ppx_convert.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. import json
  2. from pathlib import Path
  3. import re
  4. from bs4 import BeautifulSoup
  5. dimensions = []
  6. categories = []
  7. cat_expressions = []
  8. advanced_subset = []
  9. report_specs = []
  10. with open("cognos7/data/ppx/1_3_Kostenstellenbericht_Vormonat.ppx", "rb") as frh:
  11. bs = BeautifulSoup(frh, "xml", from_encoding="latin-1")
  12. cube_name = bs.find("PPDSConnection")["Cube"]
  13. cube_ids_file = "cognos7/data/ppx/" + cube_name[:-4] + "_ids.json"
  14. cat_name_to_label = {}
  15. if Path(cube_ids_file).exists():
  16. with open(cube_ids_file, "r") as frh:
  17. cat_name_to_label = json.load(frh)
  18. for entry in bs.find("DataPool"):
  19. if entry.name is None:
  20. continue
  21. if entry.name == "CatExp":
  22. cat_expressions.append(
  23. {
  24. "ID": entry["ExpId"],
  25. "Operation": entry.Op["Code"],
  26. "Elements": [e["RefId"] for e in entry.find_all("Ref")],
  27. }
  28. )
  29. elif entry.name == "Dimension":
  30. dimensions.append({"Name": entry["Code"], "ID": entry["DimIdx"]})
  31. elif entry.name == "Level":
  32. categories.append(
  33. {
  34. "ID": entry["LevelId"],
  35. "Name": entry["Code"],
  36. "Dimension": entry["DimIdx"],
  37. }
  38. )
  39. elif entry.name == "PPDSID":
  40. categories.append(
  41. {
  42. "ID": entry["CatId"],
  43. "Name": entry["Code"],
  44. "Dimension": entry["DimIdx"],
  45. }
  46. )
  47. for entry in bs.find("QueryList"):
  48. if entry.name is None:
  49. continue
  50. advanced_subset.append(
  51. {
  52. "ID": entry["Key"],
  53. "Name": entry["Alias"],
  54. "Dimension": entry["Dimension"],
  55. "Level": entry.find("Level")["RefId"],
  56. }
  57. )
  58. dim_id_to_name = dict([(e["ID"], e["Name"]) for e in dimensions])
  59. cat_id_to_name = dict(
  60. [
  61. (e["ID"], dim_id_to_name[e["Dimension"]] + "//" + e["Name"])
  62. for e in categories
  63. ]
  64. )
  65. cat_exp_to_name = dict(
  66. [
  67. (
  68. e["ID"],
  69. e["Operation"]
  70. + "('"
  71. + "', '".join([cat_id_to_name[id] for id in e["Elements"]])
  72. + "')",
  73. )
  74. for e in cat_expressions
  75. ]
  76. )
  77. query_to_name = dict([(e["ID"], e["Name"]) for e in advanced_subset])
  78. query_to_members = dict(
  79. [
  80. (
  81. e["ID"],
  82. cat_id_to_name[e["Level"]],
  83. )
  84. for e in advanced_subset
  85. ]
  86. )
  87. for entry in bs.find_all("ReportAxis"):
  88. if entry.name is None:
  89. continue
  90. for level, group in enumerate(entry.find_all("NestGroup")):
  91. for pos, category in enumerate(group.find_all("Category")):
  92. if category.get("QueryKey") is not None:
  93. report_specs.append(
  94. {
  95. "ID": category["QueryKey"],
  96. "Name": "members( '"
  97. + query_to_members[category["QueryKey"]]
  98. + "' )",
  99. "Axis": entry["Identifier"],
  100. "Level": str(level),
  101. "Position": str(pos),
  102. "Label": query_to_name[category["QueryKey"]],
  103. "Width": category.get("ColExtent", ""),
  104. }
  105. )
  106. elif re.search(r"T\d+", category["RefId"]):
  107. report_specs.append(
  108. {
  109. "ID": category["RefId"],
  110. "Name": cat_exp_to_name[category["RefId"]],
  111. "Type": entry["Identifier"],
  112. "Level": str(level),
  113. "Position": str(pos),
  114. "Label": category.get("Label", ""),
  115. "Width": category.get("ColExtent", ""),
  116. }
  117. )
  118. else:
  119. report_specs.append(
  120. {
  121. "ID": category["RefId"],
  122. "Name": cat_id_to_name[category["RefId"]],
  123. "Type": entry["Identifier"],
  124. "Level": str(level),
  125. "Position": str(pos),
  126. "Label": category.get(
  127. "Label",
  128. cat_name_to_label.get(
  129. cat_id_to_name[category["RefId"]], ""
  130. ),
  131. ),
  132. "Width": category.get("ColExtent", ""),
  133. }
  134. )
  135. with open("cognos7/data/ppx/export.json", "w") as fwh:
  136. json.dump(
  137. {
  138. "Dim": dim_id_to_name,
  139. "Cat": cat_id_to_name,
  140. "Exp": cat_exp_to_name,
  141. "Sub": query_to_name,
  142. "Specs": report_specs,
  143. },
  144. fwh,
  145. indent=2,
  146. )