1$s, %2$s, LEN(%1$s))
- functions.Substring[any,any,any]=SUBSTRING(%1$s, %2$s, %3$s)
- functions.Substring[clob,numeric,numeric]=
- functions.Position[any,any]=CHARINDEX(%1$s, %2$s)
- functions.Index[any,any]=CHARINDEX(%2$s, %1$s)
- functions.Translate[any,any]=
- functions.Normalize[any]=
- functions.Normalize[any,any]=
- functions.Normalize[any,any,any]=
- functions.Random[]=RAND()
- functions.Random[any]=
- functions.Round[any]=
- #Substring function to negative START value to parse the input string from its rightmost end.
- functions.SubstringR[any,any]=
- functions.SubstringR[any,any,any]=
- #functions.SubstringR[any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LEN(%1$s ) - ABS(%2$s) + 1))) ELSE (SUBSTRING(%1$s, %2$s)) END
- #functions.SubstringR[any,any,any]=CASE WHEN (%2$s) < 0 THEN (SUBSTRING( %1$s, (LEN(%1$s ) - ABS(%2$s) + 1), %3$s)) ELSE (SUBSTRING(%1$s, %2$s, %3$s)) END
- #
- # Regular expression functions.
- #
- functions.SubstringRegex[any,any,any,any,any]=
- functions.OccurrencesRegex[any,any,any,any]=
- functions.PositionRegex[any,any,any,any,any,any]=
- #
- # Numeric scalar functions.
- #
- functions.Abs[interval_day_time]=
- functions.Abs[interval_year_month]=
- functions.Ln[any]=LOG(%1$s)
- functions.Mod[exact,exact]=((%1$s) %% (%2$s))
- functions.Mod[variant,variant]=((%1$s) %% (%2$s))
- functions.Mod[variant,exact]=((%1$s) %% (%2$s))
- functions.Mod[exact, variant]=((%1$s) %% (%2$s))
- functions.Mod[float,any]=
- functions.Mod[double,any]=
- functions.Mod[any,float]=
- functions.Mod[any,double]=
- functions.WidthBucket[any,any,any,any]=
- #
- # Array scalar functions.
- #
- functions.Cardinality[any]=
- functions.TrimArray[any,any]=
- #
- # FDS functions.
- #
- functions.cast_float[any]=convert(float(53), %1$s)
- functions.concat[any,any]={fn CONCAT(%1$s, %2$s)}
- functions.concat[clob,clob]=
- #
- # Trigonometric functions.
- #
- ## COSHYP not supported by ss.
- functions.Coshyp[any]=
- ## SINHYP not supported by SS.
- functions.Sinhyp[any]=
- ## TANHYP not supported by SS.
- functions.Tanhyp[any]=
- #
- # Datetime value functions.
- #
- functions.CurrentDate[]=CAST(CURRENT_TIMESTAMP AS DATE)
- functions.CurrentTime[]=
- functions.CurrentTimestamp[]=sysdatetimeoffset()
- functions.LocalTime[]=
- functions.LocalTimestamp[]=
- functions.CurrentTime[numeric]=
- functions.CurrentTimestamp[numeric]=
- functions.LocalTime[numeric]=
- functions.LocalTimestamp[numeric]=
- #
- # XML functions.
- #
- functions.XMLAttributes=
- functions.XMLComment=
- functions.XMLConcat=
- functions.XMLDocument=
- functions.XMLElement=
- functions.XMLExists=
- functions.XMLForest=
- functions.XMLParse=
- functions.XMLPI=
- functions.XMLNamespaces=
- functions.XMLQuery=
- functions.XMLSerialize=
- functions.XMLTable=
- functions.XMLText=
- functions.XMLTransform=
- functions.XMLValidate=
- #
- # JSON functions.
- #
- functions.JSONArray=
- functions.JSONExists=
- functions.JSONObject=
- functions.JSONQuery=
- functions.JSONTable=
- functions.JSONValue=
- #
- # Business date functions.
