123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589 |
- // AMD-ID "dojox/math/BigInteger"
- define("dojox/math/BigInteger", ["dojo", "dojox"], function(dojo, dojox) {
- dojo.getObject("math.BigInteger", true, dojox);
- dojo.experimental("dojox.math.BigInteger");
- // Contributed under CLA by Tom Wu <tjw@cs.Stanford.EDU>
- // See http://www-cs-students.stanford.edu/~tjw/jsbn/ for details.
- // Basic JavaScript BN library - subset useful for RSA encryption.
- // The API for dojox.math.BigInteger closely resembles that of the java.math.BigInteger class in Java.
- // Bits per digit
- var dbits;
- // JavaScript engine analysis
- var canary = 0xdeadbeefcafe;
- var j_lm = ((canary&0xffffff)==0xefcafe);
- // (public) Constructor
- function BigInteger(a,b,c) {
- if(a != null)
- if("number" == typeof a) this._fromNumber(a,b,c);
- else if(!b && "string" != typeof a) this._fromString(a,256);
- else this._fromString(a,b);
- }
- // return new, unset BigInteger
- function nbi() { return new BigInteger(null); }
- // am: Compute w_j += (x*this_i), propagate carries,
- // c is initial carry, returns final carry.
- // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
- // We need to select the fastest one that works in this environment.
- // am1: use a single mult and divide to get the high bits,
- // max digit bits should be 26 because
- // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
- function am1(i,x,w,j,c,n) {
- while(--n >= 0) {
- var v = x*this[i++]+w[j]+c;
- c = Math.floor(v/0x4000000);
- w[j++] = v&0x3ffffff;
- }
- return c;
- }
- // am2 avoids a big mult-and-extract completely.
- // Max digit bits should be <= 30 because we do bitwise ops
- // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
- function am2(i,x,w,j,c,n) {
- var xl = x&0x7fff, xh = x>>15;
- while(--n >= 0) {
- var l = this[i]&0x7fff;
- var h = this[i++]>>15;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
- c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
- w[j++] = l&0x3fffffff;
- }
- return c;
- }
- // Alternately, set max digit bits to 28 since some
- // browsers slow down when dealing with 32-bit numbers.
- function am3(i,x,w,j,c,n) {
- var xl = x&0x3fff, xh = x>>14;
- while(--n >= 0) {
- var l = this[i]&0x3fff;
- var h = this[i++]>>14;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x3fff)<<14)+w[j]+c;
- c = (l>>28)+(m>>14)+xh*h;
- w[j++] = l&0xfffffff;
- }
- return c;
- }
- if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
- BigInteger.prototype.am = am2;
- dbits = 30;
- }
- else if(j_lm && (navigator.appName != "Netscape")) {
- BigInteger.prototype.am = am1;
- dbits = 26;
- }
- else { // Mozilla/Netscape seems to prefer am3
- BigInteger.prototype.am = am3;
- dbits = 28;
- }
- var BI_FP = 52;
- // Digit conversions
- var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
- var BI_RC = [];
- var rr,vv;
- rr = "0".charCodeAt(0);
- for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
- rr = "a".charCodeAt(0);
- for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
- rr = "A".charCodeAt(0);
- for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
- function int2char(n) { return BI_RM.charAt(n); }
- function intAt(s,i) {
- var c = BI_RC[s.charCodeAt(i)];
- return (c==null)?-1:c;
- }
- // (protected) copy this to r
- function bnpCopyTo(r) {
- for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
- r.t = this.t;
- r.s = this.s;
- }
- // (protected) set from integer value x, -DV <= x < DV
- function bnpFromInt(x) {
- this.t = 1;
- this.s = (x<0)?-1:0;
- if(x > 0) this[0] = x;
- else if(x < -1) this[0] = x+_DV;
- else this.t = 0;
- }
- // return bigint initialized to value
- function nbv(i) { var r = nbi(); r._fromInt(i); return r; }
- // (protected) set from string and radix
- function bnpFromString(s,b) {
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 256) k = 8; // byte array
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else { this.fromRadix(s,b); return; }
- this.t = 0;
- this.s = 0;
- var i = s.length, mi = false, sh = 0;
- while(--i >= 0) {
