| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589 | // AMD-ID "dojox/math/BigInteger"define("dojox/math/BigInteger", ["dojo", "dojox"], function(dojo, dojox) {	dojo.getObject("math.BigInteger", true, dojox);	dojo.experimental("dojox.math.BigInteger");// Contributed under CLA by Tom Wu <tjw@cs.Stanford.EDU>// See http://www-cs-students.stanford.edu/~tjw/jsbn/ for details.// Basic JavaScript BN library - subset useful for RSA encryption.// The API for dojox.math.BigInteger closely resembles that of the java.math.BigInteger class in Java.	// Bits per digit	var dbits;	// JavaScript engine analysis	var canary = 0xdeadbeefcafe;	var j_lm = ((canary&0xffffff)==0xefcafe);	// (public) Constructor	function BigInteger(a,b,c) {	  if(a != null)		if("number" == typeof a) this._fromNumber(a,b,c);		else if(!b && "string" != typeof a) this._fromString(a,256);		else this._fromString(a,b);	}	// return new, unset BigInteger	function nbi() { return new BigInteger(null); }	// am: Compute w_j += (x*this_i), propagate carries,	// c is initial carry, returns final carry.	// c < 3*dvalue, x < 2*dvalue, this_i < dvalue	// We need to select the fastest one that works in this environment.	// am1: use a single mult and divide to get the high bits,	// max digit bits should be 26 because	// max internal value = 2*dvalue^2-2*dvalue (< 2^53)	function am1(i,x,w,j,c,n) {	  while(--n >= 0) {		var v = x*this[i++]+w[j]+c;		c = Math.floor(v/0x4000000);		w[j++] = v&0x3ffffff;	  }	  return c;	}	// am2 avoids a big mult-and-extract completely.	// Max digit bits should be <= 30 because we do bitwise ops	// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)	function am2(i,x,w,j,c,n) {	  var xl = x&0x7fff, xh = x>>15;	  while(--n >= 0) {		var l = this[i]&0x7fff;		var h = this[i++]>>15;		var m = xh*l+h*xl;		l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);		c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);		w[j++] = l&0x3fffffff;	  }	  return c;	}	// Alternately, set max digit bits to 28 since some	// browsers slow down when dealing with 32-bit numbers.	function am3(i,x,w,j,c,n) {	  var xl = x&0x3fff, xh = x>>14;	  while(--n >= 0) {		var l = this[i]&0x3fff;		var h = this[i++]>>14;		var m = xh*l+h*xl;		l = xl*l+((m&0x3fff)<<14)+w[j]+c;		c = (l>>28)+(m>>14)+xh*h;		w[j++] = l&0xfffffff;	  }	  return c;	}	if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {	  BigInteger.prototype.am = am2;	  dbits = 30;	}	else if(j_lm && (navigator.appName != "Netscape")) {	  BigInteger.prototype.am = am1;	  dbits = 26;	}	else { // Mozilla/Netscape seems to prefer am3	  BigInteger.prototype.am = am3;	  dbits = 28;	}	var BI_FP = 52;	// Digit conversions	var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";	var BI_RC = [];	var rr,vv;	rr = "0".charCodeAt(0);	for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;	rr = "a".charCodeAt(0);	for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;	rr = "A".charCodeAt(0);	for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;	function int2char(n) { return BI_RM.charAt(n); }	function intAt(s,i) {	  var c = BI_RC[s.charCodeAt(i)];	  return (c==null)?-1:c;	}	// (protected) copy this to r	function bnpCopyTo(r) {	  for(var i = this.t-1; i >= 0; --i) r[i] = this[i];	  r.t = this.t;	  r.s = this.s;	}	// (protected) set from integer value x, -DV <= x < DV	function bnpFromInt(x) {	  this.t = 1;	  this.s = (x<0)?