- #
- functions.AddFractionalSeconds[any,any]=
- functions.AddSeconds[time,numeric]=DATEADD(MILLISECOND, %2$s * 1000, %1$s)
- functions.AddSeconds[timestamp,numeric]=DATEADD(MILLISECOND, %2$s * 1000, %1$s)
- functions.AddSeconds[time_with_time_zone,numeric]=
- functions.AddSeconds[timestamp_with_time_zone,numeric]=
- functions.AddSeconds[interval_day_time,numeric]=
- functions.AddMinutes[time,numeric]=DATEADD(MINUTE, %2$s, %1$s)
- functions.AddMinutes[timestamp,numeric]=DATEADD(MINUTE, %2$s, %1$s)
- functions.AddMinutes[time_with_time_zone,numeric]=
- functions.AddMinutes[timestamp_with_time_zone,numeric]=
- functions.AddMinutes[interval_day_time,numeric]=
- functions.AddHours[time,numeric]=DATEADD(HOUR, %2$s, %1$s)
- functions.AddHours[timestamp,numeric]=DATEADD(HOUR, %2$s, %1$s)
- functions.AddHours[time_with_time_zone,numeric]=
- functions.AddHours[timestamp_with_time_zone,numeric]=
- functions.AddHours[interval_day_time,numeric]=
- functions.AddDays[any,any]=DATEADD(DAY, %2$s, %1$s)
- functions.AddDays[time_with_time_zone,numeric]=
- functions.AddDays[timestamp_with_time_zone,numeric]=
- functions.AddWeeks[any,any]=DATEADD(WEEK, %2$s, %1$s)
- functions.AddWeeks[time_with_time_zone,numeric]=
- functions.AddWeeks[timestamp_with_time_zone,numeric]=
- functions.AddMonths[any,any]=DATEADD(MONTH, %2$s, %1$s)
- functions.AddMonths[time_with_time_zone,numeric]=
- functions.AddMonths[timestamp_with_time_zone,numeric]=
- functions.AddQuarters[any,any]=DATEADD(QUARTER, %2$s, %1$s)
- functions.AddQuarters[time_with_time_zone,numeric]=
- functions.AddQuarters[timestamp_with_time_zone,numeric]=
- functions.AddYears[any,any]=DATEADD(YEAR, %2$s, %1$s)
- functions.AddYears[time_with_time_zone,numeric]=
- functions.AddYears[timestamp_with_time_zone,numeric]=
- functions.FractionalSecondsBetween[any,any]=
- functions.SecondsBetween[any,any]=DATEDIFF(SECOND, %2$s, %1$s)
- functions.MinutesBetween[any,any]=DATEDIFF(MINUTE, %2$s, %1$s)
- functions.HoursBetween[any,any]=DATEDIFF(HOUR, %2$s, %1$s)
- functions.DaysBetween[any,any]=DATEDIFF(DAY, %2$s, %1$s)
- functions.WeeksBetween[any,any]=DATEDIFF(WEEK, %2$s, %1$s)
- functions.MonthsBetween[any,any]=
- functions.QuartersBetween[any,any]=DATEDIFF(QUARTER, %2$s, %1$s)
- functions.YearsBetween[any,any]=
- functions.Age[any]=
- functions.DayOfWeek[any,any]=(((DATEPART(WEEKDAY, %1$s) + @@DATEFIRST - 1 - 1) %% 7 + 1 - %2$s + 7) %% 7 + 1)
- functions.DayOfYear[any]=DATEPART(DAYOFYEAR, %1$s)
- functions.DaysToEndOfMonth[any]=DATEDIFF(DAY, %1$s, DATEADD (DAY, -1, DATEADD(MONTH, 1, DATEADD(DAY, 1 - DATEPART(DAY, %1$s), %1$s))))
- functions.FirstOfMonth[any]=DATEADD(DAY, -DAY(%1$s) + 1, %1$s)
- functions.LastOfMonth[any]=DATEADD(DAY, -1, DATEADD(MONTH, 1, DATEADD(DAY, -DAY(%1$s) + 1, %1$s)))
- functions.MakeTimestamp[any,any,any]=CONVERT(DATETIME, CONVERT(VARCHAR(8), ((%1$s) * 10000) + ((%2$s) * 100) + %3$s))
- functions.WeekOfYear[any]=DATEPART(isowk, %1$s)
- functions.YMDIntBetween[any,any]=
- #
- # Mappings used for transformation purposes only.
- #
- functions.size[text]=datalength(%1$s)
- #
- # Literals.
- #
- literals.binary=false
- literals.boolean=false
- literals.time_with_time_zone=false
- literals.interval_day=false
- literals.interval_day_to_hour=false
- literals.interval_day_to_minute=false
- literals.interval_day_to_second=false
- literals.interval_hour=false
- literals.interval_hour_to_minute=false
- literals.interval_hour_to_second=false
- literals.interval_minute=false
- literals.interval_minute_to_second=false
- literals.interval_second=false
- literals.interval_year=false
- literals.interval_year_to_month=false
- literals.interval_month=false
- literals.xml=false
- #
- # Literal format specifications.
