123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669 |
- /*
- Copyright (c) 2004-2012, The Dojo Foundation All Rights Reserved.
- Available via Academic Free License >= 2.1 OR the modified BSD license.
- see: http://dojotoolkit.org/license for details
- */
- if(!dojo._hasResource["dojox.math.BigInteger-ext"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
- dojo._hasResource["dojox.math.BigInteger-ext"] = true;
- dojo.provide("dojox.math.BigInteger-ext");
- dojo.require("dojox.math.BigInteger");
- dojo.experimental("dojox.math.BigInteger-ext");
- // Contributed under CLA by Tom Wu
- // Extended JavaScript BN functions, required for RSA private ops.
- (function(){
- var BigInteger = dojox.math.BigInteger,
- nbi = BigInteger._nbi, nbv = BigInteger._nbv,
- nbits = BigInteger._nbits,
- Montgomery = BigInteger._Montgomery;
- // (public)
- function bnClone() { var r = nbi(); this._copyTo(r); return r; }
- // (public) return value as integer
- function bnIntValue() {
- if(this.s < 0) {
- if(this.t == 1) return this[0]-this._DV;
- else if(this.t == 0) return -1;
- }
- else if(this.t == 1) return this[0];
- else if(this.t == 0) return 0;
- // assumes 16 < DB < 32
- return ((this[1]&((1<<(32-this._DB))-1))<<this._DB)|this[0];
- }
- // (public) return value as byte
- function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
- // (public) return value as short (assumes DB>=16)
- function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
- // (protected) return x s.t. r^x < DV
- function bnpChunkSize(r) { return Math.floor(Math.LN2*this._DB/Math.log(r)); }
- // (public) 0 if this == 0, 1 if this > 0
- function bnSigNum() {
- if(this.s < 0) return -1;
- else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
- else return 1;
- }
- // (protected) convert to radix string
- function bnpToRadix(b) {
- if(b == null) b = 10;
- if(this.signum() == 0 || b < 2 || b > 36) return "0";
- var cs = this._chunkSize(b);
- var a = Math.pow(b,cs);
- var d = nbv(a), y = nbi(), z = nbi(), r = "";
- this._divRemTo(d,y,z);
- while(y.signum() > 0) {
- r = (a+z.intValue()).toString(b).substr(1) + r;
- y._divRemTo(d,y,z);
- }
- return z.intValue().toString(b) + r;
- }
- // (protected) convert from radix string
- function bnpFromRadix(s,b) {
- this._fromInt(0);
- if(b == null) b = 10;
- var cs = this._chunkSize(b);
- var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
- for(var i = 0; i < s.length; ++i) {
- var x = intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
- continue;
- }
- w = b*w+x;
- if(++j >= cs) {
- this._dMultiply(d);
- this._dAddOffset(w,0);
- j = 0;
- w = 0;
- }
- }
- if(j > 0) {
- this._dMultiply(Math.pow(b,j));
- this._dAddOffset(w,0);
- }
- if(mi) BigInteger.ZERO._subTo(this,this);
- }
- // (protected) alternate constructor
- function bnpFromNumber(a,b,c) {
- if("number" == typeof b) {
- // new BigInteger(int,int,RNG)
- if(a < 2) this._fromInt(1);
- else {
- this._fromNumber(a,c);
- if(!this.testBit(a-1)) // force MSB set
- this._bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
- if(this._isEven()) this._dAddOffset(1,0); // force odd
- while(!this.isProbablePrime(b)) {
- this._dAddOffset(2,0);
- if(this.bitLength() > a) this._subTo(BigInteger.ONE.shiftLeft(a-1),this);
- }
- }
- }
- else {
- // new BigInteger(int,RNG)
- var x = [], t = a&7;
- x.length = (a>>3)+1;
- b.nextBytes(x);
- if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
- this._fromString(x,256);