-1:0;	  if(x > 0) this[0] = x;	  else if(x < -1) this[0] = x+_DV;	  else this.t = 0;	}	// return bigint initialized to value	function nbv(i) { var r = nbi(); r._fromInt(i); return r; }	// (protected) set from string and radix	function bnpFromString(s,b) {	  var k;	  if(b == 16) k = 4;	  else if(b == 8) k = 3;	  else if(b == 256) k = 8; // byte array	  else if(b == 2) k = 1;	  else if(b == 32) k = 5;	  else if(b == 4) k = 2;	  else { this.fromRadix(s,b); return; }	  this.t = 0;	  this.s = 0;	  var i = s.length, mi = false, sh = 0;	  while(--i >= 0) {		var x = (k==8)?s[i]&0xff:intAt(s,i);		if(x < 0) {		  if(s.charAt(i) == "-") mi = true;		  continue;		}		mi = false;		if(sh == 0)		  this[this.t++] = x;		else if(sh+k > this._DB) {		  this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<<sh;		  this[this.t++] = (x>>(this._DB-sh));		}		else		  this[this.t-1] |= x<<sh;		sh += k;		if(sh >= this._DB) sh -= this._DB;	  }	  if(k == 8 && (s[0]&0x80) != 0) {		this.s = -1;		if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)<<sh;	  }	  this._clamp();	  if(mi) BigInteger.ZERO._subTo(this,this);	}	// (protected) clamp off excess high words	function bnpClamp() {	  var c = this.s&this._DM;	  while(this.t > 0 && this[this.t-1] == c) --this.t;	}	// (public) return string representation in given radix	function bnToString(b) {	  if(this.s < 0) return "-"+this.negate().toString(b);	  var k;	  if(b == 16) k = 4;	  else if(b == 8) k = 3;	  else if(b == 2) k = 1;	  else if(b == 32) k = 5;	  else if(b == 4) k = 2;	  else return this._toRadix(b);	  var km = (1<<k)-1, d, m = false, r = "", i = this.t;	  var p = this._DB-(i*this._DB)%k;	  if(i-- > 0) {		if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }		while(i >= 0) {		  if(p < k) {			d = (this[i]&((1<<p)-1))<<(k-p);			d |= this[--i]>>(p+=this._DB-k);		  }		  else {			d = (this[i]>>(p-=k))&km;			if(p <= 0) { p += this._DB; --i; }		  }		  if(d > 0) m = true;		  if(m) r += int2char(d);		}	  }	  return m?r:"0";	}	// (public) -this	function bnNegate() { var r = nbi(); BigInteger.ZERO._subTo(this,r); return r; }	// (public) |this|	function bnAbs() { return (this.s<0)?this.negate():this; }	// (public) return + if this > a, - if this < a, 0 if equal	function bnCompareTo(a) {	  var r = this.s-a.s;	  if(r) return r;	  var i = this.t;	  r = i-a.t;	  if(r) return r;	  while(--i >= 0) if((r = this[i] - a[i])) return r;	  return 0;	}	// returns bit length of the integer x	function nbits(x) {	  var r = 1, t;	  if((t=x>>>16)) { x = t; r += 16; }	  if((t=x>>8)) { x = t; r += 8; }	  if((t=x>>4)) { x = t; r += 4; }	  if((t=x>>2)) { x = t; r += 2; }	  if((t=x>>1)) { x = t; r += 1; }	  return r;	}	// (public) return the number of bits in "this"	function bnBitLength() {	  if(this.t <= 0) return 0;	  return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM));	}	// (protected) r = this << n*DB	function bnpDLShiftTo(n,r) {	  var i;	  for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];	  for(i = n-1; i >= 0; --i) r[i] = 0;	  r.t = this.t+n;	  r.s = this.s;	}	// (protected) r = this >> n*DB	function bnpDRShiftTo(n,r) {	  for(var i = n; i < this.t; ++i) r[i-n] = this[i];	  r.t = Math.max(this.t-n,0);	  r.s = this.s;	}	// (protected) r = this << n	function bnpLShiftTo(n,r) {	  var bs = n%this._DB;	  var cbs = this._DB-bs;	  var bm = (1<<cbs)-1;	  var ds = Math.floor(n/this._DB), c = (this.s<<bs)&this._DM, i;	  for(i = this.t-1; i >= 0; --i) {		r[i+ds+1] = (this[i]>>cbs)|c;		c = (this[i]&bm)<<bs;	  }	  for(i = ds-1; i >= 0; --i) r[i] = 0;	  r[ds] = c;	  r.t = this.t+ds+1;	  r.s = this.s;	  r._clamp();	}	// (protected) r = this >> n	function bnpRShiftTo(n,r) {	  r.s = this.s;	  var ds = Math.floor(n/this._DB);	  if(ds >= this.t) { r.t = 0; return; }	  var bs = n%this._DB;	  var cbs = this._DB-bs;	  var bm = (1<<bs)-1;	  r[0] = this[ds]>>bs;	  for(var i = ds+1; i < this.t; ++i) {		r[i-ds-1] |= (this[i]&bm)<<cbs;		r[i-ds] = this[i]>>bs;	  }	  if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;	  r.t = this.t-ds;	  r._clamp();	}	// (protected) r = this - a	function bnpSubTo(a,r) {	  var i = 0, c = 0, m = Math.min(a.t,this.t);	  while(i < m) {		c += this[i]-a[i];		r[i++] = c&this._DM;		c >>= this._DB;	  }	  if(a.t < this.t) {		c -= a.s;		while(i < this.t) {		  c += this[i];		  r[i++] = c&this._DM;		  c >>= this._DB;		}		c += this.s;	  }	  else {		c += this.s;		while(i < a.t) {		  c -= a[i];		  r[i++] = c&this._DM;		  c >>= this._DB;		}		c -= a.s;	  }	  r.s = (c<0)?