- #
- literals.format.date=CONVERT(DATE, '%1$04d-%2$02d-%3$02d')
- literals.format.date.procedure={d '%1$04d-%2$02d-%3$02d'}
- literals.format.time=CONVERT(TIME, {t '%1$02d:%2$02d:%3$02d%4$.4s'})
- literals.format.time.procedure={t '%1$02d:%2$02d:%3$02d%4$.4s'}
- literals.format.time_with_time_zone={t '%1$02d:%2$02d:%3$02d%4$.4s%7$c%5$02d:%6$02d'}
- literals.format.timestamp=CONVERT(DATETIME2, '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.4s')
- literals.format.timestamp_with_time_zone=CONVERT(DATETIMEOFFSET, '%1$04d-%2$02d-%3$02d %4$02d:%5$02d:%6$02d%7$.10s%10$c%8$02d:%9$02d')
- #
- # Literal Exceptions.
- #
- # In MS SQL Server datetime value is rendered to accuracy of 1/300 seconds
- # and value are rounded to increment of .000, .003 or .007 seconds as shown below:
- # 1999-12-31 23:59:59.999 is rounded to 2000-01-01 00:00:00.000
- # 1999-12-31 23:59:59.998 is rounded to 1999-12-31 23:59:59.997
- # 1999-12-31 23:59:59.997 is rounded to 1999-12-31 23:59:59.997
- # 1999-12-31 23:59:59.996 is rounded to 1999-12-31 23:59:59.997
- # 1999-12-31 23:59:59.995 is rounded to 1999-12-31 23:59:59.997
- # 1999-12-31 23:59:59.994 is rounded to 1999-12-31 23:59:59.993
- # 1999-12-31 23:59:59.993 is rounded to 1999-12-31 23:59:59.993
- # 1999-12-31 23:59:59.992 is rounded to 1999-12-31 23:59:59.993
- # 1999-12-31 23:59:59.991 is rounded to 1999-12-31 23:59:59.990
- # 1999-12-31 23:59:59.990 is rounded to 1999-12-31 23:59:59.990
- # The value of End_Time_Literal must be of the form
- # "HH:MM:SS.FFFFFFFFF".
- literals.exception.End_Time_Literal=23:59:59.998000000
- #
- # Data types.
- #
- dataType.time_with_time_zone=false
- dataType.interval_day=false
- dataType.interval_day_to_hour=false
- dataType.interval_day_to_minute=false
- dataType.interval_day_to_second=false
- dataType.interval_hour=false
- dataType.interval_hour_to_minute=false
- dataType.interval_hour_to_second=false
- dataType.interval_minute=false
- dataType.interval_minute_to_second=false
- dataType.interval_second=false
- dataType.interval_year=false
- dataType.interval_year_to_month=false
- dataType.interval_month=false
- dataType.period=false
- #
- # Collation sequence query
- # collation.sequence.sql=<sql_statement> The query can return only a single result
- #
- collation.sequence.sql=SELECT CAST( ServerProperty('collation') AS VARCHAR(100)), CASE WHEN 'A' = 'a' and 'é' = 'e' THEN 'CI_AI' WHEN 'A' = 'a' and 'é' <> 'e' THEN 'CI_AS' WHEN 'A' <> 'a' and 'é' <> 'e' THEN 'CS_AS' ELSE 'CS_AI' END as COLLATOR_STRENGTH
- database.charset.sql=select CAST(COLLATIONPROPERTY(CAST(DATABASEPROPERTYEX(db_name(), 'Collation') as VARCHAR(100)), 'CodePage') as varchar(100))
- #
- # Collation sequence mappings
- # collation.sequence.mapping.<sql_result>=<collation_name>,<collation_weight>
- #
- # NOTE: These mappings are case sensitive
- #
- collation.sequence.mapping.SQL_Latin1_General_CP1_CI_AI=MsSqlLatin1GeneralCp1,PRIMARY
- collation.sequence.mapping.SQL_Latin1_General_CP1_CI_AS=MsSqlLatin1GeneralCp1,SECONDARY
- collation.sequence.mapping.SQL_Latin1_General_CP1_CS_AS=MsSqlLatin1GeneralCp1,TERTIARY
- #
- # Support for SQL data types that are not defined in the JDBC 3.0 standard
- # datasource.type.<datasource specific name>=CCL datatype name
- # all spaces need to be replaced with an underscore (_)
- #
- #datasource.type.datetimeoffset=timestamp with time zone
- #
- # If the unsupported type returns value information in a non-standard way
- # then a way to pull apart the non standard string and a mapping to put it
- # back together.
- # datasource.type.<ccl type name>.separator=Regex for splitting the string
- # datasource.type.<ccl type name>.mapping=String formatter for putting the pieces back together
- #
- #datasource.type.timestamp_with_time_zone.separator=[ ]|[:]|[\.]
- #datasource.type.timestamp_with_time_zone.mapping=%1$s %2$s:%3$s:%4$s.%5$s%6$s:%7$s
|