| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 | // wrapped by build appdefine("dojox/lang/functional/binrec", ["dijit","dojo","dojox","dojo/require!dojox/lang/functional/lambda,dojox/lang/functional/util"], function(dijit,dojo,dojox){dojo.provide("dojox.lang.functional.binrec");dojo.require("dojox.lang.functional.lambda");dojo.require("dojox.lang.functional.util");// This module provides recursion combinators://	- a binary recursion combinator.// Acknoledgements://	- recursion combinators are inspired by Manfred von Thun's article//		"Recursion Theory and Joy"//		(http://www.latrobe.edu.au/philosophy/phimvt/joy/j05cmp.html)// Notes://	- recursion combinators produce a function, which implements//	their respective recusion patterns. String lambdas are inlined, if possible.(function(){	var df = dojox.lang.functional, inline = df.inlineLambda,		_x ="_x", _z_r_r_z_a = ["_z.r", "_r", "_z.a"];	df.binrec = function(					/*Function|String|Array*/ cond,					/*Function|String|Array*/ then,					/*Function|String|Array*/ before,					/*Function|String|Array*/ after){		// summary:		//		Generates a function for the binary recursion pattern.		//		All parameter functions are called in the context of "this" object.		// cond:		//		The lambda expression, which is used to detect the termination of recursion.		//		It accepts the same parameter as the generated recursive function itself.		//		This function should return "true", if the recursion should be stopped,		//		and the "then" part should be executed. Otherwise the recursion will proceed.		// then:		//		The lambda expression, which is called upon termination of the recursion.		//		It accepts the same parameters as the generated recursive function itself.		//		The returned value will be returned as the value of the generated function.		// before:		//		The lambda expression, which is called before the recursive step.		//		It accepts the same parameter as the generated recursive function itself.		//		The returned value should be an array of two variable, which are used to call		//		the generated function recursively twice in row starting from the first item.		// above:		//		The lambda expression, which is called after the recursive step.		//		It accepts three parameters: two returned values from recursive steps, and		//		the original array of parameters used with all other functions.		//		The returned value will be returned as the value of the generated function.		var c, t, b, a, cs, ts, bs, as, dict1 = {}, dict2 = {},			add2dict = function(x){ dict1[x] = 1; };		if(typeof cond == "string"){			cs = inline(cond, _x, add2dict);		}else{			c = df.lambda(cond);			cs = "_c.apply(this, _x)";			dict2["_c=_t.c"] = 1;		}		if(typeof then == "string"){			ts = inline(then, _x, add2dict);		}else{			t = df.lambda(then);			ts = "_t.apply(this, _x)";		}		if(typeof before == "string"){			bs = inline(before, _x, add2dict);		}else{			b = df.lambda(before);			bs = "_b.apply(this, _x)";			dict2["_b=_t.b"] = 1;		}		if(typeof after == "string"){			as = inline(after, _z_r_r_z_a, add2dict);		}else{			a = df.lambda(after);			as = "_a.call(this, _z.r, _r, _z.a)";			dict2["_a=_t.a"] = 1;		}		var locals1 = df.keys(dict1), locals2 = df.keys(dict2),			f = new Function([], "var _x=arguments,_y,_z,_r".concat(	// Function				locals1.length ? "," + locals1.join(",") : "",				locals2.length ? ",_t=_x.callee," + locals2.join(",") : "",				t ? (locals2.length ? ",_t=_t.t" : "_t=_x.callee.t") : "",				";while(!",				cs,				"){_r=",				bs,				";_y={p:_y,a:_r[1]};_z={p:_z,a:_x};_x=_r[0]}for(;;){do{_r=",				ts,				";if(!_z)return _r;while(\"r\" in _z){_r=",				as,				";if(!(_z=_z.p))return _r}_z.r=_r;_x=_y.a;_y=_y.p}while(",				cs,				");do{_r=",				bs,				";_y={p:_y,a:_r[1]};_z={p:_z,a:_x};_x=_r[0]}while(!",				cs,				")}"			));		if(c){ f.c = c; }		if(t){ f.t = t; }		if(b){ f.b = b; }		if(a){ f.a = a; }		return f;	};})();/*For documentation only:1) The original recursive version:var binrec1 = function(cond, then, before, after){	var cond   = df.lambda(cond),		then   = df.lambda(then),		before = df.lambda(before),		after  = df.lambda(after);	return function(){		if(cond.apply(this, arguments)){			return then.apply(this, arguments);		}		var args = before.apply(this, arguments);		var ret1 = arguments.callee.apply(this, args[0]);		var ret2 = arguments.callee.apply(this, args[1]);		return after.call(this, ret1, ret2, arguments);	};};2) The original iterative version (before minification and inlining):var binrec2 = function(cond, then, before, after){	var cond   = df.lambda(cond),		then   = df.lambda(then),		before = df.lambda(before),		after  = df.lambda(after);	return function(){		var top1, top2, ret, args = arguments;		// first part: start the pump		while(!cond.apply(this, args)){			ret = before.apply(this, args);			top1 = {prev: top1, args: ret[1]};			top2 = {prev: top2, args: args};			args = ret[0];		}		for(;;){			// second part: mop up			do{				ret = then.apply(this, args);				if(!top2){					return ret;				}				while("ret" in top2){					ret = after.call(this, top2.ret, ret, top2.args);					if(!(top2 = top2.prev)){						return ret;					}				}				top2.ret = ret;				args = top1.args;				top1 = top1.prev;			}while(cond.apply(this, args));			// first part (encore)			do{				ret = before.apply(this, args);				top1 = {prev: top1, args: ret[1]};				top2 = {prev: top2, args: args};				args = ret[0];			}while(!cond.apply(this, args));		}	};};*/});
 |