- var x = (k==8)?s[i]&0xff:intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-") mi = true;
- continue;
- }
- mi = false;
- if(sh == 0)
- this[this.t++] = x;
- else if(sh+k > this._DB) {
- this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<<sh;
- this[this.t++] = (x>>(this._DB-sh));
- }
- else
- this[this.t-1] |= x<<sh;
- sh += k;
- if(sh >= this._DB) sh -= this._DB;
- }
- if(k == 8 && (s[0]&0x80) != 0) {
- this.s = -1;
- if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)<<sh;
- }
- this._clamp();
- if(mi) BigInteger.ZERO._subTo(this,this);
- }
- // (protected) clamp off excess high words
- function bnpClamp() {
- var c = this.s&this._DM;
- while(this.t > 0 && this[this.t-1] == c) --this.t;
- }
- // (public) return string representation in given radix
- function bnToString(b) {
- if(this.s < 0) return "-"+this.negate().toString(b);
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else return this._toRadix(b);
- var km = (1<<k)-1, d, m = false, r = "", i = this.t;
- var p = this._DB-(i*this._DB)%k;
- if(i-- > 0) {
- if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
- while(i >= 0) {
- if(p < k) {
- d = (this[i]&((1<<p)-1))<<(k-p);
- d |= this[--i]>>(p+=this._DB-k);
- }
- else {
- d = (this[i]>>(p-=k))&km;
- if(p <= 0) { p += this._DB; --i; }
- }
- if(d > 0) m = true;
- if(m) r += int2char(d);
- }
- }
- return m?r:"0";
- }
- // (public) -this
- function bnNegate() { var r = nbi(); BigInteger.ZERO._subTo(this,r); return r; }
- // (public) |this|
- function bnAbs() { return (this.s<0)?this.negate():this; }
- // (public) return + if this > a, - if this < a, 0 if equal
- function bnCompareTo(a) {
- var r = this.s-a.s;
- if(r) return r;
- var i = this.t;
- r = i-a.t;
- if(r) return r;
- while(--i >= 0) if((r = this[i] - a[i])) return r;
- return 0;
- }
- // returns bit length of the integer x
- function nbits(x) {
- var r = 1, t;
- if((t=x>>>16)) { x = t; r += 16; }
- if((t=x>>8)) { x = t; r += 8; }
- if((t=x>>4)) { x = t; r += 4; }
- if((t=x>>2)) { x = t; r += 2; }
- if((t=x>>1)) { x = t; r += 1; }
- return r;
- }
- // (public) return the number of bits in "this"
- function bnBitLength() {
- if(this.t <= 0) return 0;
- return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM));
- }
- // (protected) r = this << n*DB
- function bnpDLShiftTo(n,r) {
- var i;
- for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
- for(i = n-1; i >= 0; --i) r[i] = 0;
- r.t = this.t+n;
- r.s = this.s;
- }
- // (protected) r = this >> n*DB
- function bnpDRShiftTo(n,r) {
- for(var i = n; i < this.t; ++i) r[i-n] = this[i];
- r.t = Math.max(this.t-n,0);
- r.s = this.s;
- }
- // (protected) r = this << n
- function bnpLShiftTo(n,r) {
- var bs = n%this._DB;
- var cbs = this._DB-bs;
- var bm = (1<<cbs)-1;
- var ds = Math.floor(n/this._DB), c = (this.s<<bs)&this._DM, i;
- for(i = this.t-1; i >= 0; --i) {
- r[i+ds+1] = (this[i]>>cbs)|c;
- c = (this[i]&bm)<<bs;
- }
- for(i = ds-1; i >= 0; --i) r[i] = 0;
- r[ds] = c;
- r.t = this.t+ds+1;
- r.s = this.s;
- r._clamp();
- }
- // (protected) r = this >> n
- function bnpRShiftTo(n,r) {
- r.s = this.s;
- var ds = Math.floor(n/this._DB);
- if(ds >= this.t) { r.t = 0; return; }
- var bs = n%this._DB;
- var cbs = this._DB-bs;
- var bm = (1<<bs)-1;
- r[0] = this[ds]>>bs;
- for(var i = ds+1; i < this.t; ++i) {
- r[i-ds-1] |= (this[i]&bm)<<cbs;
- r[i-ds] = this[i]>>bs;
- }
- if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
- r.t = this.t-ds;
- r._clamp();
- }
- // (protected) r = this - a
- function bnpSubTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]-a[i];
- r[i++] = c&this._DM;
- c >>= this._DB;
- }
- if(a.t < this.t) {
- c -= a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this._DM;
- c >>= this._DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while(i < a.t) {
- c -= a[i];
- r[i++] = c&this._DM;
- c >>= this._DB;
- }
- c -= a.s;
- }
- r.s = (c<0)?-1:0;
- if(c < -1) r[i++] = this._DV+c;
- else if(c > 0) r[i++] = c;
- r.t = i;
- r._clamp();
- }
- // (protected) r = this * a, r != this,a (HAC 14.12)
- // "this" should be the larger one if appropriate.