- }
- }
- // (public) convert to bigendian byte array
- function bnToByteArray() {
- var i = this.t, r = [];
- r[0] = this.s;
- var p = this._DB-(i*this._DB)%8, d, k = 0;
- if(i-- > 0) {
- if(p < this._DB && (d = this[i]>>p) != (this.s&this._DM)>>p)
- r[k++] = d|(this.s<<(this._DB-p));
- while(i >= 0) {
- if(p < 8) {
- d = (this[i]&((1<<p)-1))<<(8-p);
- d |= this[--i]>>(p+=this._DB-8);
- }
- else {
- d = (this[i]>>(p-=8))&0xff;
- if(p <= 0) { p += this._DB; --i; }
- }
- if((d&0x80) != 0) d |= -256;
- if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
- if(k > 0 || d != this.s) r[k++] = d;
- }
- }
- return r;
- }
- function bnEquals(a) { return(this.compareTo(a)==0); }
- function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
- function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
- // (protected) r = this op a (bitwise)
- function bnpBitwiseTo(a,op,r) {
- var i, f, m = Math.min(a.t,this.t);
- for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
- if(a.t < this.t) {
- f = a.s&this._DM;
- for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
- r.t = this.t;
- }
- else {
- f = this.s&this._DM;
- for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
- r.t = a.t;
- }
- r.s = op(this.s,a.s);
- r._clamp();
- }
- // (public) this & a
- function op_and(x,y) { return x&y; }
- function bnAnd(a) { var r = nbi(); this._bitwiseTo(a,op_and,r); return r; }
- // (public) this | a
- function op_or(x,y) { return x|y; }
- function bnOr(a) { var r = nbi(); this._bitwiseTo(a,op_or,r); return r; }
- // (public) this ^ a
- function op_xor(x,y) { return x^y; }
- function bnXor(a) { var r = nbi(); this._bitwiseTo(a,op_xor,r); return r; }
- // (public) this & ~a
- function op_andnot(x,y) { return x&~y; }
- function bnAndNot(a) { var r = nbi(); this._bitwiseTo(a,op_andnot,r); return r; }
- // (public) ~this
- function bnNot() {
- var r = nbi();
- for(var i = 0; i < this.t; ++i) r[i] = this._DM&~this[i];
- r.t = this.t;
- r.s = ~this.s;
- return r;
- }
- // (public) this << n
- function bnShiftLeft(n) {
- var r = nbi();
- if(n < 0) this._rShiftTo(-n,r); else this._lShiftTo(n,r);
- return r;
- }
- // (public) this >> n
- function bnShiftRight(n) {
- var r = nbi();
- if(n < 0) this._lShiftTo(-n,r); else this._rShiftTo(n,r);
- return r;
- }
- // return index of lowest 1-bit in x, x < 2^31
- function lbit(x) {
- if(x == 0) return -1;
- var r = 0;
- if((x&0xffff) == 0) { x >>= 16; r += 16; }
- if((x&0xff) == 0) { x >>= 8; r += 8; }
- if((x&0xf) == 0) { x >>= 4; r += 4; }
- if((x&3) == 0) { x >>= 2; r += 2; }
- if((x&1) == 0) ++r;
- return r;
- }
- // (public) returns index of lowest 1-bit (or -1 if none)
- function bnGetLowestSetBit() {
- for(var i = 0; i < this.t; ++i)
- if(this[i] != 0) return i*this._DB+lbit(this[i]);
- if(this.s < 0) return this.t*this._DB;
- return -1;
- }
- // return number of 1 bits in x
- function cbit(x) {
- var r = 0;
- while(x != 0) { x &= x-1; ++r; }
- return r;
- }
- // (public) return number of set bits
- function bnBitCount() {
- var r = 0, x = this.s&this._DM;
- for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
- return r;
- }
- // (public) true iff nth bit is set
- function bnTestBit(n) {
- var j = Math.floor(n/this._DB);
- if(j >= this.t) return(this.s!=0);
- return((this[j]&(1<<(n%this._DB)))!=0);
- }
- // (protected) this op (1<<n)
- function bnpChangeBit(n,op) {
- var r = BigInteger.ONE.shiftLeft(n);
- this._bitwiseTo(r,op,r);
- return r;
- }
