db_create.py 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. import json
  2. from collections import namedtuple
  3. from pathlib import Path
  4. import pandas as pd
  5. import pyodbc
  6. # from re import escape
  7. # from numpy import select
  8. # from dataclasses import dataclass
  9. DbCreateConfig = namedtuple(
  10. "DbCreateConfig",
  11. "name csv_file clients filter source_dsn target_dsn stage_dir batch_dir",
  12. )
  13. DsnConfig = namedtuple("DsnConfig", "user password server database driver schema")
  14. cfg = DbCreateConfig(
  15. **{
  16. "name": "CARLO",
  17. "csv_file": "CARLO.csv",
  18. "clients": {"1": "M und S Fahrzeughandel GmbH"},
  19. "filter": ["01.01.2018", "01.01.2019"],
  20. "source_dsn": {
  21. "user": "sa",
  22. "password": "Mffu3011#",
  23. "server": "GC-SERVER1\\GLOBALCUBE",
  24. "database": "DE0017",
  25. "driver": "mssql",
  26. "schema": "dbo",
  27. },
  28. "target_dsn": {
  29. "user": "sa",
  30. "password": "Mffu3011#",
  31. "server": "GC-SERVER1\\GLOBALCUBE",
  32. "database": "CARLO2",
  33. "driver": "mssql",
  34. "schema": "import",
  35. },
  36. "stage_dir": "..\\temp",
  37. "batch_dir": "..\\batch",
  38. }
  39. )
  40. class database_inspect:
  41. tables = []
  42. def __init__(self, dsn):
  43. self.dsn = DsnConfig(**dsn)
  44. self.cursor = self.connect()
  45. def conn_string(self):
  46. if self.dsn.driver == "mssql":
  47. return (
  48. "Driver={SQL Server Native Client 11.0};"
  49. + f"Server={self.dsn.server};Database={self.dsn.database};Uid={self.dsn.user};Pwd={self.dsn.password}"
  50. )
  51. if self.dsn.driver == "mysql":
  52. return f"mysql+pymysql://{self.dsn.user}:{self.dsn.password}@{self.dsn.server}/{self.dsn.database}?charset=utf8mb4"
  53. return f"DSN={self.dsn.server};UID={self.dsn.user};PWD={self.dsn.password}"
  54. def bcp_conn_params(self):
  55. return f"-S {self.dsn.server} -d {self.dsn.database} -U {self.dsn.user} -P {self.dsn.password}"
  56. def connect(self):
  57. c = pyodbc.connect(self.conn_string())
  58. return c.cursor()
  59. def get_tables(self):
  60. tables = [x[2] for x in self.cursor.tables(tableType="TABLE")]
  61. views = [x[2] for x in self.cursor.tables(tableType="VIEW")]
  62. self.tables = tables + views
  63. return self.tables
  64. def get_prefix(self):
  65. if (len(self.tables)) == 0:
  66. self.get_tables()
  67. source_tables_prefix = dict(
  68. enumerate(
  69. sorted(list(set([t.split("$")[0] for t in self.tables if "$" in t]))), 1
  70. )
  71. )
  72. if len(source_tables_prefix) == 0:
  73. q = self.cursor.execute("select name FROM sys.databases")
  74. source_tables_prefix = [x[0] for x in q.fetchall()]
  75. return source_tables_prefix
  76. def get_columns(self, table):
  77. source_insp_cols = [col.column_name for col in self.cursor.columns(table=table)]
  78. if len(source_insp_cols) == 0:
  79. q = self.cursor.execute(
  80. "SELECT COLUMN_NAME as column_name FROM information_schema.columns "
  81. + f"WHERE TABLE_NAME = '{self.convert_table(table)}'"
  82. )
  83. source_insp_cols = [col[0] for col in q.fetchall()]
  84. return source_insp_cols
  85. def convert_table(self, table):
  86. if "." in table:
  87. table = table.split(".")[-1]
  88. if "[" in table:
  89. table = table[1:-1]
  90. return table
  91. def create(config_file="dbtools/OPTIMA.json"):
  92. cfg_import = json.load(open(config_file, "r", encoding="latin-1"))
  93. base_dir = Path(config_file).resolve().parent
  94. cfg_import["name"] = Path(config_file).stem
  95. if cfg_import["stage_dir"][:2] == "..":
  96. cfg_import["stage_dir"] = str(
  97. base_dir.joinpath(cfg_import["stage_dir"]).resolve()
  98. )
  99. if cfg_import["batch_dir"][:2] == "..":
  100. cfg_import["batch_dir"] = str(
  101. base_dir.joinpath(cfg_import["batch_dir"]).resolve()
  102. )
  103. cfg = DbCreateConfig(**cfg_import)
  104. df = pd.read_csv(f"{base_dir}/{cfg.csv_file}", sep=";", encoding="latin-1")
  105. config = df[df["target"].notnull()]
  106. print(config.head())
  107. source_db = database_inspect(cfg.source_dsn)
  108. source_tables = source_db.get_tables()
  109. print(source_db.get_prefix())
  110. target_db = database_inspect(cfg.target_dsn)
  111. target_tables = target_db.get_tables()
  112. for index, current_table in config.iterrows():
  113. with open(
  114. f"{cfg.batch_dir}/{current_table['target']}.bat", "w", encoding="cp850"
  115. ) as f:
  116. f.write("@echo off \n")
  117. f.write("rem ==" + current_table["target"] + "==\n")
  118. if not current_table["target"] in target_tables:
  119. f.write(
  120. f"echo Ziel-Tabelle '{current_table['target']}' existiert nicht!\n"
  121. )
  122. print(f"Ziel-Tabelle '{current_table['target']}' existiert nicht!")