- function bnpMultiplyTo(a,r) {
- var x = this.abs(), y = a.abs();
- var i = x.t;
- r.t = i+y.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
- r.s = 0;
- r._clamp();
- if(this.s != a.s) BigInteger.ZERO._subTo(r,r);
- }
- // (protected) r = this^2, r != this (HAC 14.16)
- function bnpSquareTo(r) {
- var x = this.abs();
- var i = r.t = 2*x.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < x.t-1; ++i) {
- var c = x.am(i,x[i],r,2*i,0,1);
- if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) {
- r[i+x.t] -= x._DV;
- r[i+x.t+1] = 1;
- }
- }
- if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
- r.s = 0;
- r._clamp();
- }
- // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
- // r != q, this != m. q or r may be null.
- function bnpDivRemTo(m,q,r) {
- var pm = m.abs();
- if(pm.t <= 0) return;
- var pt = this.abs();
- if(pt.t < pm.t) {
- if(q != null) q._fromInt(0);
- if(r != null) this._copyTo(r);
- return;
- }
- if(r == null) r = nbi();
- var y = nbi(), ts = this.s, ms = m.s;
- var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus
- if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); }
- else { pm._copyTo(y); pt._copyTo(r); }
- var ys = y.t;
- var y0 = y[ys-1];
- if(y0 == 0) return;
- var yt = y0*(1<<this._F1)+((ys>1)?y[ys-2]>>this._F2:0);
- var d1 = this._FV/yt, d2 = (1<<this._F1)/yt, e = 1<<this._F2;
- var i = r.t, j = i-ys, t = (q==null)?nbi():q;
- y._dlShiftTo(j,t);
- if(r.compareTo(t) >= 0) {
- r[r.t++] = 1;
- r._subTo(t,r);
- }
- BigInteger.ONE._dlShiftTo(ys,t);
- t._subTo(y,y); // "negative" y so we can replace sub with am later
- while(y.t < ys) y[y.t++] = 0;
- while(--j >= 0) {
- // Estimate quotient digit
- var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
- if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
- y._dlShiftTo(j,t);
- r._subTo(t,r);
- while(r[i] < --qd) r._subTo(t,r);
- }
- }
- if(q != null) {
- r._drShiftTo(ys,q);
- if(ts != ms) BigInteger.ZERO._subTo(q,q);
- }
- r.t = ys;
- r._clamp();
- if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder
- if(ts < 0) BigInteger.ZERO._subTo(r,r);
- }
- // (public) this mod a
- function bnMod(a) {
- var r = nbi();
- this.abs()._divRemTo(a,null,r);
- if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r);
- return r;
- }
- // Modular reduction using "classic" algorithm
- function Classic(m) { this.m = m; }
- function cConvert(x) {
- if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
- else return x;
- }
- function cRevert(x) { return x; }
- function cReduce(x) { x._divRemTo(this.m,null,x); }
- function cMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
- function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
- dojo.extend(Classic, {
- convert: cConvert,
- revert: cRevert,
- reduce: cReduce,
- mulTo: cMulTo,
- sqrTo: cSqrTo
- });
- // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
- // justification:
- // xy == 1 (mod m)
- // xy = 1+km
- // xy(2-xy) = (1+km)(1-km)
- // x[y(2-xy)] = 1-k^2m^2
- // x[y(2-xy)] == 1 (mod m^2)
- // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
- // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
- // JS multiply "overflows" differently from C/C++, so care is needed here.