- // (public) this | (1<<n)
- function bnSetBit(n) { return this._changeBit(n,op_or); }
- // (public) this & ~(1<<n)
- function bnClearBit(n) { return this._changeBit(n,op_andnot); }
- // (public) this ^ (1<<n)
- function bnFlipBit(n) { return this._changeBit(n,op_xor); }
- // (protected) r = this + a
- function bnpAddTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]+a[i];
- r[i++] = c&this._DM;
- c >>= this._DB;
- }
- if(a.t < this.t) {
- c += a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this._DM;
- c >>= this._DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while(i < a.t) {
- c += a[i];
- r[i++] = c&this._DM;
- c >>= this._DB;
- }
- c += a.s;
- }
- r.s = (c<0)?-1:0;
- if(c > 0) r[i++] = c;
- else if(c < -1) r[i++] = this._DV+c;
- r.t = i;
- r._clamp();
- }
- // (public) this + a
- function bnAdd(a) { var r = nbi(); this._addTo(a,r); return r; }
- // (public) this - a
- function bnSubtract(a) { var r = nbi(); this._subTo(a,r); return r; }
- // (public) this * a
- function bnMultiply(a) { var r = nbi(); this._multiplyTo(a,r); return r; }
- // (public) this / a
- function bnDivide(a) { var r = nbi(); this._divRemTo(a,r,null); return r; }
- // (public) this % a
- function bnRemainder(a) { var r = nbi(); this._divRemTo(a,null,r); return r; }
- // (public) [this/a,this%a]
- function bnDivideAndRemainder(a) {
- var q = nbi(), r = nbi();
- this._divRemTo(a,q,r);
- return [q, r];
- }
- // (protected) this *= n, this >= 0, 1 < n < DV
- function bnpDMultiply(n) {
- this[this.t] = this.am(0,n-1,this,0,0,this.t);
- ++this.t;
- this._clamp();
- }
- // (protected) this += n << w words, this >= 0
- function bnpDAddOffset(n,w) {
- while(this.t <= w) this[this.t++] = 0;
- this[w] += n;
- while(this[w] >= this._DV) {
- this[w] -= this._DV;
- if(++w >= this.t) this[this.t++] = 0;
- ++this[w];
- }
- }
- // A "null" reducer
- function NullExp() {}
- function nNop(x) { return x; }
- function nMulTo(x,y,r) { x._multiplyTo(y,r); }
- function nSqrTo(x,r) { x._squareTo(r); }
- NullExp.prototype.convert = nNop;
- NullExp.prototype.revert = nNop;
- NullExp.prototype.mulTo = nMulTo;
- NullExp.prototype.sqrTo = nSqrTo;
- // (public) this^e
- function bnPow(e) { return this._exp(e,new NullExp()); }
- // (protected) r = lower n words of "this * a", a.t <= n
- // "this" should be the larger one if appropriate.
- function bnpMultiplyLowerTo(a,n,r) {
- var i = Math.min(this.t+a.t,n);
- r.s = 0; // assumes a,this >= 0
- r.t = i;
- while(i > 0) r[--i] = 0;
- var j;
- for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
- for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
- r._clamp();
- }
- // (protected) r = "this * a" without lower n words, n > 0
- // "this" should be the larger one if appropriate.
- function bnpMultiplyUpperTo(a,n,r) {
- --n;
- var i = r.t = this.t+a.t-n;
- r.s = 0; // assumes a,this >= 0
- while(--i >= 0) r[i] = 0;
- for(i = Math.max(n-this.t,0); i < a.t; ++i)
- r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
- r._clamp();
- r._drShiftTo(1,r);
- }
- // Barrett modular reduction
- function Barrett(m) {
- // setup Barrett
- this.r2 = nbi();
- this.q3 = nbi();
- BigInteger.ONE._dlShiftTo(2*m.t,this.r2);
- this.mu = this.r2.divide(m);
- this.m = m;
- }
- function barrettConvert(x) {
- if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
- else if(x.compareTo(this.m) < 0) return x;
- else { var r = nbi(); x._copyTo(r); this.reduce(r); return r; }
- }