  123. continue
  124. f.write(
  125. f"del {cfg.stage_dir}\\{current_table['target']}*.* /Q /F >nul 2>nul \n"
  126. )
  127. f.write(
  128. f"sqlcmd.exe {target_db.bcp_conn_params()} -p "
  129. + f"-Q \"TRUNCATE TABLE [{cfg.target_dsn['schema']}].[{current_table['target']}]\" \n"
  130. )
  131. target_columns_list = target_db.get_columns(current_table["target"])
  132. if "CLIENT_DB" in target_columns_list:
  133. target_columns_list.remove("CLIENT_DB")
  134. target_columns_list.append("Client_DB")
  135. target_columns = set(target_columns_list)
  136. for client_db, prefix in cfg.clients.items():
  137. source_table = current_table["source"].format(prefix)
  138. if source_table not in source_tables:
  139. source_table2 = source_db.convert_table(source_table)
  140. if source_table2 not in source_tables:
  141. f.write(
  142. f"echo Quell-Tabelle '{source_table}' existiert nicht!\n"
  143. )
  144. print(f"Quell-Tabelle '{source_table}' existiert nicht!")
  145. continue
  146. source_columns = set(source_db.get_columns(source_table))
  147. intersect = source_columns.intersection(target_columns)
  148. # print("Auf beiden Seiten: " + ";".join(intersect))
  149. diff1 = source_columns.difference(target_columns)
  150. if len(diff1) > 0:
  151. f.write("rem Nur in Quelle: " + ";".join(diff1) + "\n")
  152. diff2 = target_columns.difference(source_columns)
  153. if "Client_DB" not in diff2:
  154. f.write("echo Spalte 'Client_DB' fehlt!\n")
  155. print(
  156. f"Ziel-Tabelle '{current_table['target']}' Spalte 'Client_DB' fehlt!"
  157. )
  158. continue
  159. diff2.remove("Client_DB")
  160. if len(diff2) > 0:
  161. f.write("rem Nur in Ziel: " + ";".join(diff2) + "\n")
  162. if not pd.isnull(current_table["query"]):
  163. select_query = current_table["query"].format(
  164. prefix, cfg.filter[0], cfg.filter[1]
  165. )
  166. elif "." in source_table or cfg.source_dsn["schema"] == "":
  167. select_query = f'SELECT T1.* FROM \\"{source_table}\\" T1 '
  168. else:
  169. select_query = f"SELECT T1.* FROM [{cfg.source_dsn['schema']}].[{source_table}] T1 "
  170. if not pd.isnull(current_table["filter"]):
  171. select_query += " WHERE " + current_table["filter"].format(
  172. "", cfg.filter[0], cfg.filter[1]
  173. )
  174. # select_columns = "T1.[" + "], T1.[".join(intersect) + "],"
  175. select_columns = ""
  176. for col in target_columns_list:
  177. if col in intersect:
  178. select_columns += f"T1.[{col}], "
  179. elif col == "Client_DB":
  180. select_columns += "'" + client_db + '\' as \\"Client_DB\\", '
  181. else:
  182. select_columns += "'' as \\\"" + col + '\\", '
  183. select_query = select_query.replace("T1.*", select_columns[:-2])
  184. select_query = select_query.replace("%", "%%") # batch-Problem
  185. stage_csv = (
  186. f"{cfg.stage_dir}\\{current_table['target']}_{client_db}.csv"
  187. )
  188. # insert_query = f"LOAD DATA INFILE '{stage_csv}' INTO TABLE {current_table['target']} FIELDS TERMINATED BY ','
  189. # ENCLOSED BY '\"' LINES TERMINATED BY '\n';"
  190. # print(select_query)
  191. bulk_copy = "bcp" if cfg.source_dsn["driver"] == "mssql" else "cet"
  192. f.write(
  193. f'{bulk_copy} "{select_query}" queryout "{stage_csv}" {source_db.bcp_conn_params()} -c -C 65001 -m 1000 '
  194. + f'-e "{stage_csv[:-4]}.queryout.log" > "{stage_csv[:-4]}.bcp1.log" \n'
  195. )
  196. f.write(f'type "{stage_csv[:-4]}.bcp1.log" | findstr -v "1000" \n')
  197. f.write(
  198. f"bcp [{cfg.target_dsn['schema']}].[{current_table['target']}] in \"{stage_csv}\" {target_db.bcp_conn_params()} "
  199. + f'-c -C 65001 -m 1000 -e "{stage_csv[:-4]}.in.log" > "{stage_csv[:-4]}.bcp2.log" \n'
  200. )
  201. f.write(f'type "{stage_csv[:-4]}.bcp2.log" | findstr -v "1000" \n')
  202. f.write(f'del "{stage_csv}" /F >nul 2>nul \n')
  203. with open(f"{cfg.batch_dir}/_{cfg.name}.bat", "w", encoding="cp850") as f:
  204. f.write("@echo off & cd /d %~dp0 \n")
  205. f.write(f"del {cfg.stage_dir}\\*.* /Q /F >nul 2>nul \n\n")
  206. for index, current_table in config.iterrows():
  207. f.write(f"echo =={current_table['target']}==\n")
  208. f.write(f"echo {current_table['target']} >CON \n")
  209. f.write(f"call {current_table['target']}.bat\n\n")
  210. if __name__ == "__main__":
  211. create()