-1:0;	  if(c < -1) r[i++] = this._DV+c;	  else if(c > 0) r[i++] = c;	  r.t = i;	  r._clamp();	}	// (protected) r = this * a, r != this,a (HAC 14.12)	// "this" should be the larger one if appropriate.	function bnpMultiplyTo(a,r) {	  var x = this.abs(), y = a.abs();	  var i = x.t;	  r.t = i+y.t;	  while(--i >= 0) r[i] = 0;	  for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);	  r.s = 0;	  r._clamp();	  if(this.s != a.s) BigInteger.ZERO._subTo(r,r);	}	// (protected) r = this^2, r != this (HAC 14.16)	function bnpSquareTo(r) {	  var x = this.abs();	  var i = r.t = 2*x.t;	  while(--i >= 0) r[i] = 0;	  for(i = 0; i < x.t-1; ++i) {		var c = x.am(i,x[i],r,2*i,0,1);		if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) {		  r[i+x.t] -= x._DV;		  r[i+x.t+1] = 1;		}	  }	  if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);	  r.s = 0;	  r._clamp();	}	// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)	// r != q, this != m.  q or r may be null.	function bnpDivRemTo(m,q,r) {	  var pm = m.abs();	  if(pm.t <= 0) return;	  var pt = this.abs();	  if(pt.t < pm.t) {		if(q != null) q._fromInt(0);		if(r != null) this._copyTo(r);		return;	  }	  if(r == null) r = nbi();	  var y = nbi(), ts = this.s, ms = m.s;	  var nsh = this._DB-nbits(pm[pm.t-1]);	// normalize modulus	  if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); }	  else { pm._copyTo(y); pt._copyTo(r); }	  var ys = y.t;	  var y0 = y[ys-1];	  if(y0 == 0) return;	  var yt = y0*(1<<this._F1)+((ys>1)?y[ys-2]>>this._F2:0);	  var d1 = this._FV/yt, d2 = (1<<this._F1)/yt, e = 1<<this._F2;	  var i = r.t, j = i-ys, t = (q==null)?nbi():q;	  y._dlShiftTo(j,t);	  if(r.compareTo(t) >= 0) {		r[r.t++] = 1;		r._subTo(t,r);	  }	  BigInteger.ONE._dlShiftTo(ys,t);	  t._subTo(y,y);	// "negative" y so we can replace sub with am later	  while(y.t < ys) y[y.t++] = 0;	  while(--j >= 0) {		// Estimate quotient digit		var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);		if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {	// Try it out		  y._dlShiftTo(j,t);		  r._subTo(t,r);		  while(r[i] < --qd) r._subTo(t,r);		}	  }	  if(q != null) {		r._drShiftTo(ys,q);		if(ts != ms) BigInteger.ZERO._subTo(q,q);	  }	  r.t = ys;	  r._clamp();	  if(nsh > 0) r._rShiftTo(nsh,r);	// Denormalize remainder	  if(ts < 0) BigInteger.ZERO._subTo(r,r);	}	// (public) this mod a	function bnMod(a) {	  var r = nbi();	  this.abs()._divRemTo(a,null,r);	  if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r);	  return r;	}	// Modular reduction using "classic" algorithm	function Classic(m) { this.m = m; }	function cConvert(x) {	  if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);	  else return x;	}	function cRevert(x) { return x; }	function cReduce(x) { x._divRemTo(this.m,null,x); }	function cMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }	function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); }	dojo.extend(Classic, {		convert:	cConvert,		revert:		cRevert,		reduce:		cReduce,		mulTo:		cMulTo,		sqrTo:		cSqrTo	});	// (protected) return "-1/this % 2^DB"; useful for Mont. reduction	// justification:	//         xy == 1 (mod m)	//         xy =  1+km	//   xy(2-xy) = (1+km)(1-km)	// x[y(2-xy)] = 1-k^2m^2	// x[y(2-xy)] == 1 (mod m^2)	// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2	// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.	