- function bnpInvDigit() {
- if(this.t < 1) return 0;
- var x = this[0];
- if((x&1) == 0) return 0;
- var y = x&3; // y == 1/x mod 2^2
- y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
- y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
- y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
- // last step - calculate inverse mod DV directly;
- // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
- y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits
- // we really want the negative inverse, and -DV < y < DV
- return (y>0)?this._DV-y:-y;
- }
- // Montgomery reduction
- function Montgomery(m) {
- this.m = m;
- this.mp = m._invDigit();
- this.mpl = this.mp&0x7fff;
- this.mph = this.mp>>15;
- this.um = (1<<(m._DB-15))-1;
- this.mt2 = 2*m.t;
- }
- // xR mod m
- function montConvert(x) {
- var r = nbi();
- x.abs()._dlShiftTo(this.m.t,r);
- r._divRemTo(this.m,null,r);
- if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r);
- return r;
- }
- // x/R mod m
- function montRevert(x) {
- var r = nbi();
- x._copyTo(r);
- this.reduce(r);
- return r;
- }
- // x = x/R mod m (HAC 14.32)
- function montReduce(x) {
- while(x.t <= this.mt2) // pad x so am has enough room later
- x[x.t++] = 0;
- for(var i = 0; i < this.m.t; ++i) {
- // faster way of calculating u0 = x[i]*mp mod DV
- var j = x[i]&0x7fff;
- var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM;
- // use am to combine the multiply-shift-add into one call
- j = i+this.m.t;
- x[j] += this.m.am(0,u0,x,i,0,this.m.t);
- // propagate carry
- while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; }
- }
- x._clamp();
- x._drShiftTo(this.m.t,x);
- if(x.compareTo(this.m) >= 0) x._subTo(this.m,x);
- }
- // r = "x^2/R mod m"; x != r
- function montSqrTo(x,r) { x._squareTo(r); this.reduce(r); }
- // r = "xy/R mod m"; x,y != r
- function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }
- dojo.extend(Montgomery, {
- convert: montConvert,
- revert: montRevert,
- reduce: montReduce,
- mulTo: montMulTo,
- sqrTo: montSqrTo
- });
- // (protected) true iff this is even
- function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
- // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
- function bnpExp(e,z) {
- if(e > 0xffffffff || e < 1) return BigInteger.ONE;
- var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
- g._copyTo(r);
- while(--i >= 0) {
- z.sqrTo(r,r2);
- if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
- else { var t = r; r = r2; r2 = t; }
- }
- return z.revert(r);
- }
- // (public) this^e % m, 0 <= e < 2^32
- function bnModPowInt(e,m) {
- var z;
- if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m);
- return this._exp(e,z);
- }
- dojo.extend(BigInteger, {
- // protected, not part of the official API
- _DB: dbits,
- _DM: (1 << dbits) - 1,
- _DV: 1 << dbits,
- _FV: Math.pow(2, BI_FP),
- _F1: BI_FP - dbits,
- _F2: 2 * dbits-BI_FP,
- // protected
- _copyTo: bnpCopyTo,
- _fromInt: bnpFromInt,
- _fromString: bnpFromString,
- _clamp: bnpClamp,
- _dlShiftTo: bnpDLShiftTo,
- _drShiftTo: bnpDRShiftTo,
- _lShiftTo: bnpLShiftTo,
- _rShiftTo: bnpRShiftTo,
- _subTo: bnpSubTo,
- _multiplyTo: bnpMultiplyTo,
- _squareTo: bnpSquareTo,
- _divRemTo: bnpDivRemTo,
- _invDigit: bnpInvDigit,
- _isEven: bnpIsEven,
- _exp: bnpExp,
- // public
- toString: bnToString,
- negate: bnNegate,
- abs: bnAbs,
- compareTo: bnCompareTo,
- bitLength: bnBitLength,
- mod: bnMod,
- modPowInt: bnModPowInt
- });
- dojo._mixin(BigInteger, {
- // "constants"
- ZERO: nbv(0),
- ONE: nbv(1),
- // internal functions
- _nbi: nbi,
- _nbv: nbv,
- _nbits: nbits,
- // internal classes
- _Montgomery: Montgomery
- });
- // export to DojoX
- dojox.math.BigInteger = BigInteger;
- return dojox.math.BigInteger;
- });
|