- function barrettRevert(x) { return x; }
- // x = x mod m (HAC 14.42)
- function barrettReduce(x) {
- x._drShiftTo(this.m.t-1,this.r2);
- if(x.t > this.m.t+1) { x.t = this.m.t+1; x._clamp(); }
- this.mu._multiplyUpperTo(this.r2,this.m.t+1,this.q3);
- this.m._multiplyLowerTo(this.q3,this.m.t+1,this.r2);
- while(x.compareTo(this.r2) < 0) x._dAddOffset(1,this.m.t+1);
- x._subTo(this.r2,x);
- while(x.compareTo(this.m) >= 0) x._subTo(this.m,x);
- }
- // r = x^2 mod m; x != r
- function barrettSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
- // r = x*y mod m; x,y != r
- function barrettMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
- Barrett.prototype.convert = barrettConvert;
- Barrett.prototype.revert = barrettRevert;
- Barrett.prototype.reduce = barrettReduce;
- Barrett.prototype.mulTo = barrettMulTo;
- Barrett.prototype.sqrTo = barrettSqrTo;
- // (public) this^e % m (HAC 14.85)
- function bnModPow(e,m) {
- var i = e.bitLength(), k, r = nbv(1), z;
- if(i <= 0) return r;
- else if(i < 18) k = 1;
- else if(i < 48) k = 3;
- else if(i < 144) k = 4;
- else if(i < 768) k = 5;
- else k = 6;
- if(i < 8)
- z = new Classic(m);
- else if(m._isEven())
- z = new Barrett(m);
- else
- z = new Montgomery(m);
- // precomputation
- var g = [], n = 3, k1 = k-1, km = (1<<k)-1;
- g[1] = z.convert(this);
- if(k > 1) {
- var g2 = nbi();
- z.sqrTo(g[1],g2);
- while(n <= km) {
- g[n] = nbi();
- z.mulTo(g2,g[n-2],g[n]);
- n += 2;
- }
- }
- var j = e.t-1, w, is1 = true, r2 = nbi(), t;
- i = nbits(e[j])-1;
- while(j >= 0) {
- if(i >= k1) w = (e[j]>>(i-k1))&km;
- else {
- w = (e[j]&((1<<(i+1))-1))<<(k1-i);
- if(j > 0) w |= e[j-1]>>(this._DB+i-k1);
- }
- n = k;
- while((w&1) == 0) { w >>= 1; --n; }
- if((i -= n) < 0) { i += this._DB; --j; }
- if(is1) { // ret == 1, don't bother squaring or multiplying it
- g[w]._copyTo(r);
- is1 = false;
- }
- else {
- while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
- if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
- z.mulTo(r2,g[w],r);
- }
- while(j >= 0 && (e[j]&(1<<i)) == 0) {
- z.sqrTo(r,r2); t = r; r = r2; r2 = t;
- if(--i < 0) { i = this._DB-1; --j; }
- }
- }
- return z.revert(r);
- }
- // (public) gcd(this,a) (HAC 14.54)
- function bnGCD(a) {
- var x = (this.s<0)?this.negate():this.clone();
- var y = (a.s<0)?a.negate():a.clone();
- if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
- var i = x.getLowestSetBit(), g = y.getLowestSetBit();
- if(g < 0) return x;
- if(i < g) g = i;
- if(g > 0) {
- x._rShiftTo(g,x);
- y._rShiftTo(g,y);
- }
- while(x.signum() > 0) {
- if((i = x.getLowestSetBit()) > 0) x._rShiftTo(i,x);
- if((i = y.getLowestSetBit()) > 0) y._rShiftTo(i,y);
- if(x.compareTo(y) >= 0) {
- x._subTo(y,x);
- x._rShiftTo(1,x);
- }
- else {
- y._subTo(x,y);
- y._rShiftTo(1,y);
- }
- }
- if(g > 0) y._lShiftTo(g,y);
- return y;
- }
- // (protected) this % n, n < 2^26
- function bnpModInt(n) {
- if(n <= 0) return 0;
- var d = this._DV%n, r = (this.s<0)?n-1:0;
- if(this.t > 0)
- if(d == 0) r = this[0]%n;
- else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
- return r;
- }
- // (public) 1/this % m (HAC 14.61)
- function bnModInverse(m) {
- var ac = m._isEven();
- if((this._isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
- var u = m.clone(), v = this.clone();
- var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
- while(u.signum() != 0) {
- while(u._isEven()) {
- u._rShiftTo(1,u);
- if(ac) {
- if(!a._isEven() || !b._isEven()) { a._addTo(this,a); b._subTo(m,b); }