// JS multiply "overflows" differently from C/C++, so care is needed here.	function bnpInvDigit() {	  if(this.t < 1) return 0;	  var x = this[0];	  if((x&1) == 0) return 0;	  var y = x&3;		// y == 1/x mod 2^2	  y = (y*(2-(x&0xf)*y))&0xf;	// y == 1/x mod 2^4	  y = (y*(2-(x&0xff)*y))&0xff;	// y == 1/x mod 2^8	  y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16	  // last step - calculate inverse mod DV directly;	  // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints	  y = (y*(2-x*y%this._DV))%this._DV;		// y == 1/x mod 2^dbits	  // we really want the negative inverse, and -DV < y < DV	  return (y>0)?this._DV-y:-y;	}	// Montgomery reduction	function Montgomery(m) {	  this.m = m;	  this.mp = m._invDigit();	  this.mpl = this.mp&0x7fff;	  this.mph = this.mp>>15;	  this.um = (1<<(m._DB-15))-1;	  this.mt2 = 2*m.t;	}	// xR mod m	function montConvert(x) {	  var r = nbi();	  x.abs()._dlShiftTo(this.m.t,r);	  r._divRemTo(this.m,null,r);	  if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r);	  return r;	}	// x/R mod m	function montRevert(x) {	  var r = nbi();	  x._copyTo(r);	  this.reduce(r);	  return r;	}	// x = x/R mod m (HAC 14.32)	function montReduce(x) {	  while(x.t <= this.mt2)	// pad x so am has enough room later		x[x.t++] = 0;	  for(var i = 0; i < this.m.t; ++i) {		// faster way of calculating u0 = x[i]*mp mod DV		var j = x[i]&0x7fff;		var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM;		// use am to combine the multiply-shift-add into one call		j = i+this.m.t;		x[j] += this.m.am(0,u0,x,i,0,this.m.t);		// propagate carry		while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; }	  }	  x._clamp();	  x._drShiftTo(this.m.t,x);	  if(x.compareTo(this.m) >= 0) x._subTo(this.m,x);	}	// r = "x^2/R mod m"; x != r	function montSqrTo(x,r) { x._squareTo(r); this.reduce(r); }	// r = "xy/R mod m"; x,y != r	function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); }	dojo.extend(Montgomery, {		convert:	montConvert,		revert:		montRevert,		reduce:		montReduce,		mulTo:		montMulTo,		sqrTo:		montSqrTo	});	// (protected) true iff this is even	function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }	// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)	function bnpExp(e,z) {	  if(e > 0xffffffff || e < 1) return BigInteger.ONE;	  var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;	  g._copyTo(r);	  while(--i >= 0) {		z.sqrTo(r,r2);		if((e&(1<<i)) > 0) z.mulTo(r2,g,r);		else { var t = r; r = r2; r2 = t; }	  }	  return z.revert(r);	}	// (public) this^e % m, 0 <= e < 2^32	function bnModPowInt(e,m) {	  var z;	  if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m);	  return this._exp(e,z);	}	dojo.extend(BigInteger, {		// protected, not part of the official API		_DB:	dbits,		_DM:	(1 << dbits) - 1,		_DV:	1 << dbits,		_FV:	Math.pow(2, BI_FP),		_F1:	BI_FP - dbits,		_F2:	2 * dbits-BI_FP,		// protected		_copyTo:		bnpCopyTo,		_fromInt:		bnpFromInt,		_fromString:	bnpFromString,		_clamp:			bnpClamp,		_dlShiftTo:		bnpDLShiftTo,		_drShiftTo:		bnpDRShiftTo,		_lShiftTo:		bnpLShiftTo,		_rShiftTo:		bnpRShiftTo,		_subTo:			bnpSubTo,		_multiplyTo:	bnpMultiplyTo,		_squareTo:		bnpSquareTo,		_divRemTo:		bnpDivRemTo,		_invDigit:		bnpInvDigit,		_isEven:		bnpIsEven,		_exp:			bnpExp,		// public		toString:		bnToString,		negate:			bnNegate,		abs:			bnAbs,		compareTo:		bnCompareTo,		bitLength:		bnBitLength,		mod:			bnMod,		modPowInt:		bnModPowInt	});	dojo._mixin(BigInteger, {		// "constants"		ZERO:	nbv(0),		ONE:	nbv(1),		// internal functions		_nbi: nbi,		_nbv: nbv,		_nbits: nbits,		// internal classes		_Montgomery: Montgomery	});	// export to DojoX	dojox.math.BigInteger = BigInteger;	return dojox.math.BigInteger;});
 |