- a._rShiftTo(1,a);
- }
- else if(!b._isEven()) b._subTo(m,b);
- b._rShiftTo(1,b);
- }
- while(v._isEven()) {
- v._rShiftTo(1,v);
- if(ac) {
- if(!c._isEven() || !d._isEven()) { c._addTo(this,c); d._subTo(m,d); }
- c._rShiftTo(1,c);
- }
- else if(!d._isEven()) d._subTo(m,d);
- d._rShiftTo(1,d);
- }
- if(u.compareTo(v) >= 0) {
- u._subTo(v,u);
- if(ac) a._subTo(c,a);
- b._subTo(d,b);
- }
- else {
- v._subTo(u,v);
- if(ac) c._subTo(a,c);
- d._subTo(b,d);
- }
- }
- if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
- if(d.compareTo(m) >= 0) return d.subtract(m);
- if(d.signum() < 0) d._addTo(m,d); else return d;
- if(d.signum() < 0) return d.add(m); else return d;
- }
- var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
- var lplim = (1<<26)/lowprimes[lowprimes.length-1];
- // (public) test primality with certainty >= 1-.5^t
- function bnIsProbablePrime(t) {
- var i, x = this.abs();
- if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
- for(i = 0; i < lowprimes.length; ++i)
- if(x[0] == lowprimes[i]) return true;
- return false;
- }
- if(x._isEven()) return false;
- i = 1;
- while(i < lowprimes.length) {
- var m = lowprimes[i], j = i+1;
- while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
- m = x._modInt(m);
- while(i < j) if(m%lowprimes[i++] == 0) return false;
- }
- return x._millerRabin(t);
- }
- // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
- function bnpMillerRabin(t) {
- var n1 = this.subtract(BigInteger.ONE);
- var k = n1.getLowestSetBit();
- if(k <= 0) return false;
- var r = n1.shiftRight(k);
- t = (t+1)>>1;
- if(t > lowprimes.length) t = lowprimes.length;
- var a = nbi();
- for(var i = 0; i < t; ++i) {
- a._fromInt(lowprimes[i]);
- var y = a.modPow(r,this);
- if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
- var j = 1;
- while(j++ < k && y.compareTo(n1) != 0) {
- y = y.modPowInt(2,this);
- if(y.compareTo(BigInteger.ONE) == 0) return false;
- }
- if(y.compareTo(n1) != 0) return false;
- }
- }
- return true;
- }
- dojo.extend(BigInteger, {
- // protected
- _chunkSize: bnpChunkSize,
- _toRadix: bnpToRadix,
- _fromRadix: bnpFromRadix,
- _fromNumber: bnpFromNumber,
- _bitwiseTo: bnpBitwiseTo,
- _changeBit: bnpChangeBit,
- _addTo: bnpAddTo,
- _dMultiply: bnpDMultiply,
- _dAddOffset: bnpDAddOffset,
- _multiplyLowerTo: bnpMultiplyLowerTo,
- _multiplyUpperTo: bnpMultiplyUpperTo,
- _modInt: bnpModInt,
- _millerRabin: bnpMillerRabin,
- // public
- clone: bnClone,
- intValue: bnIntValue,
- byteValue: bnByteValue,
- shortValue: bnShortValue,
- signum: bnSigNum,
- toByteArray: bnToByteArray,
- equals: bnEquals,
- min: bnMin,
- max: bnMax,
- and: bnAnd,
- or: bnOr,
- xor: bnXor,
- andNot: bnAndNot,
- not: bnNot,
- shiftLeft: bnShiftLeft,
- shiftRight: bnShiftRight,
- getLowestSetBit: bnGetLowestSetBit,
- bitCount: bnBitCount,
- testBit: bnTestBit,
- setBit: bnSetBit,
- clearBit: bnClearBit,
- flipBit: bnFlipBit,
- add: bnAdd,
- subtract: bnSubtract,
- multiply: bnMultiply,
- divide: bnDivide,
- remainder: bnRemainder,
- divideAndRemainder: bnDivideAndRemainder,
- modPow: bnModPow,
- modInverse: bnModInverse,
- pow: bnPow,
- gcd: bnGCD,
- isProbablePrime: bnIsProbablePrime
- });
- // BigInteger interfaces not implemented in jsbn:
- // BigInteger(int signum, byte[] magnitude)
- // double doubleValue()
- // float floatValue()
- // int hashCode()
- // long longValue()
- // static BigInteger valueOf(long val)
- })();
- }
|